Articles | Volume 14, issue 11
https://doi.org/10.5194/acp-14-5735-2014
https://doi.org/10.5194/acp-14-5735-2014
Research article
 | 
10 Jun 2014
Research article |  | 10 Jun 2014

What controls the recent changes in African mineral dust aerosol across the Atlantic?

D. A. Ridley, C. L. Heald, and J. M. Prospero

Related authors

Sensitivity of the interannual variability of mineral aerosol simulations to meteorological forcing dataset
Molly B. Smith, Natalie M. Mahowald, Samuel Albani, Aaron Perry, Remi Losno, Zihan Qu, Beatrice Marticorena, David A. Ridley, and Colette L. Heald
Atmos. Chem. Phys., 17, 3253–3278, https://doi.org/10.5194/acp-17-3253-2017,https://doi.org/10.5194/acp-17-3253-2017, 2017
Short summary
An observationally constrained estimate of global dust aerosol optical depth
David A. Ridley, Colette L. Heald, Jasper F. Kok, and Chun Zhao
Atmos. Chem. Phys., 16, 15097–15117, https://doi.org/10.5194/acp-16-15097-2016,https://doi.org/10.5194/acp-16-15097-2016, 2016
Short summary
Analysis of particulate emissions from tropical biomass burning using a global aerosol model and long-term surface observations
Carly L. Reddington, Dominick V. Spracklen, Paulo Artaxo, David A. Ridley, Luciana V. Rizzo, and Andrea Arana
Atmos. Chem. Phys., 16, 11083–11106, https://doi.org/10.5194/acp-16-11083-2016,https://doi.org/10.5194/acp-16-11083-2016, 2016
Short summary
Evaluating model parameterizations of submicron aerosol scattering and absorption with in situ data from ARCTAS 2008
Matthew J. Alvarado, Chantelle R. Lonsdale, Helen L. Macintyre, Huisheng Bian, Mian Chin, David A. Ridley, Colette L. Heald, Kenneth L. Thornhill, Bruce E. Anderson, Michael J. Cubison, Jose L. Jimenez, Yutaka Kondo, Lokesh K. Sahu, Jack E. Dibb, and Chien Wang
Atmos. Chem. Phys., 16, 9435–9455, https://doi.org/10.5194/acp-16-9435-2016,https://doi.org/10.5194/acp-16-9435-2016, 2016
Short summary
The aerosol radiative effects of uncontrolled combustion of domestic waste
John K. Kodros, Rachel Cucinotta, David A. Ridley, Christine Wiedinmyer, and Jeffrey R. Pierce
Atmos. Chem. Phys., 16, 6771–6784, https://doi.org/10.5194/acp-16-6771-2016,https://doi.org/10.5194/acp-16-6771-2016, 2016
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Predicting hygroscopic growth of organosulfur aerosol particles using COSMOtherm
Zijun Li, Angela Buchholz, and Noora Hyttinen
Atmos. Chem. Phys., 24, 11717–11725, https://doi.org/10.5194/acp-24-11717-2024,https://doi.org/10.5194/acp-24-11717-2024, 2024
Short summary
Dust aerosol from the Aralkum Desert influences the radiation budget and atmospheric dynamics of Central Asia
Jamie R. Banks, Bernd Heinold, and Kerstin Schepanski
Atmos. Chem. Phys., 24, 11451–11475, https://doi.org/10.5194/acp-24-11451-2024,https://doi.org/10.5194/acp-24-11451-2024, 2024
Short summary
Global modeling of aerosol nucleation with a semi-explicit chemical mechanism for highly oxygenated organic molecules (HOMs)
Xinyue Shao, Minghuai Wang, Xinyi Dong, Yaman Liu, Wenxiang Shen, Stephen R. Arnold, Leighton A. Regayre, Meinrat O. Andreae, Mira L. Pöhlker, Duseong S. Jo, Man Yue, and Ken S. Carslaw
Atmos. Chem. Phys., 24, 11365–11389, https://doi.org/10.5194/acp-24-11365-2024,https://doi.org/10.5194/acp-24-11365-2024, 2024
Short summary
Synergistic effects of the winter North Atlantic Oscillation (NAO) and El Niño–Southern Oscillation (ENSO) on dust activities in North China during the following spring
Falei Xu, Shuang Wang, Yan Li, and Juan Feng
Atmos. Chem. Phys., 24, 10689–10705, https://doi.org/10.5194/acp-24-10689-2024,https://doi.org/10.5194/acp-24-10689-2024, 2024
Short summary
Aerosol composition, air quality, and boundary layer dynamics in the urban background of Stuttgart in winter
Hengheng Zhang, Wei Huang, Xiaoli Shen, Ramakrishna Ramisetty, Junwei Song, Olga Kiseleva, Christopher Claus Holst, Basit Khan, Thomas Leisner, and Harald Saathoff
Atmos. Chem. Phys., 24, 10617–10637, https://doi.org/10.5194/acp-24-10617-2024,https://doi.org/10.5194/acp-24-10617-2024, 2024
Short summary

Cited articles

Alexander, B., Park, R. J., Jacob, D. J., Li, Q. B., Yantosca, R. M., Savarino, J., Lee, C. C. W., and Thiemens, M. H.: Sulfate formation in sea-salt aerosols: Constraints from oxygen isotopes, J. Geophys. Res.-Atmos., 110, D10307, https://doi.org/10.1029/2004JD005659, 2005.
Ben-Ami, Y., Koren, I., Altaratz, O., Kostinski, A., and Lehahn, Y.: Discernible rhythm in the spatio/temporal distributions of transatlantic dust, Atmos. Chem. Phys., 12, 2253–2262, https://doi.org/10.5194/acp-12-2253-2012, 2012.
Balkanski, Y., Schulz, M., Claquin, T., and Guibert, S.: Reevaluation of Mineral aerosol radiative forcings suggests a better agreement with satellite and AERONET data, Atmos. Chem. Phys., 7, 81–95, https://doi.org/10.5194/acp-7-81-2007, 2007.
Bichet, A., Wild, M., Folini, D., and Schär, C.: Causes for decadal variations of wind speed over land: Sensitivity studies with a global climate model: Decadal variations of land wind speed, Geophys. Res. Lett., 39, L11701, https://doi.org/10.1029/2012GL051685, 2012.
Booth, B. B. B., Dunstone, N. J., Halloran, P. R., Andrews, T., and Bellouin, N.: Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability, Nature, 484, 228–232, https://doi.org/10.1038/nature10946, 2012.
Download
Altmetrics
Final-revised paper
Preprint