Articles | Volume 17, issue 14
https://doi.org/10.5194/acp-17-9067-2017
https://doi.org/10.5194/acp-17-9067-2017
Research article
 | 
27 Jul 2017
Research article |  | 27 Jul 2017

A wedge strategy for mitigation of urban warming in future climate scenarios

Lei Zhao, Xuhui Lee, and Natalie M. Schultz

Related authors

U-Surf: A Global 1 km spatially continuous urban surface property dataset for kilometer-scale urban-resolving Earth system modeling
Yifan Cheng, Lei Zhao, Tirthankar Chakraborty, Keith Oleson, Matthias Demuzere, Xiaoping Liu, Yangzi Che, Weilin Liao, Yuyu Zhou, and Xinchang Li
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-416,https://doi.org/10.5194/essd-2024-416, 2024
Preprint under review for ESSD
Short summary
AttentionFire_v1.0: interpretable machine learning fire model for burned-area predictions over tropics
Fa Li, Qing Zhu, William J. Riley, Lei Zhao, Li Xu, Kunxiaojia Yuan, Min Chen, Huayi Wu, Zhipeng Gui, Jianya Gong, and James T. Randerson
Geosci. Model Dev., 16, 869–884, https://doi.org/10.5194/gmd-16-869-2023,https://doi.org/10.5194/gmd-16-869-2023, 2023
Short summary
Building a machine learning surrogate model for wildfire activities within a global Earth system model
Qing Zhu, Fa Li, William J. Riley, Li Xu, Lei Zhao, Kunxiaojia Yuan, Huayi Wu, Jianya Gong, and James Randerson
Geosci. Model Dev., 15, 1899–1911, https://doi.org/10.5194/gmd-15-1899-2022,https://doi.org/10.5194/gmd-15-1899-2022, 2022
Short summary
Quantifying the structural uncertainty of the aerosol mixing state representation in a modal model
Zhonghua Zheng, Matthew West, Lei Zhao, Po-Lun Ma, Xiaohong Liu, and Nicole Riemer
Atmos. Chem. Phys., 21, 17727–17741, https://doi.org/10.5194/acp-21-17727-2021,https://doi.org/10.5194/acp-21-17727-2021, 2021
Short summary

Related subject area

Subject: Biosphere Interactions | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Why do inverse models disagree? A case study with two European CO2 inversions
Saqr Munassar, Guillaume Monteil, Marko Scholze, Ute Karstens, Christian Rödenbeck, Frank-Thomas Koch, Kai U. Totsche, and Christoph Gerbig
Atmos. Chem. Phys., 23, 2813–2828, https://doi.org/10.5194/acp-23-2813-2023,https://doi.org/10.5194/acp-23-2813-2023, 2023
Short summary
Net ecosystem exchange (NEE) estimates 2006–2019 over Europe from a pre-operational ensemble-inversion system
Saqr Munassar, Christian Rödenbeck, Frank-Thomas Koch, Kai U. Totsche, Michał Gałkowski, Sophia Walther, and Christoph Gerbig
Atmos. Chem. Phys., 22, 7875–7892, https://doi.org/10.5194/acp-22-7875-2022,https://doi.org/10.5194/acp-22-7875-2022, 2022
Short summary
Interpreting machine learning prediction of fire emissions and comparison with FireMIP process-based models
Sally S.-C. Wang, Yun Qian, L. Ruby Leung, and Yang Zhang
Atmos. Chem. Phys., 22, 3445–3468, https://doi.org/10.5194/acp-22-3445-2022,https://doi.org/10.5194/acp-22-3445-2022, 2022
Short summary
Distinguishing the impacts of natural and anthropogenic aerosols on global gross primary productivity through diffuse fertilization effect
Hao Zhou, Xu Yue, Yadong Lei, Chenguang Tian, Jun Zhu, Yimian Ma, Yang Cao, Xixi Yin, and Zhiding Zhang
Atmos. Chem. Phys., 22, 693–709, https://doi.org/10.5194/acp-22-693-2022,https://doi.org/10.5194/acp-22-693-2022, 2022
Short summary
Was Australia a sink or source of CO2 in 2015? Data assimilation using OCO-2 satellite measurements
Yohanna Villalobos, Peter J. Rayner, Jeremy D. Silver, Steven Thomas, Vanessa Haverd, Jürgen Knauer, Zoë M. Loh, Nicholas M. Deutscher, David W. T. Griffith, and David F. Pollard
Atmos. Chem. Phys., 21, 17453–17494, https://doi.org/10.5194/acp-21-17453-2021,https://doi.org/10.5194/acp-21-17453-2021, 2021
Short summary

Cited articles

Akbari, H., Matthews, H. D., and Seto, D.: The long-term effect of increasing the albedo of urban areas, Environ. Res. Lett., 7, 024004, https://doi.org/10.1088/1748-9326/7/2/024004, 2012.
Bass, B., Krayenhoff, E., Martilli, A., Stull, R. B., and Auld, H.: The impact of green roofs on Toronto's urban heat island, Proceedings of Greening Rooftops for Sustainable Communities, 2003.
Bonan, G. B.: Forests and climate change: Forcings, feedbacks, and the climate benefits of forests, Science, 320, 1444–1449, 2008.
Bowler, D. E., Buyung-Ali, L., Knight, T. M., and Pullin, A. S.: Urban greening to cool towns and cities: A systematic review of the empirical evidence, Landscape Urban Plan., 97, 147–155, https://doi.org/10.1016/j.landurbplan.2010.05.006, 2010.
Castleton, H. F., Stovin, V., Beck, S. B. M., and Davison, J. B.: Green roofs; building energy savings and the potential for retrofit, Energ. Buildings, 42, 1582–1591, https://doi.org/10.1016/j.enbuild.2010.05.004, 2010.
Download
Short summary
Heat stress associated with climate change is one of most severe threats to human society. The problem is further compounded in urban areas by urban heat islands (UHIs). We use an urban climate model to evaluate the cooling benefits of active urban heat mitigation strategies both individually and collectively. We show that by forming UHI mitigation wedges, these strategies have the potential to significantly reduce the UHI effect plus warming induced by greenhouse gases.
Altmetrics
Final-revised paper
Preprint