Articles | Volume 15, issue 16
https://doi.org/10.5194/acp-15-9435-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-15-9435-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Investigation of post-depositional processing of nitrate in East Antarctic snow: isotopic constraints on photolytic loss, re-oxidation, and source inputs
Key Laboratory for Polar Science of State Oceanic Administration, Polar Research Institute of China, Shanghai 200062, China
Department of Earth, Environmental and Planetary Sciences and Institute at Brown for Environment and Society, Brown University, Providence, Rhode Island 02912, USA
A. M. Buffen
Department of Earth, Environmental and Planetary Sciences and Institute at Brown for Environment and Society, Brown University, Providence, Rhode Island 02912, USA
M. G. Hastings
CORRESPONDING AUTHOR
Department of Earth, Environmental and Planetary Sciences and Institute at Brown for Environment and Society, Brown University, Providence, Rhode Island 02912, USA
C. Li
The State Key Laboratory of the Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
H. Ma
Key Laboratory for Polar Science of State Oceanic Administration, Polar Research Institute of China, Shanghai 200062, China
Y. Li
Key Laboratory for Polar Science of State Oceanic Administration, Polar Research Institute of China, Shanghai 200062, China
B. Sun
Key Laboratory for Polar Science of State Oceanic Administration, Polar Research Institute of China, Shanghai 200062, China
C. An
Key Laboratory for Polar Science of State Oceanic Administration, Polar Research Institute of China, Shanghai 200062, China
S. Jiang
Key Laboratory for Polar Science of State Oceanic Administration, Polar Research Institute of China, Shanghai 200062, China
Related authors
Anyao Jiang, Xin Meng, Yan Huang, and Guitao Shi
The Cryosphere, 18, 5347–5364, https://doi.org/10.5194/tc-18-5347-2024, https://doi.org/10.5194/tc-18-5347-2024, 2024
Short summary
Short summary
Landlocked lakes are crucial to the Antarctic ecosystem and sensitive to climate change. Limited research on their distribution prompted us to develop an automated detection process using deep learning and multi-source satellite imagery. This allowed us to accurately determine the landlocked lake open water (LLOW) area in Antarctica, generating high-resolution time series data. We find that the changes in positive and negative degree days predominantly drive variations in the LLOW area.
Zhengyi Hu, Wei Jiang, Yuzhen Yan, Yan Huang, Xueyuan Tang, Lin Li, Florian Ritterbusch, Guo-Min Yang, Zheng-Tian Lu, and Guitao Shi
The Cryosphere, 18, 1647–1652, https://doi.org/10.5194/tc-18-1647-2024, https://doi.org/10.5194/tc-18-1647-2024, 2024
Short summary
Short summary
The age of the surface blue ice in the Grove Mountains area is dated to be about 140 000 years, and one meteorite found here is 260 000 years old. It is inferred that the Grove Mountains blue-ice area holds considerable potential for paleoclimate studies.
Guitao Shi, Hongmei Ma, Zhengyi Hu, Zhenlou Chen, Chunlei An, Su Jiang, Yuansheng Li, Tianming Ma, Jinhai Yu, Danhe Wang, Siyu Lu, Bo Sun, and Meredith G. Hastings
The Cryosphere, 15, 1087–1095, https://doi.org/10.5194/tc-15-1087-2021, https://doi.org/10.5194/tc-15-1087-2021, 2021
Short summary
Short summary
It is important to understand atmospheric chemistry over Antarctica under a changing climate. Thus snow collected on a traverse from the coast to Dome A was used to investigate variations in snow chemistry. The non-sea-salt fractions of K+, Mg2+, and Ca2+ are associated with terrestrial inputs, and nssCl− is from HCl. In general, proportions of non-sea-salt fractions of ions to the totals are higher in the interior areas than on the coast, and the proportions are higher in summer than in winter.
Guitao Shi, Meredith G. Hastings, Jinhai Yu, Tianming Ma, Zhengyi Hu, Chunlei An, Chuanjin Li, Hongmei Ma, Su Jiang, and Yuansheng Li
The Cryosphere, 12, 1177–1194, https://doi.org/10.5194/tc-12-1177-2018, https://doi.org/10.5194/tc-12-1177-2018, 2018
Short summary
Short summary
The deposition and preservation of NO3− across East Antarctica was investigated. On the coast, dry deposition contributes 27–44 % of the NO3− fluxes, and the linear relationship between NO3− and snow accumulation rate suggests a homogeneity of atmospheric NO3− levels. In inland snow, a relatively weak correlation between NO3− and snow accumulation was found, indicating that NO3− is mainly dominated by post-depositional processes. The coexisting ions are generally less influential on snow NO3−.
Wendell W. Walters, Masayuki Takeuchi, Danielle E. Blum, Gamze Eris, David Tanner, Weiqi Xu, Jean Rivera-Rios, Fobang Liu, Tianchang Xu, Greg Huey, Justin B. Min, Rodney Weber, Nga L. Ng, and Meredith G. Hastings
EGUsphere, https://doi.org/10.5194/egusphere-2024-3860, https://doi.org/10.5194/egusphere-2024-3860, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We studied how chemicals released from plants and pollution interact in the atmosphere, affecting air quality and climate. By combining laboratory experiments and chemistry models, we tracked unique chemical fingerprints to understand how nitrogen compounds transform to form particles in the air. Our findings help explain the role of these reactions in pollution and provide tools to improve predictions for cleaner air and better climate policies.
Anyao Jiang, Xin Meng, Yan Huang, and Guitao Shi
The Cryosphere, 18, 5347–5364, https://doi.org/10.5194/tc-18-5347-2024, https://doi.org/10.5194/tc-18-5347-2024, 2024
Short summary
Short summary
Landlocked lakes are crucial to the Antarctic ecosystem and sensitive to climate change. Limited research on their distribution prompted us to develop an automated detection process using deep learning and multi-source satellite imagery. This allowed us to accurately determine the landlocked lake open water (LLOW) area in Antarctica, generating high-resolution time series data. We find that the changes in positive and negative degree days predominantly drive variations in the LLOW area.
