Articles | Volume 13, issue 22
https://doi.org/10.5194/acp-13-11187-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-13-11187-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
In situ detection of electrified aerosols in the upper troposphere and stratosphere
J.-B. Renard
LPC2E-CNRS/University of Orléans, 3A avenue de la recherche scientifique, UMR7328, 45071 Orléans cedex 2, France
S. N. Tripathi
Indian Institute of Technology, Kanpur, Center for Environmental Science and Engineering, Kanpur, India
M. Michael
Indian Institute of Technology, Kanpur, Center for Environmental Science and Engineering, Kanpur, India
A. Rawal
Indian Institute of Technology, Kanpur, Center for Environmental Science and Engineering, Kanpur, India
G. Berthet
LPC2E-CNRS/University of Orléans, 3A avenue de la recherche scientifique, UMR7328, 45071 Orléans cedex 2, France
M. Fullekrug
University of Bath, Department of Electronic and Electrical Engineering, Claverton Down, Bath, BA2 7AY, UK
R. G. Harrison
University of Reading, Department of Meteorology, Reading RG6 6BB, UK
C. Robert
LPC2E-CNRS/University of Orléans, 3A avenue de la recherche scientifique, UMR7328, 45071 Orléans cedex 2, France
M. Tagger
LPC2E-CNRS/University of Orléans, 3A avenue de la recherche scientifique, UMR7328, 45071 Orléans cedex 2, France
B. Gaubicher
LPC2E-CNRS/University of Orléans, 3A avenue de la recherche scientifique, UMR7328, 45071 Orléans cedex 2, France
Related authors
No articles found.
Sergey Khaykin, Michaël Sicard, Thierry Leblanc, Tetsu Sakai, Nickolay Balugin, Gwenaël Berthet, Stëphane Chevrier, Fernando Chouza, Artem Feofilov, Dominique Gantois, Sophie Godin-Beekmann, Arezki Haddouche, Yoshitaka Jin, Isamu Morino, Nicolas Kadygrov, Thomas Lecas, Ben Liley, Richard Querel, Ghasssan Taha, and Vladimir Yushkov
Atmos. Chem. Phys., 26, 607–622, https://doi.org/10.5194/acp-26-607-2026, https://doi.org/10.5194/acp-26-607-2026, 2026
Short summary
Short summary
In April 2024, the Ruang volcano in Indonesia sent large amounts of gas and particles high into the atmosphere, which then spread worldwide. Using the new European EarthCARE satellite and its advanced laser instrument ATLID (Atmospheric LIDar), together with ground and balloon observations, we tracked how these particles doubled levels in the tropics and spread into both hemispheres. The study shows ATLID’s power to reveal how eruptions can affect climate, clouds, and ozone for more than a year.
Hazel Vernier, Demilson Quintao, Bruno Biazon, Eduardo Landulfo, Giovanni Souza, Amanda Santos, Fabio Lopes, Alex Mendes, José da Matta, Pinheiro Damaris, Benoit Grosslin, Maria Paulete, Maria de Fátima Andrade, Neeraj Rastogi, Akhil Raj, Hongyu Liu, Mahesh Kovilakam, Suvarna Fadnavis, Frank Wienhold, Mathieu Colombier, Chris Boone, Gwenael Berthet, Nicolas Dumelie, Lilian Joly, and Jean-Paul Vernier
EGUsphere, https://doi.org/10.5194/egusphere-2025-6226, https://doi.org/10.5194/egusphere-2025-6226, 2026
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This paper shows unique balloon measurements from Brazil within the Hunga volcanic plume eight months after the eruption. The chemical analysis of samples collected reveal new insights on volcanic aerosol composition and suggest the presence of marine aerosols.
Shoubhik Chakraborty, Sachchida Nand Tripathi, Davender Sethi, Akanksha Lakra, Ambasht Kumar, Pranjal Kumar Srivastava, Nihal Thukarama Rao, Avnish Tripathi, and Purushottam Kar
EGUsphere, https://doi.org/10.5194/egusphere-2025-5677, https://doi.org/10.5194/egusphere-2025-5677, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
This paper proposes a novel source apportionment paradigm that predicts the relative contributions of different air-pollution sources using a machine-learning framework applied to data obtained from low-cost sensor units. A key strength of this approach is its ability to support a dense network of low-cost sensor units spanning wide geographical areas and providing source apportionment results in real time, thus helping policymakers take regulatory action to curb air pollution in real time.
Blair P. S. McGinness, R. Giles Harrison, Karen L. Aplin, and Martin W. Airey
Hist. Geo Space. Sci., 16, 51–63, https://doi.org/10.5194/hgss-16-51-2025, https://doi.org/10.5194/hgss-16-51-2025, 2025
Short summary
Short summary
Point discharge is an electrical process which occurs naturally in Earth's atmosphere. Like lightning, it has been observed both directly and indirectly for centuries. Several of the milestone investigations in atmospheric electricity have arisen through measuring point discharge. This work gives a history of various investigations involving the phenomenon and explains its central role in developments in atmospheric electricity.
