Articles | Volume 15, issue 6
https://doi.org/10.5194/acp-15-3445-2015
https://doi.org/10.5194/acp-15-3445-2015
Research article
 | 
30 Mar 2015
Research article |  | 30 Mar 2015

Long-term particulate matter modeling for health effect studies in California – Part 1: Model performance on temporal and spatial variations

J. Hu, H. Zhang, Q. Ying, S.-H. Chen, F. Vandenberghe, and M. J. Kleeman

Related authors

A Flexible ROMS-based Hybrid Coupled Model for ENSO Studies–Model Formulation and Performance Evaluation
Yang Yu, Yin-Nan Li, Rong-Hua Zhang, Shu-Hua Chen, Yu-Heng Tseng, Wenzhe Zhang, and Hongna Wang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-187,https://doi.org/10.5194/gmd-2024-187, 2024
Preprint under review for GMD
Short summary
The atmospheric oxidizing capacity in China – Part 2: Sensitivity to emissions of primary pollutants
Jianing Dai, Guy P. Brasseur, Mihalis Vrekoussis, Maria Kanakidou, Kun Qu, Yijuan Zhang, Hongliang Zhang, and Tao Wang
Atmos. Chem. Phys., 24, 12943–12962, https://doi.org/10.5194/acp-24-12943-2024,https://doi.org/10.5194/acp-24-12943-2024, 2024
Short summary
Reconstructing long-term (1980–2022) daily ground particulate matter concentrations in India (LongPMInd)
Shuai Wang, Mengyuan Zhang, Hui Zhao, Peng Wang, Sri Harsha Kota, Qingyan Fu, Cong Liu, and Hongliang Zhang
Earth Syst. Sci. Data, 16, 3565–3577, https://doi.org/10.5194/essd-16-3565-2024,https://doi.org/10.5194/essd-16-3565-2024, 2024
Short summary
Diagnosing drivers of PM2.5 simulation biases in China from meteorology, chemical composition, and emission sources using an efficient machine learning method
Shuai Wang, Mengyuan Zhang, Yueqi Gao, Peng Wang, Qingyan Fu, and Hongliang Zhang
Geosci. Model Dev., 17, 3617–3629, https://doi.org/10.5194/gmd-17-3617-2024,https://doi.org/10.5194/gmd-17-3617-2024, 2024
Short summary
Spatial-temporal patterns of anthropogenic and biomass burning contributions on air pollution and mortality burden changes in India from 1995 to 2014
Bin Luo, Yuqiang Zhang, Tao Tang, Hongliang Zhang, Jianlin Hu, Jiangshan Mu, Wenxing Wang, and Likun Xue
EGUsphere, https://doi.org/10.5194/egusphere-2024-974,https://doi.org/10.5194/egusphere-2024-974, 2024
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Rapid oxidation of phenolic compounds by O3 and HO: effects of the air–water interface and mineral dust in tropospheric chemical processes
Yanru Huo, Mingxue Li, Xueyu Wang, Jianfei Sun, Yuxin Zhou, Yuhui Ma, and Maoxia He
Atmos. Chem. Phys., 24, 12409–12423, https://doi.org/10.5194/acp-24-12409-2024,https://doi.org/10.5194/acp-24-12409-2024, 2024
Short summary
Modeling the contribution of leads to sea spray aerosol in the high Arctic
Rémy Lapere, Louis Marelle, Pierre Rampal, Laurent Brodeau, Christian Melsheimer, Gunnar Spreen, and Jennie L. Thomas
Atmos. Chem. Phys., 24, 12107–12132, https://doi.org/10.5194/acp-24-12107-2024,https://doi.org/10.5194/acp-24-12107-2024, 2024
Short summary
Importance of aerosol composition and aerosol vertical profiles in global spatial variation in the relationship between PM2.5 and aerosol optical depth
Haihui Zhu, Randall V. Martin, Aaron van Donkelaar, Melanie S. Hammer, Chi Li, Jun Meng, Christopher R. Oxford, Xuan Liu, Yanshun Li, Dandan Zhang, Inderjeet Singh, and Alexei Lyapustin
Atmos. Chem. Phys., 24, 11565–11584, https://doi.org/10.5194/acp-24-11565-2024,https://doi.org/10.5194/acp-24-11565-2024, 2024
Short summary
The co-benefits of a low-carbon future for PM2.5 and O3 air pollution in Europe
Connor J. Clayton, Daniel R. Marsh, Steven T. Turnock, Ailish M. Graham, Kirsty J. Pringle, Carly L. Reddington, Rajesh Kumar, and James B. McQuaid
Atmos. Chem. Phys., 24, 10717–10740, https://doi.org/10.5194/acp-24-10717-2024,https://doi.org/10.5194/acp-24-10717-2024, 2024
Short summary
Assessing the effectiveness of SO2, NOx, and NH3 emission reductions in mitigating winter PM2.5 in Taiwan using CMAQ
Ping-Chieh Huang, Hui-Ming Hung, Hsin-Chih Lai, and Charles C.-K. Chou
Atmos. Chem. Phys., 24, 10759–10772, https://doi.org/10.5194/acp-24-10759-2024,https://doi.org/10.5194/acp-24-10759-2024, 2024
Short summary

Cited articles

Anenberg, S. C., Horowitz, L. W., Tong, D. Q., and West, J. J.: An Estimate of the Global Burden of Anthropogenic Ozone and Fine Particulate Matter on Premature Human Mortality Using Atmospheric Modeling, Environ. Health Persp., 118, 1189–1195, 2010.
Angevine, W. M., Eddington, L., Durkee, K., Fairall, C., Bianco, L., and Brioude, J.: Meteorological Model Evaluation for CalNex 2010, Mon. Weather Rev., 140, 3885–3906, 2012.
Appel, K. W., Bhave, P. V., Gilliland, A. B., Sarwar, G., and Roselle, S. J.: Evaluation of the community multiscale air quality (CMAQ) model version 4.5: Sensitivities impacting model performance; Part II – particulate matter, Atmos. Environ., 42, 6057–6066, 2008.
Bao, J. W., Michelson, S. A., Persson, P. O. G., Djalalova, I. V., and Wilczak, J. M.: Observed and WRF-simulated low-level winds in a high-ozone episode during the Central California Ozone Study, J. Appl. Meteorol. Clim., 47, 2372–2394, 2008.
Barnett, A. G., Plonka, K., Seow, W. K., Wilson, L. A., and Hansen, C.: Increased traffic exposure and negative birth outcomes: a prospective cohort in Australia, Environ. Health, 10:26, https://doi.org/10.1186/1476-069X-10-26, 2011.
Short summary
Air quality model simulations have been conducted for California from 2000 to 2009 with 4km spatial resolution to provide exposure data for health effect studies. Comprehensive analysis shows that predicted concentrations for many pollutants are in agreement with measurements at monitoring stations, building confidence that the fields may be useful at times and locations where measurements are not available. Data can be downloaded for free at http://faculty.engineering.ucdavis.edu/kleeman/.
Altmetrics
Final-revised paper
Preprint