Articles | Volume 17, issue 22
https://doi.org/10.5194/acp-17-13999-2017
https://doi.org/10.5194/acp-17-13999-2017
Research article
 | 
24 Nov 2017
Research article |  | 24 Nov 2017

Evaluation of climate model aerosol seasonal and spatial variability over Africa using AERONET

Hannah M. Horowitz, Rebecca M. Garland, Marcus Thatcher, Willem A. Landman, Zane Dedekind, Jacobus van der Merwe, and Francois A. Engelbrecht

Related authors

Quantifying the impacts of marine aerosols over the southeast Atlantic Ocean using a chemical transport model: implications for aerosol–cloud interactions
Mashiat Hossain, Rebecca M. Garland, and Hannah M. Horowitz
Atmos. Chem. Phys., 24, 14123–14143, https://doi.org/10.5194/acp-24-14123-2024,https://doi.org/10.5194/acp-24-14123-2024, 2024
Short summary
Intended and Unintended Consequences of Atmospheric Methane Oxidation Enhancement
Hannah Marie Horowitz
EGUsphere, https://doi.org/10.5194/egusphere-2024-3139,https://doi.org/10.5194/egusphere-2024-3139, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Impacts of Sea Ice Leads on Sea Salt Aerosols and Atmospheric Chemistry in the Arctic
Erin Emme and Hannah Horowitz
EGUsphere, https://doi.org/10.5194/egusphere-2024-3147,https://doi.org/10.5194/egusphere-2024-3147, 2024
Short summary
A new mechanism for atmospheric mercury redox chemistry: implications for the global mercury budget
Hannah M. Horowitz, Daniel J. Jacob, Yanxu Zhang, Theodore S. Dibble, Franz Slemr, Helen M. Amos, Johan A. Schmidt, Elizabeth S. Corbitt, Eloïse A. Marais, and Elsie M. Sunderland
Atmos. Chem. Phys., 17, 6353–6371, https://doi.org/10.5194/acp-17-6353-2017,https://doi.org/10.5194/acp-17-6353-2017, 2017
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Warming effects of reduced sulfur emissions from shipping
Masaru Yoshioka, Daniel P. Grosvenor, Ben B. B. Booth, Colin P. Morice, and Ken S. Carslaw
Atmos. Chem. Phys., 24, 13681–13692, https://doi.org/10.5194/acp-24-13681-2024,https://doi.org/10.5194/acp-24-13681-2024, 2024
Short summary
The key role of atmospheric absorption in the Asian summer monsoon response to dust emissions in CMIP6 models
Alcide Zhao, Laura J. Wilcox, and Claire L. Ryder
Atmos. Chem. Phys., 24, 13385–13402, https://doi.org/10.5194/acp-24-13385-2024,https://doi.org/10.5194/acp-24-13385-2024, 2024
Short summary
Multi-model effective radiative forcing of the 2020 sulfur cap for shipping
Ragnhild Bieltvedt Skeie, Rachael Byrom, Øivind Hodnebrog, Caroline Jouan, and Gunnar Myhre
Atmos. Chem. Phys., 24, 13361–13370, https://doi.org/10.5194/acp-24-13361-2024,https://doi.org/10.5194/acp-24-13361-2024, 2024
Short summary
Representation of iron aerosol size distributions of anthropogenic emissions is critical in evaluating atmospheric soluble iron input to the ocean
Mingxu Liu, Hitoshi Matsui, Douglas S. Hamilton, Sagar D. Rathod, Kara D. Lamb, and Natalie M. Mahowald
Atmos. Chem. Phys., 24, 13115–13127, https://doi.org/10.5194/acp-24-13115-2024,https://doi.org/10.5194/acp-24-13115-2024, 2024
Short summary
Revealing dominant patterns of aerosol regimes in the lower troposphere and their evolution from preindustrial times to the future in global climate model simulations
Jingmin Li, Mattia Righi, Johannes Hendricks, Christof G. Beer, Ulrike Burkhardt, and Anja Schmidt
Atmos. Chem. Phys., 24, 12727–12747, https://doi.org/10.5194/acp-24-12727-2024,https://doi.org/10.5194/acp-24-12727-2024, 2024
Short summary

Cited articles

Abel, S. J., Highwood, E. J., Haywood, J. M., and Stringer, M. A.: The direct radiative effect of biomass burning aerosols over southern Africa, Atmos. Chem. Phys., 5, 1999–2018, https://doi.org/10.5194/acp-5-1999-2005, 2005.
AeroCom Phase II Interface: http://aerocom.met.no/cgi-bin/aerocom/surfobs_annualrs.pl, last access: 8 September 2017.
Allen, R. J. and Landuyt, W.: The vertical distribution of black carbon in CMIP5models: Comparison to observations and the importance of convective transport, J. Geophys. Res.-Atmos., 119, 4808–4835, https://doi.org/10.1002/2014JD021595, 2014.
Anyamba, A., Justice, C. O., Tucker, C. J., and Mahoney, R.: Seasonal to interannual variability of vegetation and fires at SAFARI 2000 sites inferred from advanced very high resolution radiometer time series data, J. Geophys. Res.-Atmos., 108, D13, https://doi.org/10.1029/2002jd002464, 2003.
Archibald, S.: Managing the human component of fire regimes: lessons from Africa, Philos. T. R. Soc. B., 371, 20150346, https://doi.org/10.1098/Rstb.2015.0346, 2016.
Download
Short summary
Africa is a major source of particles (or aerosols) from dust and fires, which impact climate. Models used to predict impacts of future climate change have not been well tested for aerosols over Africa. In this study we evaluate aerosols in the CCAM climate model against observations across Africa and surrounding regions. We find the model generally captures observed variability but overestimates dust in northern Africa, which has implications for its representation of climate feedbacks.
Altmetrics
Final-revised paper
Preprint