Articles | Volume 18, issue 15
Atmos. Chem. Phys., 18, 11205–11219, 2018
https://doi.org/10.5194/acp-18-11205-2018
Atmos. Chem. Phys., 18, 11205–11219, 2018
https://doi.org/10.5194/acp-18-11205-2018
Research article
13 Aug 2018
Research article | 13 Aug 2018

An update on global atmospheric ice estimates from satellite observations and reanalyses

David Ian Duncan and Patrick Eriksson

Related authors

Synergistic radar and sub-millimeter radiometer retrievals of ice hydrometeors in mid-latitude frontal cloud systems
Simon Pfreundschuh, Stuart Fox, Patrick Eriksson, David Duncan, Stefan A. Buehler, Manfred Brath, Richard Cotton, and Florian Ewald
Atmos. Meas. Tech., 15, 677–699, https://doi.org/10.5194/amt-15-677-2022,https://doi.org/10.5194/amt-15-677-2022, 2022
Short summary
Can machine learning correct microwave humidity radiances for the influence of clouds?
Inderpreet Kaur, Patrick Eriksson, Simon Pfreundschuh, and David Ian Duncan
Atmos. Meas. Tech., 14, 2957–2979, https://doi.org/10.5194/amt-14-2957-2021,https://doi.org/10.5194/amt-14-2957-2021, 2021
Short summary
Synergistic radar and radiometer retrievals of ice hydrometeors
Simon Pfreundschuh, Patrick Eriksson, Stefan A. Buehler, Manfred Brath, David Duncan, Richard Larsson, and Robin Ekelund
Atmos. Meas. Tech., 13, 4219–4245, https://doi.org/10.5194/amt-13-4219-2020,https://doi.org/10.5194/amt-13-4219-2020, 2020
Short summary
An experimental 2D-Var retrieval using AMSR2
David Ian Duncan, Patrick Eriksson, and Simon Pfreundschuh
Atmos. Meas. Tech., 12, 6341–6359, https://doi.org/10.5194/amt-12-6341-2019,https://doi.org/10.5194/amt-12-6341-2019, 2019
Short summary
On the distinctiveness of observed oceanic raindrop distributions
David Ian Duncan, Patrick Eriksson, Simon Pfreundschuh, Christian Klepp, and Daniel C. Jones
Atmos. Chem. Phys., 19, 6969–6984, https://doi.org/10.5194/acp-19-6969-2019,https://doi.org/10.5194/acp-19-6969-2019, 2019
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Stability-dependent increases in liquid water with droplet number in the Arctic
Rebecca J. Murray-Watson and Edward Gryspeerdt
Atmos. Chem. Phys., 22, 5743–5756, https://doi.org/10.5194/acp-22-5743-2022,https://doi.org/10.5194/acp-22-5743-2022, 2022
Short summary
Lightning activity in northern Europe during a stormy winter: disruptions of weather patterns originating in global climate phenomena
Ivana Kolmašová, Ondřej Santolík, and Kateřina Rosická
Atmos. Chem. Phys., 22, 3379–3389, https://doi.org/10.5194/acp-22-3379-2022,https://doi.org/10.5194/acp-22-3379-2022, 2022
Short summary
A climatology of open and closed mesoscale cellular convection over the Southern Ocean derived from Himawari-8 observations
Francisco Lang, Luis Ackermann, Yi Huang, Son C. H. Truong, Steven T. Siems, and Michael J. Manton
Atmos. Chem. Phys., 22, 2135–2152, https://doi.org/10.5194/acp-22-2135-2022,https://doi.org/10.5194/acp-22-2135-2022, 2022
Short summary
New insights on the prevalence of drizzle in marine stratocumulus clouds based on a machine learning algorithm applied to radar Doppler spectra
Zeen Zhu, Pavlos Kollias, Edward Luke, and Fan Yang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-1102,https://doi.org/10.5194/acp-2021-1102, 2022
Revised manuscript accepted for ACP
Short summary
Methodology to determine the coupling of continental clouds with surface and boundary layer height under cloudy conditions from lidar and meteorological data
Tianning Su, Youtong Zheng, and Zhanqing Li
Atmos. Chem. Phys., 22, 1453–1466, https://doi.org/10.5194/acp-22-1453-2022,https://doi.org/10.5194/acp-22-1453-2022, 2022
Short summary

Cited articles

Austin, R. T., Heymsfield, A. J., and Stephens, G. L.: Retrieval of ice cloud microphysical parameters using the CloudSat millimeter-wave radar and temperature, J. Geophys. Res.-Atmos., 114, D00A23, https://doi.org/10.1029/2008JD010049, 2009. a
Baran, A. J. and Francis, P. N.: On the radiative properties of cirrus cloud at solar and thermal wavelengths: A test of model consistency using high-resolution airborne radiance measurements, Q. J. Roy. Meteor. Soc., 130, 763–778, https://doi.org/10.1256/qj.03.151, 2004. a
Bauer, P. and Schlüssel, P.: Rainfall, total water, ice water, and water vapor over sea from polarized microwave simulations and Special Sensor Microwave/Imager data, J. Geophys. Res.-Atmos., 98, 20737–20759, https://doi.org/10.1029/93JD01577, 1993. a
Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolution of numerical weather prediction, Nature, 525, 47–55, https://doi.org/10.1038/nature14956, 2015. a
Birman, C., Mahfouf, J. F., Milz, M., Mendrok, J., Buehler, S. A., and Brath, M.: Information content on hydrometeors from millimeter and sub-millimeter wavelengths, Tellus A, 69, 1271562, https://doi.org/10.1080/16000870.2016.1271562, 2017. a, b
Download
Short summary
Ice cloud mass is assessed on a global scale using the latest satellite and reanalysis datasets. While ice cloud variability driven by large-scale circulations is an area of relative consensus, models and observations disagree strongly on the overall magnitude and finer-scale variability of atmospheric ice mass. The results reflect limitations of the current Earth observing system and indicate ice microphysical assumptions as the likely culprit of disagreement.
Altmetrics
Final-revised paper
Preprint