Corinna Kloss, Gwenaël Berthet, Pasquale Sellitto, Irene Bartolome Garcia, Emmanuel Briaud, Rubel Chandra Das, Stéphane Chevrier, Nicolas Dumelié, Lilian Joly, Thomas Lecas, Pauline Marbach, Felix Ploeger, Jean-Baptiste Renard, Jean-Paul Vernier, Frank G. Wienhold, and Michaela I. Hegglin
EGUsphere, https://doi.org/10.5194/egusphere-2025-2091, https://doi.org/10.5194/egusphere-2025-2091, 2025
Short summary
Short summary
In October 2022, we detected volcanic particles in the stratosphere over France, linked to the January 2022 Hunga eruption in the South Pacific. Found between 17 and 23 km altitude, they were traced back to the tropics using trajectory simulations and satellite data. Their optical properties matched those in the Southern Hemisphere. The particles spread across the Northern Hemisphere, reflecting sunlight and slightly cooling the surface—a small but non-negligible effect.
Zhenyu Zhang, Jing Li, Huizheng Che, Yueming Dong, Oleg Dubovik, Thomas Eck, Pawan Gupta, Brent Holben, Jhoon Kim, Elena Lind, Trailokya Saud, Sachchida Nand Tripathi, and Tong Ying
Atmos. Chem. Phys., 25, 4617–4637, https://doi.org/10.5194/acp-25-4617-2025, https://doi.org/10.5194/acp-25-4617-2025, 2025
Short summary
Short summary
We used ground-based remote sensing data from the Aerosol Robotic Network to examine long-term trends in aerosol characteristics. We found aerosol loadings generally decreased globally, and aerosols became more scattering. These changes are closely related to variations in aerosol compositions, such as decreased anthropogenic emissions over East Asia, Europe, and North America; increased anthropogenic sources over northern India; and increased dust activity over the Arabian Peninsula.
Ashutosh K. Shukla, Sachchida N. Tripathi, Shamitaksha Talukdar, Vishnu Murari, Sreenivas Gaddamidi, Manousos-Ioannis Manousakas, Vipul Lalchandani, Kuldeep Dixit, Vinayak M. Ruge, Peeyush Khare, Mayank Kumar, Vikram Singh, Neeraj Rastogi, Suresh Tiwari, Atul K. Srivastava, Dilip Ganguly, Kaspar Rudolf Daellenbach, and André S. H. Prévôt
Atmos. Chem. Phys., 25, 3765–3784, https://doi.org/10.5194/acp-25-3765-2025, https://doi.org/10.5194/acp-25-3765-2025, 2025
Short summary
Short summary
Our study delves into the elemental composition of aerosols at three sites across the Indo-Gangetic Plain (IGP), revealing distinct patterns during pollution episodes. We found significant increases in chlorine (Cl)-rich and solid fuel combustion (SFC) sources, indicating dynamic emission sources, agricultural burning impacts, and meteorological influences. Surges in Cl-rich particles during cold periods highlight their role in particle growth under high-relative-humidity conditions.
Hazel Vernier, Demilson Quintão, Bruno Biazon, Eduardo Landulfo, Giovanni Souza, V. Amanda Santos, J. S. Fabio Lopes, C. P. Alex Mendes, A. S. José da Matta, K. Pinheiro Damaris, Benoit Grosslin, P. M. P. Maria Jorge, Maria de Fátima Andrade, Neeraj Rastogi, Akhil Raj, Hongyu Liu, Mahesh Kovilakam, Suvarna Fadnavis, Frank G. Wienhold, Mathieu Colombier, D. Chris Boone, Gwenael Berthet, Nicolas Dumelie, Lilian Joly, and Jean-Paul Vernier
EGUsphere, https://doi.org/10.5194/egusphere-2025-924, https://doi.org/10.5194/egusphere-2025-924, 2025
Preprint withdrawn
Short summary
Short summary
The eruption of Hunga Tonga-Hunga Ha'apai injected large amounts of water vapor and sea salt into the stratosphere, altering traditional views of volcanic aerosols. Using balloon-borne samplers, we collected aerosol samples and found high levels of sea salt and calcium, suggesting sulfate depletion due to gypsum formation. These findings highlight the need to consider sea salt in climate models to better predict volcanic impacts on the atmosphere and climate.