Wendell W. Walters, Masayuki Takeuchi, Nga L. Ng, and Meredith G. Hastings
Geosci. Model Dev., 17, 4673–4687, https://doi.org/10.5194/gmd-17-4673-2024, https://doi.org/10.5194/gmd-17-4673-2024, 2024
Short summary
Short summary
The study introduces a novel chemical mechanism for explicitly tracking oxygen isotope transfer in oxidized reactive nitrogen and odd oxygen using the Regional Atmospheric Chemistry Mechanism, version 2. This model enhances our ability to simulate and compare oxygen isotope compositions of reactive nitrogen, revealing insights into oxidation chemistry. The approach shows promise for improving atmospheric chemistry models and tropospheric oxidation capacity predictions.
Zhengyi Hu, Wei Jiang, Yuzhen Yan, Yan Huang, Xueyuan Tang, Lin Li, Florian Ritterbusch, Guo-Min Yang, Zheng-Tian Lu, and Guitao Shi
The Cryosphere, 18, 1647–1652, https://doi.org/10.5194/tc-18-1647-2024, https://doi.org/10.5194/tc-18-1647-2024, 2024
Short summary
Short summary
The age of the surface blue ice in the Grove Mountains area is dated to be about 140 000 years, and one meteorite found here is 260 000 years old. It is inferred that the Grove Mountains blue-ice area holds considerable potential for paleoclimate studies.
Jessica M. Burger, Emily Joyce, Meredith G. Hastings, Kurt A. M. Spence, and Katye E. Altieri
Atmos. Chem. Phys., 23, 5605–5622, https://doi.org/10.5194/acp-23-5605-2023, https://doi.org/10.5194/acp-23-5605-2023, 2023
Short summary
Short summary
A seasonal analysis of the nitrogen isotopes of atmospheric nitrate over the remote Southern Ocean reveals that similar natural NOx sources dominate in spring and summer, while winter is representative of background-level conditions. The oxygen isotopes suggest that similar oxidation pathways involving more ozone occur in spring and winter, while the hydroxyl radical is the main oxidant in summer. This work helps to constrain NOx cycling and oxidant budgets in a data-sparse remote marine region.
Claire Bekker, Wendell W. Walters, Lee T. Murray, and Meredith G. Hastings
Atmos. Chem. Phys., 23, 4185–4201, https://doi.org/10.5194/acp-23-4185-2023, https://doi.org/10.5194/acp-23-4185-2023, 2023
Short summary
Short summary
Nitrate is a critical component of the atmosphere that degrades air quality and ecosystem health. We have investigated the nitrogen isotope compositions of nitrate from deposition samples collected across the northeastern United States. Spatiotemporal variability in the nitrogen isotope compositions was found to track with nitrate formation chemistry. Our results highlight that nitrogen isotope compositions may be a robust tool for improving model representation of nitrate chemistry.
Heejeong Kim, Wendell W. Walters, Claire Bekker, Lee T. Murray, and Meredith G. Hastings
Atmos. Chem. Phys., 23, 4203–4219, https://doi.org/10.5194/acp-23-4203-2023, https://doi.org/10.5194/acp-23-4203-2023, 2023
Short summary
Short summary
Atmospheric nitrate has an important impact on human and ecosystem health. We evaluated atmospheric nitrate formation pathways in the northeastern US utilizing oxygen isotope compositions, which indicated a significant difference between the phases of nitrate (i.e., gas vs. particle). Comparing the observations with model simulations indicated that N2O5 hydrolysis chemistry was overpredicted. Our study has important implications for improving atmospheric chemistry model representation.
Wendell W. Walters, Madeline Karod, Emma Willcocks, Bok H. Baek, Danielle E. Blum, and Meredith G. Hastings
Atmos. Chem. Phys., 22, 13431–13448, https://doi.org/10.5194/acp-22-13431-2022, https://doi.org/10.5194/acp-22-13431-2022, 2022
Short summary
Short summary
Atmospheric ammonia and its products are a significant source of urban haze and nitrogen deposition. We have investigated the seasonal source contributions to a mid-sized city in the northeastern US megalopolis utilizing geospatial statistical analysis and novel isotopic constraints, which indicate that vehicle emissions were significant components of the urban-reduced nitrogen budget. Reducing vehicle ammonia emissions should be considered to improve ecosystems and human health.
Jessica M. Burger, Julie Granger, Emily Joyce, Meredith G. Hastings, Kurt A. M. Spence, and Katye E. Altieri
Atmos. Chem. Phys., 22, 1081–1096, https://doi.org/10.5194/acp-22-1081-2022, https://doi.org/10.5194/acp-22-1081-2022, 2022
Short summary
Short summary
The nitrogen (N) isotopic composition of atmospheric nitrate in the Southern Ocean (SO) marine boundary layer (MBL) reveals the importance of oceanic alkyl nitrate emissions as a source of reactive N to the atmosphere. The oxygen isotopic composition suggests peroxy radicals contribute up to 63 % to NO oxidation and that nitrate forms via the OH pathway. This work improves our understanding of reactive N sources and cycling in a remote marine region, a proxy for the pre-industrial atmosphere.
Jiajue Chai, Jack E. Dibb, Bruce E. Anderson, Claire Bekker, Danielle E. Blum, Eric Heim, Carolyn E. Jordan, Emily E. Joyce, Jackson H. Kaspari, Hannah Munro, Wendell W. Walters, and Meredith G. Hastings
Atmos. Chem. Phys., 21, 13077–13098, https://doi.org/10.5194/acp-21-13077-2021, https://doi.org/10.5194/acp-21-13077-2021, 2021
Short summary
Short summary
Nitrous acid (HONO) derived from wildfire emissions plays a key role in controlling atmospheric oxidation chemistry. However, the HONO budget remains poorly constrained. By combining the field-observed concentrations and novel isotopic composition (N and O) of HONO and nitrogen oxides (NOx), we quantitatively constrained the relative contribution of each pathway to secondary HONO production and the relative importance of major atmospheric oxidants (ozone versus peroxy) in aged wildfire smoke.
Veronica R. Rollinson, Julie Granger, Sydney C. Clark, Mackenzie L. Blanusa, Claudia P. Koerting, Jamie M. P. Vaudrey, Lija A. Treibergs, Holly C. Westbrook, Catherine M. Matassa, Meredith G. Hastings, and Craig R. Tobias
Biogeosciences, 18, 3421–3444, https://doi.org/10.5194/bg-18-3421-2021, https://doi.org/10.5194/bg-18-3421-2021, 2021
Short summary
Short summary
We measured nutrients and the naturally occurring nitrogen (N) and oxygen (O) stable isotope ratios of nitrate discharged from a New England river over an annual cycle, to monitor N loading and identify dominant sources from the watershed. We uncovered a seasonality to loading and sources of N from the watershed. Seasonality in the nitrate isotope ratios also informed on N cycling, conforming to theoretical expectations of riverine nutrient cycling.
