Articles | Volume 15, issue 16
https://doi.org/10.5194/acp-15-9435-2015
https://doi.org/10.5194/acp-15-9435-2015
Research article
 | 
24 Aug 2015
Research article |  | 24 Aug 2015

Investigation of post-depositional processing of nitrate in East Antarctic snow: isotopic constraints on photolytic loss, re-oxidation, and source inputs

G. Shi, A. M. Buffen, M. G. Hastings, C. Li, H. Ma, Y. Li, B. Sun, C. An, and S. Jiang

Related authors

Using deep learning and multi-source remote sensing images to map landlocked lakes in Antarctica
Anyao Jiang, Xin Meng, Yan Huang, and Guitao Shi
The Cryosphere, 18, 5347–5364, https://doi.org/10.5194/tc-18-5347-2024,https://doi.org/10.5194/tc-18-5347-2024, 2024
Short summary
Brief communication: Identification of 140 000-year-old blue ice in the Grove Mountains, East Antarctica, by krypton-81 dating
Zhengyi Hu, Wei Jiang, Yuzhen Yan, Yan Huang, Xueyuan Tang, Lin Li, Florian Ritterbusch, Guo-Min Yang, Zheng-Tian Lu, and Guitao Shi
The Cryosphere, 18, 1647–1652, https://doi.org/10.5194/tc-18-1647-2024,https://doi.org/10.5194/tc-18-1647-2024, 2024
Short summary
Brief communication: Spatial and temporal variations in surface snow chemistry along a traverse from coastal East Antarctica to the ice sheet summit (Dome A)
Guitao Shi, Hongmei Ma, Zhengyi Hu, Zhenlou Chen, Chunlei An, Su Jiang, Yuansheng Li, Tianming Ma, Jinhai Yu, Danhe Wang, Siyu Lu, Bo Sun, and Meredith G. Hastings
The Cryosphere, 15, 1087–1095, https://doi.org/10.5194/tc-15-1087-2021,https://doi.org/10.5194/tc-15-1087-2021, 2021
Short summary
Nitrate deposition and preservation in the snowpack along a traverse from coast to the ice sheet summit (Dome A) in East Antarctica
Guitao Shi, Meredith G. Hastings, Jinhai Yu, Tianming Ma, Zhengyi Hu, Chunlei An, Chuanjin Li, Hongmei Ma, Su Jiang, and Yuansheng Li
The Cryosphere, 12, 1177–1194, https://doi.org/10.5194/tc-12-1177-2018,https://doi.org/10.5194/tc-12-1177-2018, 2018
Short summary

Related subject area

Subject: Isotopes | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
On the potential fingerprint of the Antarctic ozone hole in ice-core nitrate isotopes: a case study based on a South Pole ice core
Yanzhi Cao, Zhuang Jiang, Becky Alexander, Jihong Cole-Dai, Joel Savarino, Joseph Erbland, and Lei Geng
Atmos. Chem. Phys., 22, 13407–13422, https://doi.org/10.5194/acp-22-13407-2022,https://doi.org/10.5194/acp-22-13407-2022, 2022
Short summary
Quantifying the nitrogen isotope effects during photochemical equilibrium between NO and NO2: implications for δ15N in tropospheric reactive nitrogen
Jianghanyang Li, Xuan Zhang, John Orlando, Geoffrey Tyndall, and Greg Michalski
Atmos. Chem. Phys., 20, 9805–9819, https://doi.org/10.5194/acp-20-9805-2020,https://doi.org/10.5194/acp-20-9805-2020, 2020
Short summary
Temporal variation in 129I and 127I in aerosols from Xi'an, China: influence of East Asian monsoon and heavy haze events
Luyuan Zhang, Xiaolin Hou, Sheng Xu, Tian Feng, Peng Cheng, Yunchong Fu, and Ning Chen
Atmos. Chem. Phys., 20, 2623–2635, https://doi.org/10.5194/acp-20-2623-2020,https://doi.org/10.5194/acp-20-2623-2020, 2020
Short summary
High time-resolved measurement of stable carbon isotope composition in water-soluble organic aerosols: method optimization and a case study during winter haze in eastern China
Wenqi Zhang, Yan-Lin Zhang, Fang Cao, Yankun Xiang, Yuanyuan Zhang, Mengying Bao, Xiaoyan Liu, and Yu-Chi Lin
Atmos. Chem. Phys., 19, 11071–11087, https://doi.org/10.5194/acp-19-11071-2019,https://doi.org/10.5194/acp-19-11071-2019, 2019
Short summary
Dependence between the photochemical age of light aromatic hydrocarbons and the carbon isotope ratios of atmospheric nitrophenols
Marina Saccon, Anna Kornilova, Lin Huang, and Jochen Rudolph
Atmos. Chem. Phys., 19, 5495–5509, https://doi.org/10.5194/acp-19-5495-2019,https://doi.org/10.5194/acp-19-5495-2019, 2019
Short summary

Cited articles

Alexander, B., Savarino, J., Kreutz, K. J., and Thiemens, M.: Impact of preindustrial biomass-burning emissions on the oxidation pathways of tropospheric sulfur and nitrogen, J. Geophys. Res., 109, D08303, https://doi.org/10.1029/2003JD004218, 2004.
Alexander, B., Hastings, M. G., Allman, D. J., Dachs, J., Thornton, J. A., and Kunasek, S. A.: Quantifying atmospheric nitrate formation pathways based on a global model of the oxygen isotopic composition (Δ17O) of atmospheric nitrate, Atmos. Chem. Phys., 9, 5043–5056, https://doi.org/10.5194/acp-9-5043-2009, 2009.
Altieri, K., Hastings, M., Gobel, A., Peters, A., and Sigman, D.: Isotopic composition of rainwater nitrate at Bermuda: The influence of air mass source and chemistry in the marine boundary layer, J. Geophys. Res., 118, 11304–11316, 2013.
Ammann, M., Siegwolf, R., Pichlmayer, F., Suter, M., Saurer, M., and Brunold, C.: Estimating the uptake of traffic-derived NO2 from 15N abundance in Norway spruce needles, Oecologia, 118, 124–131, 1999.
Böhlke, J., Mroczkowski, S., and Coplen, T.: Oxygen isotopes in nitrate: New reference materials for 18O: 17O: 16O measurements and observations on nitrate-water equilibration, Rapid Commun. Mass. Sp., 17, 1835–1846, 2003.
Download
Short summary
We evaluate isotopic composition of NO3- in different environments across East Antarctica. At high snow accumulation sites, isotopic ratios are suggestive of preservation of NO3- deposition. At low accumulation sites, isotopes are sensitive to both the loss of NO3- due to photolysis and secondary formation of NO3- within the snow. The imprint of post-depositional alteration is not uniform with depth, making it difficult to predict the isotopic composition at depth from near-surface data alone.
Altmetrics
Final-revised paper
Preprint