Marion Ranaivombola, Nelson Bègue, Lucas Vaz Peres, Farahnaz Fazel-Rastgar, Venkataraman Sivakumar, Gisèle Krysztofiak, Gwenaël Berthet, Fabrice Jegou, Stuart Piketh, and Hassan Bencherif
Atmos. Chem. Phys., 25, 3519–3540, https://doi.org/10.5194/acp-25-3519-2025, https://doi.org/10.5194/acp-25-3519-2025, 2025
Short summary
Short summary
From September to October 2022, the Biomass Burning Aerosol Campaign (BiBAC) in Kruger National Park revealed a significant aerosol loading linked to biomass burning activity, with southeastward transport over southern Africa and the southwestern Indian Ocean (SWIO) basin. The study revealed a predominance of biomass burning aerosols and two distinct transport mechanisms of aerosol plumes and CO, underscoring the importance of east-coast observations in understanding atmospheric dynamics.
Nelson Bègue, Alexandre Baron, Gisèle Krysztofiak, Gwenaël Berthet, Corinna Kloss, Fabrice Jégou, Sergey Khaykin, Marion Ranaivombola, Tristan Millet, Thierry Portafaix, Valentin Duflot, Philippe Keckhut, Hélène Vérèmes, Guillaume Payen, Mahesh Kumar Sha, Pierre-François Coheur, Cathy Clerbaux, Michaël Sicard, Tetsu Sakai, Richard Querel, Ben Liley, Dan Smale, Isamu Morino, Osamu Uchino, Tomohiro Nagai, Penny Smale, John Robinson, and Hassan Bencherif
Atmos. Chem. Phys., 24, 8031–8048, https://doi.org/10.5194/acp-24-8031-2024, https://doi.org/10.5194/acp-24-8031-2024, 2024
Short summary
Short summary
During the 2020 austral summer, the pristine atmosphere of the southwest Indian Ocean basin experienced significant perturbations. Numerical models indicated that the lower-stratospheric aerosol content was influenced by the intense and persistent stratospheric aerosol layer generated during the 2019–2020 extreme Australian bushfire events. Ground-based observations at Réunion confirmed the simultaneous presence of African and Australian aerosol layers.
R. Giles Harrison and John C. Riddick
Hist. Geo Space. Sci., 15, 5–16, https://doi.org/10.5194/hgss-15-5-2024, https://doi.org/10.5194/hgss-15-5-2024, 2024
Short summary
Short summary
Eskdalemuir Observatory opened in 1908, sited remotely for magnetically quiet conditions. Continuous atmospheric potential gradient (PG) recordings began in 1911, using a Kelvin water dropper electrograph. Notable scientists who worked with atmospheric electricity at Eskdalemuir include Lewis Fry Richardson and Gordon Dobson. The PG measurements continued until 1981. The methodologies employed are described to help interpret the monthly data now digitally available.
Nishant Ajnoti, Hemant Gehlot, and Sachchida Nand Tripathi
Atmos. Meas. Tech., 17, 1651–1664, https://doi.org/10.5194/amt-17-1651-2024, https://doi.org/10.5194/amt-17-1651-2024, 2024
Short summary
Short summary
This research focuses on the optimal placement of hybrid instruments (sensors and monitors) to maximize satisfaction function considering population, PM2.5 concentration, budget, and other factors. Two algorithms are developed in this study: a genetic algorithm and a greedy algorithm. We tested these algorithms on various regions. The insights of this work aid in quantitative placement of air quality monitoring instruments in large cities, moving away from ad hoc approaches.
Wei Huang, Cheng Wu, Linyu Gao, Yvette Gramlich, Sophie L. Haslett, Joel Thornton, Felipe D. Lopez-Hilfiker, Ben H. Lee, Junwei Song, Harald Saathoff, Xiaoli Shen, Ramakrishna Ramisetty, Sachchida N. Tripathi, Dilip Ganguly, Feng Jiang, Magdalena Vallon, Siegfried Schobesberger, Taina Yli-Juuti, and Claudia Mohr
Atmos. Chem. Phys., 24, 2607–2624, https://doi.org/10.5194/acp-24-2607-2024, https://doi.org/10.5194/acp-24-2607-2024, 2024
Short summary
Short summary
We present distinct molecular composition and volatility of oxygenated organic aerosol particles in different rural, urban, and mountain environments. We do a comprehensive investigation of the relationship between the chemical composition and volatility of oxygenated organic aerosol particles across different systems and environments. This study provides implications for volatility descriptions of oxygenated organic aerosol particles in different model frameworks.
Matthias Kohl, Jos Lelieveld, Sourangsu Chowdhury, Sebastian Ehrhart, Disha Sharma, Yafang Cheng, Sachchida Nand Tripathi, Mathew Sebastian, Govindan Pandithurai, Hongli Wang, and Andrea Pozzer
Atmos. Chem. Phys., 23, 13191–13215, https://doi.org/10.5194/acp-23-13191-2023, https://doi.org/10.5194/acp-23-13191-2023, 2023
Short summary
Short summary
Knowledge on atmospheric ultrafine particles (UFPs) with a diameter smaller than 100 nm is crucial for public health and the hydrological cycle. We present a new global dataset of UFP concentrations at the Earth's surface derived with a comprehensive chemistry–climate model and evaluated with ground-based observations. The evaluation results are combined with high-resolution primary emissions to downscale UFP concentrations to an unprecedented horizontal resolution of 0.1° × 0.1°.