Guitao Shi, Hongmei Ma, Zhengyi Hu, Zhenlou Chen, Chunlei An, Su Jiang, Yuansheng Li, Tianming Ma, Jinhai Yu, Danhe Wang, Siyu Lu, Bo Sun, and Meredith G. Hastings
The Cryosphere, 15, 1087–1095, https://doi.org/10.5194/tc-15-1087-2021, https://doi.org/10.5194/tc-15-1087-2021, 2021
Short summary
Short summary
It is important to understand atmospheric chemistry over Antarctica under a changing climate. Thus snow collected on a traverse from the coast to Dome A was used to investigate variations in snow chemistry. The non-sea-salt fractions of K+, Mg2+, and Ca2+ are associated with terrestrial inputs, and nssCl− is from HCl. In general, proportions of non-sea-salt fractions of ions to the totals are higher in the interior areas than on the coast, and the proportions are higher in summer than in winter.
Wendell W. Walters, Linlin Song, Jiajue Chai, Yunting Fang, Nadia Colombi, and Meredith G. Hastings
Atmos. Chem. Phys., 20, 11551–11567, https://doi.org/10.5194/acp-20-11551-2020, https://doi.org/10.5194/acp-20-11551-2020, 2020
Short summary
Short summary
This article details new field observations of the nitrogen stable isotopic composition of ammonia emitted from vehicles conducted in the US and China. Vehicle emissions of ammonia may be a significant source to urban regions with important human health and environmental implications. Our measurements have indicated a consistent isotopic signature from vehicle ammonia emissions. The nitrogen isotopic composition of ammonia may be a useful tool for tracking vehicle emissions.
Erika Marín-Spiotta, Rebecca T. Barnes, Asmeret Asefaw Berhe, Meredith G. Hastings, Allison Mattheis, Blair Schneider, and Billy M. Williams
Adv. Geosci., 53, 117–127, https://doi.org/10.5194/adgeo-53-117-2020, https://doi.org/10.5194/adgeo-53-117-2020, 2020
Short summary
Short summary
The geosciences are one of the least diverse disciplines in the United States, despite the field's relevance to people's livelihoods and economies. Bias, discrimination and harassment present serious hurdles to diversifying the field. We summarize research on the factors that contribute to the persistence of hostile climates in the geosciences and other scientific disciplines and provide recommendations for cultural change through the role of mentoring networks and professional associations.
Jiajue Chai, David J. Miller, Eric Scheuer, Jack Dibb, Vanessa Selimovic, Robert Yokelson, Kyle J. Zarzana, Steven S. Brown, Abigail R. Koss, Carsten Warneke, and Meredith Hastings
Atmos. Meas. Tech., 12, 6303–6317, https://doi.org/10.5194/amt-12-6303-2019, https://doi.org/10.5194/amt-12-6303-2019, 2019
Short summary
Short summary
Isotopic analysis offers a potential tool to distinguish between sources and interpret transformation pathways of atmospheric species. We applied recently developed techniques in our lab to characterize the isotopic composition of reactive nitrogen species (NOx, HONO, HNO3, pNO3-) in fresh biomass burning emissions. Intercomparison with other techniques confirms the suitability of our methods, allowing for future applications of our techniques in a variety of environments.
Guitao Shi, Meredith G. Hastings, Jinhai Yu, Tianming Ma, Zhengyi Hu, Chunlei An, Chuanjin Li, Hongmei Ma, Su Jiang, and Yuansheng Li
The Cryosphere, 12, 1177–1194, https://doi.org/10.5194/tc-12-1177-2018, https://doi.org/10.5194/tc-12-1177-2018, 2018
Short summary
Short summary
The deposition and preservation of NO3− across East Antarctica was investigated. On the coast, dry deposition contributes 27–44 % of the NO3− fluxes, and the linear relationship between NO3− and snow accumulation rate suggests a homogeneity of atmospheric NO3− levels. In inland snow, a relatively weak correlation between NO3− and snow accumulation was found, indicating that NO3− is mainly dominated by post-depositional processes. The coexisting ions are generally less influential on snow NO3−.
Nathan J. Chellman, Meredith G. Hastings, and Joseph R. McConnell
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-163, https://doi.org/10.5194/tc-2016-163, 2016
Revised manuscript not accepted
Short summary
Short summary
This manuscript analyzes the changing sources of nitrate deposition to Greenland since 1760 CE using a dataset consisting of sub-seasonally resolved nitrogen isotopes of nitrate and source tracers. Correlations amongst ion concentration, source tracers, and the δ15N–NO3− provide evidence of the impact of biomass burning and fossil fuel combustion emissions of nitrogen oxides and suggest that oil combustion is the likely driver of increased nitrate concentration in Greenland ice since 1940 CE.
