Articles | Volume 17, issue 3
https://doi.org/10.5194/acp-17-1595-2017
https://doi.org/10.5194/acp-17-1595-2017
Review article
 | 
02 Feb 2017
Review article |  | 02 Feb 2017

Pre-activation of aerosol particles by ice preserved in pores

Claudia Marcolli

Related authors

Microfluidic Immersion Freezing of Binary Mineral Mixtures Containing Microcline, Montmorillonite, or Quartz
Nadia Shardt, Florin N. Isenrich, Julia Nette, Christopher Dreimol, Ning Ma, Zamin A. Kanji, Andrew J. deMello, and Claudia Marcolli
EGUsphere, https://doi.org/10.5194/egusphere-2025-2958,https://doi.org/10.5194/egusphere-2025-2958, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Quantified ice-nucleating ability of AgI-containing seeding particles in natural clouds
Anna J. Miller, Christopher Fuchs, Fabiola Ramelli, Huiying Zhang, Nadja Omanovic, Robert Spirig, Claudia Marcolli, Zamin A. Kanji, Ulrike Lohmann, and Jan Henneberger
Atmos. Chem. Phys., 25, 5387–5407, https://doi.org/10.5194/acp-25-5387-2025,https://doi.org/10.5194/acp-25-5387-2025, 2025
Short summary
The surface tension and cloud condensation nuclei (CCN) activation of sea spray aerosol particles
Judith Kleinheins, Nadia Shardt, Ulrike Lohmann, and Claudia Marcolli
Atmos. Chem. Phys., 25, 881–903, https://doi.org/10.5194/acp-25-881-2025,https://doi.org/10.5194/acp-25-881-2025, 2025
Short summary
Ice nucleation by smectites: the role of the edges
Anand Kumar, Kristian Klumpp, Chen Barak, Giora Rytwo, Michael Plötze, Thomas Peter, and Claudia Marcolli
Atmos. Chem. Phys., 23, 4881–4902, https://doi.org/10.5194/acp-23-4881-2023,https://doi.org/10.5194/acp-23-4881-2023, 2023
Short summary
Comparing the ice nucleation properties of the kaolin minerals kaolinite and halloysite
Kristian Klumpp, Claudia Marcolli, Ana Alonso-Hellweg, Christopher H. Dreimol, and Thomas Peter
Atmos. Chem. Phys., 23, 1579–1598, https://doi.org/10.5194/acp-23-1579-2023,https://doi.org/10.5194/acp-23-1579-2023, 2023
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Ice-nucleating properties of glassy organic and organosulfate aerosol
Christopher N. Rapp, Sining Niu, N. Cazimir Armstrong, Xiaoli Shen, Thomas Berkemeier, Jason D. Surratt, Yue Zhang, and Daniel J. Cziczo
Atmos. Chem. Phys., 25, 5519–5536, https://doi.org/10.5194/acp-25-5519-2025,https://doi.org/10.5194/acp-25-5519-2025, 2025
Short summary
Retention During Freezing of Raindrops, Part I: Investigation of Single and Binary Mixtures
Martanda Gautam, Alexander Theis, Jackson Seymore, Moritz Hey, Stephan Borrmann, Karoline Diehl, Subir K. Mitra, and Miklós Szakáll
EGUsphere, https://doi.org/10.5194/egusphere-2024-3917,https://doi.org/10.5194/egusphere-2024-3917, 2024
Short summary
Measurement Report: Influence of particle density on secondary ice production by graupel and ice pellet collisions
Sudha Yadav, Lilly Metten, Pierre Grzegorczyk, Alexander Theis, Subir Kumar Mitra, and Miklós Szakáll
EGUsphere, https://doi.org/10.5194/egusphere-2024-3222,https://doi.org/10.5194/egusphere-2024-3222, 2024
Short summary
Stable and unstable fall motions of plate-like ice crystal analogues
Jennifer R. Stout, Christopher D. Westbrook, Thorwald H. M. Stein, and Mark W. McCorquodale
Atmos. Chem. Phys., 24, 11133–11155, https://doi.org/10.5194/acp-24-11133-2024,https://doi.org/10.5194/acp-24-11133-2024, 2024
Short summary
Secondary ice production – no evidence of efficient rime-splintering mechanism
Johanna S. Seidel, Alexei A. Kiselev, Alice Keinert, Frank Stratmann, Thomas Leisner, and Susan Hartmann
Atmos. Chem. Phys., 24, 5247–5263, https://doi.org/10.5194/acp-24-5247-2024,https://doi.org/10.5194/acp-24-5247-2024, 2024
Short summary

Cited articles

Adler, G., Koop, T., Haspel, C., Taraniuk, I., Moise, T., Koren, I., Heiblum, R. H., and Rudich, Y.: Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds, P. Natl. Acad. Sci. USA, 110, 20414–20419, https://doi.org/10.1073/pnas.1317209110, 2013.
Alba-Simionesco, C., Coasne, B., Dosseh, G., Dudziak, G., Gubbins, K. E., Radhakrishnan, R., and Sliwinska-Bartkowiak, M.: Effects of confinement on freezing and melting, J. Phys.-Condens. Mat., 18, R15–R68, https://doi.org/10.1088/0953-8984/18/6/R01, 2006.
Ansmann, A., Tesche, M., Seifert, P., Althausen, D., Engelmann, R., Fruntke, J., Wandinger, U., Mattis, I., and Müller, D.: Evolution of the ice phase in tropical altocumulus: SAMUM lidar observations over Cape Verde, J. Geophys. Res., 114, D17208, https://doi.org/10.1029/2008JD011659, 2009.
Apelblat, A. and Korin, E.: The molar enthalpies of solution and vapour pressures of saturated aqueous solutions of some cesium salts, J. Chem. Thermodyn., 38, 152–157, https://doi.org/10.1016/j.jct.2005.04.016, 2006.
Apelblat, A. and Korin, E.: The vapour pressures over saturated aqueous solutions of cadmium chloride, cadmium bromide, cadmium iodide, cadmium nitrate, and cadmium sulphate, J. Chem. Thermodyn., 39, 1065–1070, https://doi.org/10.1016/j.jct.2006.12.010, 2007.
Download
Short summary
Laboratory studies from the last century have shown that some types of particles are susceptible to pre-activation, i.e. they are able to develop macroscopic ice at warmer temperatures or lower relative humidities after they had been involved in an ice nucleation event before. This review analyses these works under the presumption that pre-activation occurs by ice preserved in pores, and it discusses atmospheric scenarios for which pre-activation might be important.
Share
Altmetrics
Final-revised paper
Preprint