Sophie L. Haslett, David M. Bell, Varun Kumar, Jay G. Slowik, Dongyu S. Wang, Suneeti Mishra, Neeraj Rastogi, Atinderpal Singh, Dilip Ganguly, Joel Thornton, Feixue Zheng, Yuanyuan Li, Wei Nie, Yongchun Liu, Wei Ma, Chao Yan, Markku Kulmala, Kaspar R. Daellenbach, David Hadden, Urs Baltensperger, Andre S. H. Prevot, Sachchida N. Tripathi, and Claudia Mohr
Atmos. Chem. Phys., 23, 9023–9036, https://doi.org/10.5194/acp-23-9023-2023, https://doi.org/10.5194/acp-23-9023-2023, 2023
Short summary
Short summary
In Delhi, some aspects of daytime and nighttime atmospheric chemistry are inverted, and parodoxically, vehicle emissions may be limiting other forms of particle production. This is because the nighttime emissions of nitrogen oxide (NO) by traffic and biomass burning prevent some chemical processes that would otherwise create even more particles and worsen the urban haze.
R. Giles Harrison and Kristian Schlegel
Hist. Geo Space. Sci., 14, 71–75, https://doi.org/10.5194/hgss-14-71-2023, https://doi.org/10.5194/hgss-14-71-2023, 2023
Short summary
Short summary
Environmental measurements were undertaken by Reinhold Reiter (1920–1998) around Garmisch-Partenkirchen in the Bavarian Alps for 4 decades. This included measurement sites on the Zugspitze and Wank mountains as well as the use of an instrumented cable car between the Eibsee and the Zugspitze summit. The Mount Wank site operated between 1 August 1972 and 31 December 1983, and the hourly data values – including atmospheric electricity quantities – for this site have been recovered.
Vaishali Jain, Nidhi Tripathi, Sachchida N. Tripathi, Mansi Gupta, Lokesh K. Sahu, Vishnu Murari, Sreenivas Gaddamidi, Ashutosh K. Shukla, and Andre S. H. Prevot
Atmos. Chem. Phys., 23, 3383–3408, https://doi.org/10.5194/acp-23-3383-2023, https://doi.org/10.5194/acp-23-3383-2023, 2023
Short summary
Short summary
This research chemically characterises 173 different NMVOCs (non-methane volatile organic compounds) measured in real time for three seasons in the city of the central Indo-Gangetic basin of India, Lucknow. Receptor modelling is used to analyse probable sources of NMVOCs and their crucial role in forming ozone and secondary organic aerosols. It is observed that vehicular emissions and solid fuel combustion are the highest contributors to the emission of primary and secondary NMVOCs.
Sudipta Ghosh, Sagnik Dey, Sushant Das, Nicole Riemer, Graziano Giuliani, Dilip Ganguly, Chandra Venkataraman, Filippo Giorgi, Sachchida Nand Tripathi, Srikanthan Ramachandran, Thazhathakal Ayyappen Rajesh, Harish Gadhavi, and Atul Kumar Srivastava
Geosci. Model Dev., 16, 1–15, https://doi.org/10.5194/gmd-16-1-2023, https://doi.org/10.5194/gmd-16-1-2023, 2023
Short summary
Short summary
Accurate representation of aerosols in climate models is critical for minimizing the uncertainty in climate projections. Here, we implement region-specific emission fluxes and a more accurate scheme for carbonaceous aerosol ageing processes in a regional climate model (RegCM4) and show that it improves model performance significantly against in situ, reanalysis, and satellite data over the Indian subcontinent. We recommend improving the model performance before using them for climate studies.
Hazel Vernier, Neeraj Rastogi, Hongyu Liu, Amit Kumar Pandit, Kris Bedka, Anil Patel, Madineni Venkat Ratnam, Buduru Suneel Kumar, Bo Zhang, Harish Gadhavi, Frank Wienhold, Gwenael Berthet, and Jean-Paul Vernier
Atmos. Chem. Phys., 22, 12675–12694, https://doi.org/10.5194/acp-22-12675-2022, https://doi.org/10.5194/acp-22-12675-2022, 2022
Short summary
Short summary
The chemical composition of the stratospheric aerosols collected aboard high-altitude balloons above the summer Asian monsoon reveals the presence of nitrate/nitrite. Using numerical simulations and satellite observations, we found that pollution as well as lightning could explain some of our observations.