B. Sun, J. C. Moore, T. Zwinger, L. Zhao, D. Steinhage, X. Tang, D. Zhang, X. Cui, and C. Martín
The Cryosphere, 8, 1121–1128, https://doi.org/10.5194/tc-8-1121-2014, https://doi.org/10.5194/tc-8-1121-2014, 2014
E. D. Sofen, B. Alexander, E. J. Steig, M. H. Thiemens, S. A. Kunasek, H. M. Amos, A. J. Schauer, M. G. Hastings, J. Bautista, T. L. Jackson, L. E. Vogel, J. R. McConnell, D. R. Pasteris, and E. S. Saltzman
Atmos. Chem. Phys., 14, 5749–5769, https://doi.org/10.5194/acp-14-5749-2014, https://doi.org/10.5194/acp-14-5749-2014, 2014
M. Ding, C. Xiao, R. Zhang, D. Qin, B. Jin, B. Sun, L. Bian, J. Ming, C. Li, A. Xie, W. Yang, and Y. Ma
The Cryosphere Discuss., https://doi.org/10.5194/tcd-7-1415-2013, https://doi.org/10.5194/tcd-7-1415-2013, 2013
Revised manuscript not accepted
P. Fretwell, H. D. Pritchard, D. G. Vaughan, J. L. Bamber, N. E. Barrand, R. Bell, C. Bianchi, R. G. Bingham, D. D. Blankenship, G. Casassa, G. Catania, D. Callens, H. Conway, A. J. Cook, H. F. J. Corr, D. Damaske, V. Damm, F. Ferraccioli, R. Forsberg, S. Fujita, Y. Gim, P. Gogineni, J. A. Griggs, R. C. A. Hindmarsh, P. Holmlund, J. W. Holt, R. W. Jacobel, A. Jenkins, W. Jokat, T. Jordan, E. C. King, J. Kohler, W. Krabill, M. Riger-Kusk, K. A. Langley, G. Leitchenkov, C. Leuschen, B. P. Luyendyk, K. Matsuoka, J. Mouginot, F. O. Nitsche, Y. Nogi, O. A. Nost, S. V. Popov, E. Rignot, D. M. Rippin, A. Rivera, J. Roberts, N. Ross, M. J. Siegert, A. M. Smith, D. Steinhage, M. Studinger, B. Sun, B. K. Tinto, B. C. Welch, D. Wilson, D. A. Young, C. Xiangbin, and A. Zirizzotti
The Cryosphere, 7, 375–393, https://doi.org/10.5194/tc-7-375-2013, https://doi.org/10.5194/tc-7-375-2013, 2013
Related subject area
Subject: Isotopes | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
On the potential fingerprint of the Antarctic ozone hole in ice-core nitrate isotopes: a case study based on a South Pole ice core
Quantifying the nitrogen isotope effects during photochemical equilibrium between NO and NO2: implications for δ15N in tropospheric reactive nitrogen
Temporal variation in 129I and 127I in aerosols from Xi'an, China: influence of East Asian monsoon and heavy haze events
High time-resolved measurement of stable carbon isotope composition in water-soluble organic aerosols: method optimization and a case study during winter haze in eastern China
Dependence between the photochemical age of light aromatic hydrocarbons and the carbon isotope ratios of atmospheric nitrophenols
Evidence for a major missing source in the global chloromethane budget from stable carbon isotopes
Atmospheric Δ17O(NO3−) reveals nocturnal chemistry dominates nitrate production in Beijing haze
Mass spectrometric measurement of hydrogen isotope fractionation for the reactions of chloromethane with OH and Cl
Stable carbon isotope ratios of ambient aromatic volatile organic compounds
Kinetic isotope effects of 12CH3D + OH and 13CH3D + OH from 278 to 313 K
Chlorine isotope composition in chlorofluorocarbons CFC-11, CFC-12 and CFC-113 in firn, stratospheric and tropospheric air
NOx cycle and the tropospheric ozone isotope anomaly: an experimental investigation
Fractionation of sulfur isotopes during heterogeneous oxidation of SO2 on sea salt aerosol: a new tool to investigate non-sea salt sulfate production in the marine boundary layer
Sulfur isotope fractionation during oxidation of sulfur dioxide: gas-phase oxidation by OH radicals and aqueous oxidation by H2O2, O3 and iron catalysis
Molecular hydrogen (H2) emissions and their isotopic signatures (H/D) from a motor vehicle: implications on atmospheric H2
Isotope effect in the formation of H2 from H2CO studied at the atmospheric simulation chamber SAPHIR
Pressure dependence of the deuterium isotope effect in the photolysis of formaldehyde by ultraviolet light
Yanzhi Cao, Zhuang Jiang, Becky Alexander, Jihong Cole-Dai, Joel Savarino, Joseph Erbland, and Lei Geng
Atmos. Chem. Phys., 22, 13407–13422, https://doi.org/10.5194/acp-22-13407-2022, https://doi.org/10.5194/acp-22-13407-2022, 2022
Short summary
Short summary
We investigate the potential of ice-core preserved nitrate isotopes as proxies of stratospheric ozone variability by measuring nitrate isotopes in a shallow ice core from the South Pole. The large variability in the snow accumulation rate and its slight increase after the 1970s masked any signals caused by the ozone hole. Moreover, the nitrate oxygen isotope decrease may reflect changes in the atmospheric oxidation environment in the Southern Ocean.
Jianghanyang Li, Xuan Zhang, John Orlando, Geoffrey Tyndall, and Greg Michalski
Atmos. Chem. Phys., 20, 9805–9819, https://doi.org/10.5194/acp-20-9805-2020, https://doi.org/10.5194/acp-20-9805-2020, 2020
Short summary
Short summary
Nitrogen isotopic compositions of atmospheric reactive nitrogen are widely used to infer their sources. However, the reactions between NO and NO2 strongly impact their isotopes, which was not well understood. We conducted a series of experiments in an atmospheric simulation chamber to determine the isotopic effects of (1) direct isotopic exchange between NO and NO2 and (2) the isotopic fractionations during NOx photochemistry, then developed an equation to quantify the overall isotopic effect.
Luyuan Zhang, Xiaolin Hou, Sheng Xu, Tian Feng, Peng Cheng, Yunchong Fu, and Ning Chen
Atmos. Chem. Phys., 20, 2623–2635, https://doi.org/10.5194/acp-20-2623-2020, https://doi.org/10.5194/acp-20-2623-2020, 2020
Short summary
Short summary
To trace the long-range transport of air pollutants and understand the atmospheric effect of iodine, the daily-resolution temporal variations of 129I and 127I in aerosols from a monsoonal city indicate the East Asian monsoon and fossil fuel combustion plays crucial roles on transport of 129I from Europe to East Asia and on elevated 127I concentrations. Through linking iodine isotopes with five major air pollutants, this study proposes the possible role of iodine in urban air pollution.
Wenqi Zhang, Yan-Lin Zhang, Fang Cao, Yankun Xiang, Yuanyuan Zhang, Mengying Bao, Xiaoyan Liu, and Yu-Chi Lin
Atmos. Chem. Phys., 19, 11071–11087, https://doi.org/10.5194/acp-19-11071-2019, https://doi.org/10.5194/acp-19-11071-2019, 2019
Short summary
Short summary
A novel method to determine the concentration and the isotopes of WSOC in aerosols is established and applied in the analysis of a severe haze in eastern China. The results show that the studied site is affected by the photochemical aging, biomass burning and dust aerosols in different episodes during the sampling period. The analysis of WSOC and its isotopes offers a great potential to better understand the source emission, the atmospheric aging and the secondary production of WSOC.
