Articles | Volume 13, issue 19
https://doi.org/10.5194/acp-13-9801-2013
https://doi.org/10.5194/acp-13-9801-2013
Research article
 | 
07 Oct 2013
Research article |  | 07 Oct 2013

Tropical tropopause ice clouds: a dynamic approach to the mystery of low crystal numbers

P. Spichtinger and M. Krämer

Related authors

Fractal Characteristics of Ice-Supersaturated Regions in the Tropopause Region of the northern midlatitudes
Helena Zoe Schuh, Philipp Reutter, Stefan Niebler, and Peter Spichtinger
EGUsphere, https://doi.org/10.5194/egusphere-2025-2498,https://doi.org/10.5194/egusphere-2025-2498, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
The Frosty Frontier: Redefining the Tropopause as a transport barrier using the Relative Humidity over Ice
Philipp Reutter and Peter Spichtinger
EGUsphere, https://doi.org/10.5194/egusphere-2025-2474,https://doi.org/10.5194/egusphere-2025-2474, 2025
Short summary
Investigating ice formation pathways using a novel two-moment multi-class cloud microphysics scheme
Tim Lüttmer, Peter Spichtinger, and Axel Seifert
Atmos. Chem. Phys., 25, 4505–4529, https://doi.org/10.5194/acp-25-4505-2025,https://doi.org/10.5194/acp-25-4505-2025, 2025
Short summary
Ice formation processes key in determining WCB outflow cirrus properties
Tim Lüttmer, Annette Miltenberger, and Peter Spichtinger
EGUsphere, https://doi.org/10.5194/egusphere-2025-185,https://doi.org/10.5194/egusphere-2025-185, 2025
Short summary
A new parameterisation for homogeneous ice nucleation driven by highly variable dynamical forcings
Alena Kosareva, Stamen Dolaptchiev, Peter Spichtinger, and Ulrich Achatz
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-193,https://doi.org/10.5194/gmd-2024-193, 2024
Revised manuscript accepted for GMD
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Accelerated impact of airborne glaciogenic seeding of stratiform clouds by turbulence
Meilian Chen, Xiaoqin Jing, Jiaojiao Li, Jing Yang, Xiaobo Dong, Bart Geerts, Yan Yin, Baojun Chen, Lulin Xue, Mengyu Huang, Ping Tian, and Shaofeng Hua
Atmos. Chem. Phys., 25, 7581–7596, https://doi.org/10.5194/acp-25-7581-2025,https://doi.org/10.5194/acp-25-7581-2025, 2025
Short summary
Failed cyclogenesis of a mesoscale convective system near Cabo Verde: the role of the Saharan trade wind layer among other inhibiting factors observed during the CADDIWA field campaign
Guillaume Feger, Jean-Pierre Chaboureau, Thibaut Dauhut, Julien Delanoë, and Pierre Coutris
Atmos. Chem. Phys., 25, 7447–7465, https://doi.org/10.5194/acp-25-7447-2025,https://doi.org/10.5194/acp-25-7447-2025, 2025
Short summary
Sensitivities of simulated mixed-phase Arctic multilayer clouds to primary and secondary ice processes
Gabriella Wallentin, Annika Oertel, Luisa Ickes, Peggy Achtert, Matthias Tesche, and Corinna Hoose
Atmos. Chem. Phys., 25, 6607–6631, https://doi.org/10.5194/acp-25-6607-2025,https://doi.org/10.5194/acp-25-6607-2025, 2025
Short summary
Assessing glaciogenic seeding impacts in Australia's Snowy Mountains: an ensemble modeling approach
Sisi Chen, Lulin Xue, Sarah A. Tessendorf, Thomas Chubb, Andrew Peace, Suzanne Kenyon, Johanna Speirs, Jamie Wolff, and Bill Petzke
Atmos. Chem. Phys., 25, 6703–6724, https://doi.org/10.5194/acp-25-6703-2025,https://doi.org/10.5194/acp-25-6703-2025, 2025
Short summary
How the representation of microphysical processes affects tropical condensate in the global storm-resolving model ICON
Ann Kristin Naumann, Monika Esch, and Bjorn Stevens
Atmos. Chem. Phys., 25, 6429–6444, https://doi.org/10.5194/acp-25-6429-2025,https://doi.org/10.5194/acp-25-6429-2025, 2025
Short summary

Cited articles

Barahona, D. and Nenes, A. : Parameterization of cirrus cloud formation in large-scale models: Homogeneous nucleation, J. Geophys. Res., 113, D11211, https://doi.org/10.1029/2007JD009355, 2008.
Barahona, D. and Nenes, A.: Dynamical states of low temperature cirrus. Atmos. Chem. Phys., 11, 3757–3771, https://doi.org/10.5194/acp-11-3757-2011, 2011.
Boehm, M. D. and Verlinde, J.: Stratospheric influence on upper tropospheric tropical cirrus, Geophys. Res. Lett., 27, 3209–3212, 2000.
Bretherton, C. S. and Smolarkiewicz, P. K.: Gravity waves, compensating subsidence and detrainment around cumulus clouds, J. Atmos. Sci., 46, 740–759, 1989.
DeMott, P., Cziczo, D., Prenni, A., Murphy, D., Kreidenweis, S., Thomson, D., Borys, R., and Rogers, D.: Measurements of the concentration and composition of nuclei for cirrus formation, P. Natl. Acad. Sci., 100, 14655–14660, 2003.
Download
Share
Altmetrics
Final-revised paper
Preprint