R. Giles Harrison and John C. Riddick
Hist. Geo Space. Sci., 13, 133–146, https://doi.org/10.5194/hgss-13-133-2022, https://doi.org/10.5194/hgss-13-133-2022, 2022
Short summary
Short summary
Lerwick Observatory in Shetland has recently celebrated its centenary. Measurements of atmospheric electricity were made at the site between 1925 and 1984. The instruments and equipment used for this are discussed and the value of the measurements obtained assessed. A major aspect of the atmospheric electricity work was explaining the dramatic changes which followed the nuclear weapons test period. Although less well known, there are strong parallels with the discovery of the ozone hole.
Varun Kumar, Stamatios Giannoukos, Sophie L. Haslett, Yandong Tong, Atinderpal Singh, Amelie Bertrand, Chuan Ping Lee, Dongyu S. Wang, Deepika Bhattu, Giulia Stefenelli, Jay S. Dave, Joseph V. Puthussery, Lu Qi, Pawan Vats, Pragati Rai, Roberto Casotto, Rangu Satish, Suneeti Mishra, Veronika Pospisilova, Claudia Mohr, David M. Bell, Dilip Ganguly, Vishal Verma, Neeraj Rastogi, Urs Baltensperger, Sachchida N. Tripathi, André S. H. Prévôt, and Jay G. Slowik
Atmos. Chem. Phys., 22, 7739–7761, https://doi.org/10.5194/acp-22-7739-2022, https://doi.org/10.5194/acp-22-7739-2022, 2022
Short summary
Short summary
Here we present source apportionment results from the first field deployment in Delhi of an extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF). The EESI-TOF is a recently developed instrument capable of providing uniquely detailed online chemical characterization of organic aerosol (OA), in particular the secondary OA (SOA) fraction. Here, we are able to apportion not only primary OA but also SOA to specific sources, which is performed for the first time in Delhi.
Himadri Sekhar Bhowmik, Ashutosh Shukla, Vipul Lalchandani, Jay Dave, Neeraj Rastogi, Mayank Kumar, Vikram Singh, and Sachchida Nand Tripathi
Atmos. Meas. Tech., 15, 2667–2684, https://doi.org/10.5194/amt-15-2667-2022, https://doi.org/10.5194/amt-15-2667-2022, 2022
Short summary
Short summary
This study presents comparisons between online and offline measurements of both refractory and non-refractory aerosol. This study shows differences between the measurements, related to either the limitations of the instrument (e.g., aerosol mass spectrometer only observing non-refractory aerosol) or known interferences with the technique (e.g., volatilization or reactions). The findings highlight the measurement methods' accuracy and imply the particular type of measurements needed.
Chandan Sarangi, TC Chakraborty, Sachchidanand Tripathi, Mithun Krishnan, Ross Morrison, Jonathan Evans, and Lina M. Mercado
Atmos. Chem. Phys., 22, 3615–3629, https://doi.org/10.5194/acp-22-3615-2022, https://doi.org/10.5194/acp-22-3615-2022, 2022
Short summary
Short summary
Transpiration fluxes by vegetation are reduced under heat stress to conserve water. However, in situ observations over northern India show that the strength of the inverse association between transpiration and atmospheric vapor pressure deficit is weakening in the presence of heavy aerosol loading. This finding not only implicates the significant role of aerosols in modifying the evaporative fraction (EF) but also warrants an in-depth analysis of the aerosol–plant–temperature–EF continuum.
R. Giles Harrison
Geosci. Instrum. Method. Data Syst., 11, 37–57, https://doi.org/10.5194/gi-11-37-2022, https://doi.org/10.5194/gi-11-37-2022, 2022
Short summary
Short summary
Weather balloons are released every day around the world to obtain the latest atmospheric data for weather forecasting. Expanding the range of sensors they carry can make additional quantities available, such as for atmospheric turbulence, cloud electricity, energetic particles from space and, in emergency situations, volcanic ash or radioactivity. An adaptable system has been developed to provide these and other measurements, without interfering with the core weather data.
Karn Vohra, Eloise A. Marais, Shannen Suckra, Louisa Kramer, William J. Bloss, Ravi Sahu, Abhishek Gaur, Sachchida N. Tripathi, Martin Van Damme, Lieven Clarisse, and Pierre-F. Coheur
Atmos. Chem. Phys., 21, 6275–6296, https://doi.org/10.5194/acp-21-6275-2021, https://doi.org/10.5194/acp-21-6275-2021, 2021
Short summary
Short summary
We find satellite observations of atmospheric composition generally reproduce variability in surface air pollution, so we use their long record to estimate air quality trends in major UK and Indian cities. Our trend analysis shows that pollutants targeted with air quality policies have not declined in Delhi and Kanpur but have in London and Birmingham, with the exception of a recent and dramatic increase in reactive volatile organics in London. Unregulated ammonia has increased only in Delhi.