Marina Saccon, Anna Kornilova, Lin Huang, and Jochen Rudolph
Atmos. Chem. Phys., 19, 5495–5509, https://doi.org/10.5194/acp-19-5495-2019, https://doi.org/10.5194/acp-19-5495-2019, 2019
Short summary
Short summary
As compound are emitted into the atmosphere, they can undergo chemical reactions to produce secondary products. This paper investigates the relations of compounds' unique chemical characteristics to the processes that formed them from emissions in the atmosphere. A model is applied to help with this investigation. The complexity of the atmosphere, including mixing of air masses and variability in precursor reactivity, is taken into consideration, and results are presented.
Enno Bahlmann, Frank Keppler, Julian Wittmer, Markus Greule, Heinz Friedrich Schöler, Richard Seifert, and Cornelius Zetzsch
Atmos. Chem. Phys., 19, 1703–1719, https://doi.org/10.5194/acp-19-1703-2019, https://doi.org/10.5194/acp-19-1703-2019, 2019
Short summary
Short summary
Chloromethane is the most important natural carrier of chlorine to the stratosphere. From a newly determined carbon isotope effect of −11.2 ‰ for the tropospheric loss of CH3Cl we derive a tropical rainforest CH3Cl source of 670 ± 200 Gg a−1, 60 % smaller than previous estimates. A revision of previous bottom-up estimates using above-ground biomass instead of rainforest area strongly supports this lower estimate. Our results suggest a large unknown tropical value of 1530 ± 200 Gg a−1.
Pengzhen He, Zhouqing Xie, Xiyuan Chi, Xiawei Yu, Shidong Fan, Hui Kang, Cheng Liu, and Haicong Zhan
Atmos. Chem. Phys., 18, 14465–14476, https://doi.org/10.5194/acp-18-14465-2018, https://doi.org/10.5194/acp-18-14465-2018, 2018
Short summary
Short summary
We present the first observations of the oxygen-17 excess of atmospheric nitrate (Δ17O(NO−3)) collected in Beijing haze to reveal the relative importance of different nitrate formation pathways. We found that nocturnal pathways (N2O5 + H2O/Cl– and NO3 + HC) dominated nitrate production during polluted days (PM2.5 ≥ 75 μg m–3), with a mean possible fraction of 56–97 %.
Frank Keppler, Enno Bahlmann, Markus Greule, Heinz Friedrich Schöler, Julian Wittmer, and Cornelius Zetzsch
Atmos. Chem. Phys., 18, 6625–6635, https://doi.org/10.5194/acp-18-6625-2018, https://doi.org/10.5194/acp-18-6625-2018, 2018
Short summary
Short summary
Chloromethane is involved in stratospheric ozone depletion, but detailed knowledge of its global budget is missing. In this study stable hydrogen isotope analyses were performed to investigate the dominant loss process for atmospheric chloromethane with photochemically produced hydroxyl radicals. The findings might have significant implications for the use of stable isotope signatures in elucidation of global chloromethane cycling.
Anna Kornilova, Lin Huang, Marina Saccon, and Jochen Rudolph
Atmos. Chem. Phys., 16, 11755–11772, https://doi.org/10.5194/acp-16-11755-2016, https://doi.org/10.5194/acp-16-11755-2016, 2016
Short summary
Short summary
The photochemical oxidation of organic compounds in the atmosphere results in the formation of important secondary pollutants such as ozone and fine particles. The extent of oxidation the organic compounds have been subjected too since there emissions is essential is key for understanding the formation of secondary pollutants. This paper demonstrates that measurements of the carbon isotope ratios allow determining the extent of photochemical processing for individual compounds.
L. M. T. Joelsson, J. A. Schmidt, E. J. K. Nilsson, T. Blunier, D. W. T. Griffith, S. Ono, and M. S. Johnson
Atmos. Chem. Phys., 16, 4439–4449, https://doi.org/10.5194/acp-16-4439-2016, https://doi.org/10.5194/acp-16-4439-2016, 2016
Short summary
Short summary
We present experimental kinetic isotope effects (KIE) for the OH oxidation of CH3D and 13CH3D and their temperature dependence. Our determination of the 13CH3D + OH KIE is novel and we find no "clumped" isotope effect within the experimental uncertainty.
S. J. Allin, J. C. Laube, E. Witrant, J. Kaiser, E. McKenna, P. Dennis, R. Mulvaney, E. Capron, P. Martinerie, T. Röckmann, T. Blunier, J. Schwander, P. J. Fraser, R. L. Langenfelds, and W. T. Sturges
Atmos. Chem. Phys., 15, 6867–6877, https://doi.org/10.5194/acp-15-6867-2015, https://doi.org/10.5194/acp-15-6867-2015, 2015
Short summary
Short summary
Stratospheric ozone protects life on Earth from harmful UV-B radiation. Chlorofluorocarbons (CFCs) are man-made compounds which act to destroy this barrier.
This paper presents (1) the first measurements of the stratospheric δ(37Cl) of CFCs -11 and -113; (2) the first quantification of long-term trends in the tropospheric δ(37Cl) of CFCs -11, -12 and -113.
This study provides a better understanding of source and sink processes associated with these destructive compounds.
G. Michalski, S. K. Bhattacharya, and G. Girsch
Atmos. Chem. Phys., 14, 4935–4953, https://doi.org/10.5194/acp-14-4935-2014, https://doi.org/10.5194/acp-14-4935-2014, 2014
E. Harris, B. Sinha, P. Hoppe, S. Foley, and S. Borrmann
Atmos. Chem. Phys., 12, 4619–4631, https://doi.org/10.5194/acp-12-4619-2012, https://doi.org/10.5194/acp-12-4619-2012, 2012
E. Harris, B. Sinha, P. Hoppe, J. N. Crowley, S. Ono, and S. Foley
Atmos. Chem. Phys., 12, 407–423, https://doi.org/10.5194/acp-12-407-2012, https://doi.org/10.5194/acp-12-407-2012, 2012
M. K. Vollmer, S. Walter, S. W. Bond, P. Soltic, and T. Röckmann
Atmos. Chem. Phys., 10, 5707–5718, https://doi.org/10.5194/acp-10-5707-2010, https://doi.org/10.5194/acp-10-5707-2010, 2010
T. Röckmann, S. Walter, B. Bohn, R. Wegener, H. Spahn, T. Brauers, R. Tillmann, E. Schlosser, R. Koppmann, and F. Rohrer
Atmos. Chem. Phys., 10, 5343–5357, https://doi.org/10.5194/acp-10-5343-2010, https://doi.org/10.5194/acp-10-5343-2010, 2010
E. J. K. Nilsson, V. F. Andersen, H. Skov, and M. S. Johnson
Atmos. Chem. Phys., 10, 3455–3462, https://doi.org/10.5194/acp-10-3455-2010, https://doi.org/10.5194/acp-10-3455-2010, 2010
Cited articles
Alexander, B., Savarino, J., Kreutz, K. J., and Thiemens, M.: Impact of preindustrial biomass-burning emissions on the oxidation pathways of tropospheric sulfur and nitrogen, J. Geophys. Res., 109, D08303, https://doi.org/10.1029/2003JD004218, 2004.
