Articles | Volume 15, issue 21
Research article
09 Nov 2015
Research article |  | 09 Nov 2015

Spatial and temporal variability of clouds and precipitation over Germany: multiscale simulations across the "gray zone"

C. Barthlott and C. Hoose

Related authors

The impact of microphysical uncertainty conditional on initial and boundary condition uncertainty under varying synoptic control
Takumi Matsunobu, Christian Keil, and Christian Barthlott
Weather Clim. Dynam., 3, 1273–1289,,, 2022
Short summary
Impacts of combined microphysical and land-surface uncertainties on convective clouds and precipitation in different weather regimes
Christian Barthlott, Amirmahdi Zarboo, Takumi Matsunobu, and Christian Keil
Atmos. Chem. Phys., 22, 10841–10860,,, 2022
Short summary
Importance of aerosols and shape of the cloud droplet size distribution for convective clouds and precipitation
Christian Barthlott, Amirmahdi Zarboo, Takumi Matsunobu, and Christian Keil
Atmos. Chem. Phys., 22, 2153–2172,,, 2022
Short summary
Large impact of tiny model domain shifts for the Pentecost 2014 mesoscale convective system over Germany
Christian Barthlott and Andrew I. Barrett
Weather Clim. Dynam., 1, 207–224,,, 2020
Short summary
Relative impact of aerosol, soil moisture, and orography perturbations on deep convection
Linda Schneider, Christian Barthlott, Corinna Hoose, and Andrew I. Barrett
Atmos. Chem. Phys., 19, 12343–12359,,, 2019
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Above-cloud concentrations of cloud condensation nuclei help to sustain some Arctic low-level clouds
Lucas J. Sterzinger and Adele L. Igel
Atmos. Chem. Phys., 24, 3529–3540,,, 2024
Short summary
Contrail formation on ambient aerosol particles for aircraft with hydrogen combustion: a box model trajectory study
Andreas Bier, Simon Unterstrasser, Josef Zink, Dennis Hillenbrand, Tina Jurkat-Witschas, and Annemarie Lottermoser
Atmos. Chem. Phys., 24, 2319–2344,,, 2024
Short summary
Effects of intermittent aerosol forcing on the stratocumulus-to-cumulus transition
Prasanth Prabhakaran, Fabian Hoffmann, and Graham Feingold
Atmos. Chem. Phys., 24, 1919–1937,,, 2024
Short summary
Cloud properties and their projected changes in CMIP models with low to high climate sensitivity
Lisa Bock and Axel Lauer
Atmos. Chem. Phys., 24, 1587–1605,,, 2024
Short summary
Water isotopic characterisation of the cloud–circulation coupling in the North Atlantic trades – Part 2: The imprint of the atmospheric circulation at different scales
Leonie Villiger and Franziska Aemisegger
Atmos. Chem. Phys., 24, 957–976,,, 2024
Short summary

Cited articles

Baldauf, M., Seifert, A., Förstner, J., Majewski, D., and Raschendorfer, M.: Operational convective-scale numerical weather prediction with the COSMO model: description and sensitivities, Mon. Weather Rev., 139, 3887–3905,, 2011.
Barthlott, C., Corsmeier, U., Meißner, C., Braun, F., and Kottmeier, C.: The influence of mesoscale circulation systems on triggering convective cells over complex terrain, Atmos. Res., 81, 150–175, 2006.
Barthlott, C., Burton, R., Kirshbaum, D., Hanley, K., Richard, E., Chaboureau, J.-P., Trentmann, J., Kern, B., Bauer, H.-S., Schwitalla, T., Keil, C., Seity, Y., Gadian, A., Blyth, A., Mobbs, S., Flamant, C., and Handwerker, J.: Initiation of deep convection at marginal instability in an ensemble of mesoscale models: a case-study from COPS, Q. J. Roy. Meteor. Soc., 137, 118–136,, 2011.
Bauer, H.-S., Weusthoff, T., Dorninger, M., Wulfmeyer, V., Schwitalla, T., Gorgas, T., Arpagaus, M., and Warrach-Sagi, K.: Predictive skill in the COPS region of a subset of models participating in D-PHASE, Q. J. Roy. Meteor. Soc., 137, 287–305,, 2011.
Bennett, L. J., Browning, K. A., Blyth, A. M., Parker, D. J., and Clark, P. A.: A review of the initiation of precipitating convection in the United Kingdom, Q. J. Roy. Meteor. Soc., 132, 1001–1020,, 2006.
Short summary
This paper assesses the resolution dependance of clouds and precipitation over Germany by numerical simulations with the COnsortium for Small-scale MOdeling model for 7 cases of 2013. By means of a series of grid-refinement resolution tests, the variability of clouds and precipitation and how this variability changes with model resolution are investigated. The performance of the model at these resolutions is of general relevance to the research community as well as to operational forecasters
Final-revised paper