Graeme Marlton, Andrew Charlton-Perez, Giles Harrison, Inna Polichtchouk, Alain Hauchecorne, Philippe Keckhut, Robin Wing, Thierry Leblanc, and Wolfgang Steinbrecht
Atmos. Chem. Phys., 21, 6079–6092, https://doi.org/10.5194/acp-21-6079-2021, https://doi.org/10.5194/acp-21-6079-2021, 2021
Short summary
Short summary
A network of Rayleigh lidars have been used to infer the upper-stratosphere temperature bias in ECMWF ERA-5 and ERA-Interim reanalyses during 1990–2017. Results show that ERA-Interim exhibits a cold bias of −3 to −4 K between 10 and 1 hPa. Comparisons with ERA-5 found a smaller bias of 1 K which varies between cold and warm between 10 and 3 hPa, indicating a good thermal representation of the atmosphere to 3 hPa. These biases must be accounted for in stratospheric studies using these reanalyses.
Adriana Bossolasco, Fabrice Jegou, Pasquale Sellitto, Gwenaël Berthet, Corinna Kloss, and Bernard Legras
Atmos. Chem. Phys., 21, 2745–2764, https://doi.org/10.5194/acp-21-2745-2021, https://doi.org/10.5194/acp-21-2745-2021, 2021
Short summary
Short summary
Using the Community Earth System Model, we simulate the surface aerosols lifted to the Asian tropopause (the ATAL layer), its composition and trend, covering a long-term period (2000–2015). We identify a
double-peakaerosol vertical profile that we attribute to
dryand
convectivecloud-borne aerosols. We find that natural aerosol (mineral dust) is the dominant aerosol type and has no long-term trend. ATAL's anthropogenic fraction, by contrast, shows a marked positive trend.
Cited articles
Amyx, K., Sternovsky, Z., Knappmiller, S., Robertson, S., Horanyi, M., and Gumbel, J.: In-situ measurement of smoke particles in the wintertime polar mesosphere between 80 and 85 km altitude, J. Atmos. Sol.-Terr. Phy., 70, 61–70, https://doi.org/10.1016/j.jastp.2007.09.013, 2008.
Boccippio, D. J., Williams, E. R., Heckman, S. J., Lyons, W. A., Baker, I., and Boldi, R.: Sprites, ELF Transients and Positive Ground Strokes, Science, 269, 1088–1091, https://doi.org/10.1126/science.269.5227.1088, 1995.
Borucki, W. J., Levin, Z., Whitten, R. C. , Keesee, R. G., , Capone, L. A.,, Toon, O. B., and Dubach, J.: Predicted electrical conductivity between 0 and 80 km in the Venusian atmosphere, Icarus, 51, 302–321, 1982.
Brühl, C., Lelieveld, J., Crutzen, P. J., and Tost, H.: The role of carbonyl sulphide as a source of stratospheric sulphate aerosol and its impact on climate, Atmos. Chem. Phys., 12, 1239–1253, https://doi.org/10.5194/acp-12-1239-2012, 2012.
Ciucci, A., Palumbo, P., Brunetto, R., Della Corte,V., De Angelis, S., Rotundi, A., Rietmeijer, F. J. M, Zona, E., Colangeli, L., Esposito, F., Mazzotta Epifani, E., Mennella, V., Inarta, S., Peterzen, S., Masi, S., and Ibba, R.: DUSTER (Dust in Upper Stratosphere Tracking Experiment and Retrieval) preliminary analysis, Mem. S. A. It., 75, 282–287, 2008.
Clement, C. F. and Harrison, R. G.: Charge distributions on aerosols, Inst. Phys. Conf. Ser., 118, 275–280, 1991.
Cummer, S. A. and Füllekrug, M.: Unusually intense continuing current in lightning produces delayed mesospheric breakdown, Geophys. Res. Lett., 28, 495–498, 2001.
Cummer, S. A. and Lyons, W. A.: Implications of lightning charge moment changes for sprite initiation, J. Geophys. Res., 110, A04304, https://doi.org/10.1029/2004JA010812, 2005.
Cummer, S. A. and Stanley, M.: Submillisecond resolution lightning currents and sprite development: Observations and implications, Geophys. Res. Lett., 26, 3205, https://doi.org/10.1029/1999GL003635, 1999.
Deshler, T., Hervig, M. E., Hofmann, D. J., Rosen, J. M., and Liley J. B.: Thirty years of in situ stratospheric aerosol size distribution measurements from Laramie, Wyoming (41° N) using balloon-borne instruments, J. Geophys. Res., 108, D54167, https://doi.org/10.1029/2002JD002514, 2003.
Franz, R. C., Nemzek R. J., and Winckler, J. R.: Television Image of a Large upward Electric Discharge above a Thunderstorm System, Science, 249, 48–51, https://doi.org/10.1126/science.249.4964.48, 1990.