Alexander, B., Hastings, M. G., Allman, D. J., Dachs, J., Thornton, J. A., and Kunasek, S. A.: Quantifying atmospheric nitrate formation pathways based on a global model of the oxygen isotopic composition (Δ17O) of atmospheric nitrate, Atmos. Chem. Phys., 9, 5043–5056, https://doi.org/10.5194/acp-9-5043-2009, 2009.
Altieri, K., Hastings, M., Gobel, A., Peters, A., and Sigman, D.: Isotopic composition of rainwater nitrate at Bermuda: The influence of air mass source and chemistry in the marine boundary layer, J. Geophys. Res., 118, 11304–11316, 2013.
Ammann, M., Siegwolf, R., Pichlmayer, F., Suter, M., Saurer, M., and Brunold, C.: Estimating the uptake of traffic-derived NO2 from 15N abundance in Norway spruce needles, Oecologia, 118, 124–131, 1999.
Böhlke, J., Mroczkowski, S., and Coplen, T.: Oxygen isotopes in nitrate: New reference materials for 18O: 17O: 16O measurements and observations on nitrate-water equilibration, Rapid Commun. Mass. Sp., 17, 1835–1846, 2003.
Berhanu, T. A., Meusinger, C., Erbland, J., Jost, R., Bhattacharya, S., Johnson, M. S., and Savarino, J.: Laboratory study of nitrate photolysis in Antarctic snow. II. Isotopic effects and wavelength dependence, J. Chem. Phy., 140, 244306, https://doi.org/10.1063/1.4882899, 2014.
Blunier, T., Floch, G., Jacobi, H.-W., and Quansah, E.: Isotopic view on nitrate loss in Antarctic surface snow, Geophys. Res. Lett., 32, L13501, https://doi.org/10.1029/2005GL023011, 2005.
Boxe, C., Colussi, A., Hoffmann, M., Murphy, J., Wooldridge, P., Bertram, T., and Cohen, R.: Photochemical production and release of gaseous NO2 from nitrate-doped water ice, J. Phys. Chem., 109, 8520–8525, 2005.
Buffen, A. M., Hastings, M. G., Thompson, L. G., and Mosley-Thompson, E.: Investigating the preservation of nitrate isotopic composition in a tropical ice core from the Quelccaya Ice Cap, Peru, J. Geophys. Res., 119, 2674–2697, https://doi.org/10.1002/2013JD020715, 2014.
Bunton, C., Halevi, E., and Llewellyn, D.: Oxygen exchange between nitric acid and water. Part I, J. Chem. Soc., 4913–4916, https://doi.org/10.1039/jr9520004913, 1952.
Casciotti, K., Sigman, D., Hastings, M. G., Böhlke, J., and Hilkert, A.: Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method, Anal. Chem., 74, 4905–4912, 2002.
Chu, L. and Anastasio, C.: Quantum yields of hydroxyl radical and nitrogen dioxide from the photolysis of nitrate on ice, J. Phys. Chem., 107, 9594–9602, 2003.
Criss, R. E.: Principles of stable isotope distribution, Oxford University Press, New York, 254 pp., 1999.
Davis, D. D., Seelig, J., Huey, G., Crawford, J., Chen, G., Wang, Y., Buhr, M., Helmig, D., Neff, W., Blake, D., Arimot, R., and Eisele, F.: A reassessment of Antarctic plateau reactive nitrogen based on ANTCI 2003 airborne and ground based measurements, Atmos. Environ., 42, 2831–2848, 2008.
Delmas, R., Serca, D., and Jambert, C.: Global inventory of NOx sources, Nutr. Cycl. Agroecosys, 48, 51–60, 1997.
Dibb, J. E. and Fahnestock, M.: Snow accumulation, surface height change, and firn densification at Summit, Greenland: Insights from 2 years of in situ observation, J. Geophys. Res., 109, D24113, https://doi.org/10.1029/2003JD004300, 2004.
Dibb, J. E., Arsenault, M., Peterson, M. C., and Honrath, R. E.: Fast nitrogen oxide photochemistry in Summit, Greenland snow, Atmos. Environ., 36, 2501–2511, 2002.
Ding, M., Xiao, C., Jin, B., Ren, J., Qin, D., and Sun, W.: Distribution of δ18O in surface snow along a transect from Zhongshan Station to Dome A, East Antarctica, Chin. Sci. Bull., 55, 2709–2714, 2010.
Ding, M., Xiao, C., Li, Y., Ren, J., Hou, S., Jin, B., and Sun, B.: Spatial variability of surface mass balance along a traverse route from Zhongshan station to Dome A, Antarctica, J. Glaciol., 57, 658–666, 2011.
Dubowski, Y., Colussi, A., and Hoffmann, M.: Nitrogen dioxide release in the 302 nm band photolysis of spray-frozen aqueous nitrate solutions. Atmospheric implications, J. Phys. Chem., 105, 4928–4932, 2001.
Elliott, E. M., Kendall, C., Wankel, S. D., Burns, D. A., Boyer, E. W., Harlin, K., Bain, D. J., and Butler, T. J.: Nitrogen isotopes as indicators of NOx source contributions to atmospheric nitrate deposition across the midwestern and northeastern United States, Environ. Sci. Technol., 41, 7661–7667, https://doi.org/10.1021/es070898t, 2007.
Erbland, J., Vicars, W. C., Savarino, J., Morin, S., Frey, M. M., Frosini, D., Vince, E., and Martins, J. M. F.: Air–snow transfer of nitrate on the East Antarctic Plateau – Part 1: Isotopic evidence for a photolytically driven dynamic equilibrium in summer, Atmos. Chem. Phys., 13, 6403–6419, https://doi.org/10.5194/acp-13-6403-2013, 2013.
Felix, J. D. and Elliott, E. M.: Isotopic composition of passively collected nitrogen dioxide emissions: Vehicle, soil and livestock source signatures, Atmos. Environ., 92, 359–366, 2014.
Fibiger, D. L.: Investigating post-depositional processing of nitrate in snow and constraining NOx emissions sources using the isotopes of nitrate, PhD, Geological Sciences, Brown University, Providence, 105 pp., 2014.
Fibiger, D. L., Hastings, M. G., Dibb, J. E., and Huey, L. G.: The preservation of atmospheric nitrate in snow at Summit, Greenland, Geophys. Res. Lett., 40, 3484–3489, 2013.
Frey, M. M., Savarino, J., Morin, S., Erbland, J., and Martins, J. M. F.: Photolysis imprint in the nitrate stable isotope signal in snow and atmosphere of East Antarctica and implications for reactive nitrogen cycling, Atmos. Chem. Phys., 9, 8681–8696, https://doi.org/10.5194/acp-9-8681-2009, 2009.
Grannas, A. M., Jones, A. E., Dibb, J., Ammann, M., Anastasio, C., Beine, H. J., Bergin, M., Bottenheim, J., Boxe, C. S., Carver, G., Chen, G., Crawford, J. H., Dominé, F., Frey, M. M., Guzmán, M. I., Heard, D. E., Helmig, D., Hoffmann, M. R., Honrath, R. E., Huey, L. G., Hutterli, M., Jacobi, H. W., Klán, P., Lefer, B., McConnell, J., Plane, J., Sander, R., Savarino, J., Shepson, P. B., Simpson, W. R., Sodeau, J. R., von Glasow, R., Weller, R., Wolff, E. W., and Zhu, T.: An overview of snow photochemistry: evidence, mechanisms and impacts, Atmos. Chem. Phys., 7, 4329–4373, https://doi.org/10.5194/acp-7-4329-2007, 2007.
Hastings, M. G.: Evaluating source, chemistry and climate change based upon the isotopic composition of nitrate in ice cores, IOP C. Ser. Earth Env., 9, 012002, https://doi.org/10.1088/1755-1315/9/1/012002, 2010.
Hastings, M. G., Sigman, D. M., and Lipschultz, F.: Isotopic evidence for source changes of nitrate in rain at Bermuda, J. Geophys. Res., 108, 4790, https://doi.org/10.1029/2003JD003789, 2003.
Hastings, M. G., Steig, E., and Sigman, D.: Seasonal variations in N and O isotopes of nitrate in snow at Summit, Greenland: Implications for the study of nitrate in snow and ice cores, J. Geophys. Res., 109, D20306, https://doi.org/10.1029/2004JD004991, 2004.
Hastings, M. G., Jarvis, J. C., and Steig, E. J.: Anthropogenic impacts on nitrogen isotopes of ice-core nitrate, Science, 324, 1288–1288, 2009.
Heaton, T. H. E.: 15N / 14N ratios of NOx from vehicle engines and coal-fired power stations, Tellus B, 42, 304–307, 1990.
Jacobi, H.-W. and Hilker, B.: A mechanism for the photochemical transformation of nitrate in snow, J. Photoch. Photobio. A, 185, 371–382, 2007.
Johnsen, S. J., Clausen, H. B., Dansgaard, W., Gundestrup, N. S., Hammer, C. U., Andersen, U., Andersen, K. K., Hvidberg, C. S., Dahl-Jensen, D., and Steffensen, J. P.: The δ18O record along the Greenland Ice Core Project deep ice core and the problem of possible Eemian climatic instability, J. Geophys. Res., 102, 26397–26410, 1997.
Kaiser, J., Hastings, M. G., Houlton, B. Z., Röckmann, T., and Sigman, D. M.: Triple oxygen isotope analysis of nitrate using the denitrifier method and thermal decomposition of N2O, Anal. Chem., 79, 599–607, 2007.
Laepple, T., Werner, M., and Lohmann, G.: Synchronicity of Antarctic temperatures and local solar insolation on orbital timescales, Nature, 471, 91–94, 2011.
Lee, D., Köhler, I., Grobler, E., Rohrer, F., Sausen, R., Gallardo-Klenner, L., Olivier, J., Dentener, F., and Bouwman, A.: Estimations of global NOx, emissions and their uncertainties, Atmos. Environ., 31, 1735–1749, 1997.
Lee, H.-M., Henze, D. K., Alexander, B., and Murray, L. T.: Investigating the sensitivity of surface-level nitrate seasonality in Antarctica to primary sources using a global model, Atmos. Environ., 89, 757–767, 2014.
Li, D. and Wang, X.: Nitrogen isotopic signature of soil-released nitric oxide (NO) after fertilizer application, Atmos. Environ., 42, 4747–4754, 2008.
Madronich, S. and Flocke, S.: The role of solar radiation in atmospheric chemistry, in: Handbook of Environmental Chemistry, edited by: Boule, P., Springer Verlag, Heidelberg, 1–26, 1998.
Mayewski, P. A. and Legrand, M. R.: Recent increase in nitrate concentration of Antarctic snow, Nature, 346, 258–260, 1990.
McCabe, J., Boxe, C., Colussi, A., Hoffmann, M., and Thiemens, M.: Oxygen isotopic fractionation in the photochemistry of nitrate in water and ice, J. Geophys. Res., 110, D15310, https://doi.org/10.1029/2004JD005484, 2005.
McCabe, J. R., Thiemens, M. H., and Savarino, J.: A record of ozone variability in South Pole Antarctic snow: Role of nitrate oxygen isotopes, J. Geophys. Res., 112, D12303, https://doi.org/10.1029/2006JD007822, 2007.
Meusinger, C., Berhanu, T. A., Erbland, J., Savarino, J., and Johnson, M. S.: Laboratory study of nitrate photolysis in Antarctic snow. I. Observed quantum yield, domain of photolysis, and secondary chemistry, J. Chem. Phys., 140, 244305, https://doi.org/10.1063/1.4882898, 2014.
Michalski, G., Savarino, J., Böhlke, J., and Thiemens, M.: Determination of the total oxygen isotopic composition of nitrate and the calibration of a δ17O nitrate reference material, Anal. Chem., 74, 4989–4993, 2002.
Michalski, G., Scott, Z., Kabiling, M., and Thiemens, M. H.: First measurements and modeling of Δ17O in atmospheric nitrate, Geophys. Res. Lett., 30, 1870, https://doi.org/10.1029/2003GL017015, 2003.