Fromm, M. and Servranckx, R.: Transport of forest fire smoke above the tropopause by supercell convection, Geophys. Res. Lett., 30, 1542, https://doi.org/10.1029/2002GL016820, 2003.
Gabrielli, P., Barbante, C., Plane, J. M., Varga, A., Hong, S., Cozzi, G., Gaspari, V., Planchon, F. A., Cairns, W., Ferrari, C., Crutzen, P., Cescon, P., and Boutron, C. F.: Meteoric smoke fallout over the Holocene epoch revealed by iridium and platinum in Greenland ice, Nature, 432, 1011–1014, https://doi.org/10.1038/nature03137, 2004.
Gilbert, J. S., Lane, S. J., Sparks, R. S. J., and Koyaguchi, T.: Charge measurements on particle fallout from a volcanic plume, Nature, 349, 598–600, 1991.
Gunn, R.: Diffusion charging of atmospheric droplets by ions, and the resulting combination coefficients, J. Meteorol., 11, 339–347, 1954.
Harrison, R. G. and Carslaw, K. S.: Ion-aerosol-cloud processes in the lower atmosphere, Rev. Geophys., 41, 1012, https://doi.org/10.1029/2002RG000114, 2003.
Harrison, R. G., Nicoll, K. A., Ulanowski, Z., and Mather, T. A.: Self-charging of the Eyjafjallajökull volcanic ash plume, Environ. Res. Lett., 5, 024004, https://doi.org/10.1088/1748-9326/5/2/024004, 2010.
Haywood, J. M., Jones, A., Clarisse, L., Bourassa, A., Barnes, J., Telford, P., Bellouin, N., Boucher, O., Agnew, P., Clerbaux, C., Coheur, P., Degenstein, D., and Braesicke, P.: Observations of the eruption of the Sarychev volcano and simulations using the HadGEM2 climate model, J. Geophys. Res., 115, D21212, https://doi.org/10.1029/2010JD014447, 2010.
Hervig, M. E, Gordley, L. L., Deaver, L. E., Siskind, D. E., Stevens, M. H., Russell III, J. M., Bailey, S. M., Megner, L., and Bardeen, C. G: First Satellite Observations of Meteoritic Smoke in the Middle Atmosphere, Geophys. Res. Lett., 36, L18805, https://doi.org/10.1029/2009GL039737, 2009.
Hoppe, U.-P., Eriksen, T., Thrane, E., Blix, T. A., Fiedler, J., and Lübken, F.-J.: Observations in the polar middle atmosphere by rocket-borne Rayleigh lidar: First results, Earth Planets Space, 51, 815–824, 1999.
Hoppel, W. A. and Frick, G. M.: Ion-aerosol attachment coefficients and the steady-state charge on aerosols in a bipolar ion environment, Aerosol Sci. Tech., 5, 1–21, 1986.
Keefe, D., Nolan, P. J., and Rich, T. A.: Charge equilibrium in aerosols according to the Boltzmann law, Proc. Roy. Irish Acad. A, 60, 27–45, 1959.
Klekociuk, A., Brown, P. G., Pack, D. W., ReVelle, D. O., Edwards, W. N., Spalding, R. E., Tagliaferri, E., Yoo, B. B., and Zagari, J.: Meteoritic dust from the atmospheric disintegration of a large meteoroid, Nature, 436, 1132–1135, https://doi.org/10.1038/nature03881, 2005.
Michael, M., Triapthi, S. N., and Mishra, S. K.: Dust charging and electrical conductivity in the day and nighttime atmosphere of Mars, J. Geophys. Res., 113, E07010, https://doi.org/10.1029/2007JE003047, 2008.
Michael, M., Tripathi, S. N., Borucki, W. J., and Whitten, R. C.: Highly charged cloud particles in the atmosphere of Venus, J. Geophys. Res., 114, E04008, https://doi.org/10.1029/2008JE003258, 2009.
Neely, R. R., English, J. M., Toon, O. B., Solomon, S., Mills, M., and Thayer, J. P.: Implications of extinction due to meteoritic smoke in the upper stratosphere, Geophys. Res. Lett., 38, L24808, https://doi.org/10.1029/2011GL049865, 2011.
Nicoll, K. A. and Harrison R. G.: Experimental determination of layer cloud edge charging from cosmic ray ionization, Geophys. Res. Lett., 37, L13802, https://doi.org/10.1029/2010GL043605, 2010.
Nicoll, K. A., Harrison, R. G., and Ulanoswki, Z.: Observations of Saharan dust layer electrification, Environ. Res. Lett., 6, 014001, https://doi.org/10.1088/1748-9326/6/1/014001, 2011.
O'Brien, K.: The theory of cosmic-ray and high-energy solar particle transport in the atmosphere, The natural radiation environment VII, edited by: McLaughlin, J. P., Simopoulos, S. E., and Steinhusler, F., Elsevier, Amsterdam, 2005.