Moore, H.: Isotopic measurement of atmospheric nitrogen compounds, Tellus, 26, 169–174, 1974.
Morin, S., Savarino, J., Frey, M. M., Yan, N., Bekki, S., Bottenheim, J. W., and Martins, J. M.: Tracing the origin and fate of NOx in the Arctic atmosphere using stable isotopes in nitrate, Science, 322, 730–732, 2008.
Mulvaney, R. and Wolff, E.: Evidence for winter/spring denitrification of the stratosphere in the nitrate record of Antarctic firn cores, J. Geophys. Res., 98, 5213–5220, 1993.
Mulvaney, R., Wagenbach, D., and Wolff, E. W.: Postdepositional change in snowpack nitrate from observation of year-round near-surface snow in coastal Antarctica, J. Geophys. Res., 103, 11021–11031, 1998.
Muscari, G., de Zafra, R. L., and Smyshlyaev, S.: Evolution of the NOy-N2O correlation in the Antarctic stratosphere during 1993 and 1995, J. Geophys. Res., 108, 4428, https://doi.org/10.1029/2002JD002871, 2003.
Röthlisberger, R., Hutterli, M. A., Sommer, S., Wolff, E. W., and Mulvaney, R.: Factors controlling nitrate in ice cores: Evidence from the Dome C deep ice core, J. Geophys. Res., 105, 20565–20572, 2000.
Röthlisberger, R., Hutterli, M. A., Wolff, E. W., Mulvaney, R., Fischer, H., Bigler, M., Goto-Azuma, K., Hansson, M. E., Ruth, U., and Siggaard-Andersen, M.-L.: Nitrate in Greenland and Antarctic ice cores: A detailed description of post-depositional processes, Ann. Glaciol., 35, 209–216, 2002.
Sato, K., Takenaka, N., Bandow, H., and Maeda, Y.: Evaporation loss of dissolved volatile substances from ice surfaces, J. Phys. Chem., 112, 7600–7607, 2008.
Savarino, J., Kaiser, J., Morin, S., Sigman, D. M., and Thiemens, M. H.: Nitrogen and oxygen isotopic constraints on the origin of atmospheric nitrate in coastal Antarctica, Atmos. Chem. Phys., 7, 1925–1945, https://doi.org/10.5194/acp-7-1925-2007, 2007.
Sigman, D. M., Casciotti, K. L., Andreani, M., Barford, C., Galanter, M., and Böhlke, J. K.: A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater, Anal. Chem., 73, 4145–4153, 2001.
Traversi, R., Becagli, S., Castellano, E., Cerri, O., Morganti, A., Severi, M., and Udisti, R.: Study of Dome C site (East Antartica) variability by comparing chemical stratigraphies, Microchem. J., 92, 7–14, 2009.
Wagenbach, D., Graf, V., Minikin, A., Trefzer, U., Kipfstuhl, J., Oerter, H., and Blindow, N.: Reconnaissance of chemical and isotopic firn properties on top of Berkner Island, Antarctica, Ann. Glaciol., 20, 307–312, 1994.
Wagenbach, D., Legrand, M., Fischer, H., Pichlmayer, F., and Wolff, E. W.: Atmospheric near-surface nitrate at coastal Antarctic sites, J. Geophys. Res., 103, 11007–11020, 1998.
Wang, Y., Sodemann, H., Hou, S., Masson-Delmotte, V., Jouzel, J., and Pang, H.: Snow accumulation and its moisture origin over Dome Argus, Antarctica, Clim. Dynam., 40, 731–742, https://doi.org/10.1007/s00382-012-1398-9, 2013.
Warneck, P. and Wurzinger, C.: Product quantum yields for the 305-nm photodecomposition of nitrate in aqueous solution, J. Phys. Chem., 92, 6278–6283, 1988.
Warren, S. G., Brandt, R. E., and Grenfell, T. C.: Visible and near-ultraviolet absorption spectrum of ice from transmission of solar radiation into snow, Appl. Optics, 45, 5320–5334, 2006.
Wolff, E. W.: Nitrate in polar ice, in: in Ice core studies of global biogeochemical cycles, edited by: Delmas, R. J., Springer, New York, 195–224, 1995.
Wolff, E. W., Jones, A. E., Bauguitte, S. J.-B., and Salmon, R. A.: The interpretation of spikes and trends in concentration of nitrate in polar ice cores, based on evidence from snow and atmospheric measurements, Atmos. Chem. Phys., 8, 5627–5634, https://doi.org/10.5194/acp-8-5627-2008, 2008.
Wolff, E. W., Bigler, M., Curran, M., Dibb, J., Frey, M., Legrand, M., and McConnell, J.: The Carrington event not observed in most ice core nitrate records, Geophys. Res. Lett., 39, L08503, https://doi.org/10.1029/2012GL051603, 2012.
Xiao, C., Ding, M., Masson-Delmotte, V., Zhang, R., Jin, B., Ren, J., Li, C., Werner, M., Wang, Y., and Cui, X.: Stable isotopes in surface snow along a traverse route from Zhongshan station to Dome A, East Antarctica, Clim. Dynam., 41, 2427–2438, 2013.
Yung, Y. L. and Miller, C. E.: Isotopic fractionation of stratospheric nitrous oxide, Science, 278, 1778–1780, https://doi.org/10.1126/science.278.5344.1778, 1997.
Zatko, M. C., Grenfell, T. C., Alexander, B., Doherty, S. J., Thomas, J. L., and Yang, X.: The influence of snow grain size and impurities on the vertical profiles of actinic flux and associated NOx emissions on the Antarctic and Greenland ice sheets, Atmos. Chem. Phys., 13, 3547–3567, https://doi.org/10.5194/acp-13-3547-2013, 2013.
Short summary
We evaluate isotopic composition of NO3- in different environments across East Antarctica. At high snow accumulation sites, isotopic ratios are suggestive of preservation of NO3- deposition. At low accumulation sites, isotopes are sensitive to both the loss of NO3- due to photolysis and secondary formation of NO3- within the snow. The imprint of post-depositional alteration is not uniform with depth, making it difficult to predict the isotopic composition at depth from near-surface data alone.
We evaluate isotopic composition of NO3- in different environments across East Antarctica. At...
Altmetrics
Final-revised paper
Preprint