Ohkubo, A., Fukunishi, H., Takahashi, Y., and Adachi, T.: VLF/ELF sferic evidence for in-cloud discharge activity producing sprites, Geophys. Res. Lett., 32, L04812, https://doi.org/10.1029/2004GL021943, 2005.
Ovarlez, J. and Ovarlez, H.: Water vapour and aerosol measurements during SESAME, and the observation of low water vapour content layers, Polar Stratospheric Ozone, Proceedings of the Third European Workshop, Air Pollution Rep. 56, edited by: Pyle, J. A., Harris, N. R. P., and Amanatidis, G. T., European Commission, 205–208, 1995.
Pasko, V. P.: Recent advances in theory of transient luminous events, J. Geophys. Res., 115, A00E35, https://doi.org/10.1029/2009JA014860, 2010.
Rapp, M.: Charging of mesospheric aerosol particles: the role of photodetachment and photoionization from meteoric smoke and ice particles, Ann. Geophys., 27, 2417–2422, https://doi.org/10.5194/angeo-27-2417-2009, 2009.
Rawal, A., Tripathi, S. N., Michael, M., Srivastava, A. K., and Harrison, R. G.: Quantifying the importance of galactic cosmic rays in cloud microphysical processes, J. Atmos. Sol.-Terr. Phy., 102, 243–251, 2013.
Renard, J.-B., Berthet, G., Robert, C., Chartier, M., Pirre, M., Brogniez, C., Herman, M., Verwaerde, C., Balois, J.-Y., Ovarlez, J., Ovarlez, H., Crespin, J., and Deshler, T.: Optical and physical properties of stratospheric aerosols from balloon measurements in the visible and near-infrared domain: 2. Comparison of extinction, reflectance, polarization and counting measurements, Appl. Optics, 41, 7540–7549, 2002.
Renard, J.-B., Brogniez, C., Berthet, G., Bourgeois, Q., Gaubicher, B., Chartier, M., Balois, J.-Y., Verwaerde, C., Auriol, F., Francois, P., Daugeron, D., and Engrand, C.: Vertical distribution of the different types of aerosols in the stratosphere, detection of solid particles and analysis of their spatial variability, J. Geophys. Res., 113, D21303, https://doi.org/10.1029/2008JD010150, 2008.
Renard, J.-B., Berthet, G., Salazar, V., Catoire, V., Tagger, M., Gaubicher, B., and Robert, C.: In situ detection of aerosol layers in the middle stratosphere, Geophys. Res. Lett., 37, L20803, https://doi.org/10.1029/2010GL044307, 2010.
Schwarz, J. P., Gao, R. S., Fahey, D. W., Thomson, D. S., Watts, L. A., Wilson, J. C., Reeves, J. M., Darbeheshti, M., Baumgardner, D. G., Kok, G. L., Chung, S. H., Schulz, M., Hendricks, J., Lauer, A., Kärcher, B., Slowik, J. G., Rosenlof, K. H., Thompson, T. L., Langford, A. O., Loewenstein, M., and Aikin, K. C.: Single-particle measurements of mid-latitude black carbon and light-scattering aerosols from the boundary layer to the lower stratosphere, J. Geophys. Res., 111, D16207, https://doi.org/10.1029/2006JD007076, 2006.
Sentman, D. D., Wescott, E. M., Osborne, D. L., Hampton, D. L., and Heavner, M. J.: Preliminary results from the Sprites94 Aircraft Campaign: 1. Red sprites, Geophys. Res. Lett., 22, 1205–1208, https://doi.org/10.1029/95GL00583, 1995.
Tie, X., Madronich, S., Walters, S., Edwards, D. P., Ginoux, P., Mahowald, N., Zhang, R. Y., Lou, C., and Brasseur, G.: Assessment on the global impact of aerosols on tropospheric oxidants, J. Geophys. Res., 110, D03204, https://doi.org/10.1029/2004JD005359, 2005.
Tripathi, S. N., Michael, M., and Harrison, R. G.: Profiles of Ion and Aerosol Interactions in Planetary Atmospheres, Space Sci. Rev., 30, 193–211 https://doi.org/10.1007/s11214-008-9367-7, 2008.
Vernier, J.-P., Thomason, L. W., Pommereau, J.-P., Bourassa, A., Pelon, J., Garnier, A., Hauchecorne, A., Blanot, L., Trepte, C., Degenstein, D., and Vargas, F.: Major influence of tropical volcanic eruptions on the stratosphere aerosol layer during the last decade, Geophys. Res. Lett., 38, L12807, https://doi.org/10.1029/2011GL047563, 2011.
Zabotin, N. A. and Wright, J. W.: Role of meteoric dust in sprite formation, Geophys. Res. Lett., 28, 2593–2596, https://doi.org/10.1029/2000GL012699, 2001.