Articles | Volume 24, issue 12
https://doi.org/10.5194/acp-24-7041-2024
https://doi.org/10.5194/acp-24-7041-2024
Opinion
 | Highlight paper
 | 
19 Jun 2024
Opinion | Highlight paper |  | 19 Jun 2024

Opinion: Optimizing climate models with process knowledge, resolution, and artificial intelligence

Tapio Schneider, L. Ruby Leung, and Robert C. J. Wills

Related authors

Toward Routing River Water in Land Surface Models with Recurrent Neural Networks
Mauricio Lima, Katherine Deck, Oliver R. A. Dunbar, and Tapio Schneider
EGUsphere, https://doi.org/10.48550/arXiv.2404.14212,https://doi.org/10.48550/arXiv.2404.14212, 2024
Short summary
Large-eddy simulations with ClimateMachine v0.2.0: a new open-source code for atmospheric simulations on GPUs and CPUs
Akshay Sridhar, Yassine Tissaoui, Simone Marras, Zhaoyi Shen, Charles Kawczynski, Simon Byrne, Kiran Pamnany, Maciej Waruszewski, Thomas H. Gibson, Jeremy E. Kozdon, Valentin Churavy, Lucas C. Wilcox, Francis X. Giraldo, and Tapio Schneider
Geosci. Model Dev., 15, 6259–6284, https://doi.org/10.5194/gmd-15-6259-2022,https://doi.org/10.5194/gmd-15-6259-2022, 2022
Short summary

Related subject area

Subject: Climate and Earth System | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Investigation of the characteristics of low-level jets over North America in a convection-permitting Weather Research and Forecasting simulation
Xiao Ma, Yanping Li, Zhenhua Li, and Fei Huo
Atmos. Chem. Phys., 24, 12013–12030, https://doi.org/10.5194/acp-24-12013-2024,https://doi.org/10.5194/acp-24-12013-2024, 2024
Short summary
Impacts of tropical cyclone–heat wave compound events on surface ozone in eastern China: comparison between the Yangtze River and Pearl River deltas
Cuini Qi, Pinya Wang, Yang Yang, Huimin Li, Hui Zhang, Lili Ren, Xipeng Jin, Chenchao Zhan, Jianping Tang, and Hong Liao
Atmos. Chem. Phys., 24, 11775–11789, https://doi.org/10.5194/acp-24-11775-2024,https://doi.org/10.5194/acp-24-11775-2024, 2024
Short summary
The 2023 global warming spike was driven by the El Niño–Southern Oscillation
Shiv Priyam Raghuraman, Brian Soden, Amy Clement, Gabriel Vecchi, Sofia Menemenlis, and Wenchang Yang
Atmos. Chem. Phys., 24, 11275–11283, https://doi.org/10.5194/acp-24-11275-2024,https://doi.org/10.5194/acp-24-11275-2024, 2024
Short summary
Present-day methane shortwave absorption mutes surface warming relative to preindustrial conditions
Robert J. Allen, Xueying Zhao, Cynthia A. Randles, Ryan J. Kramer, Bjørn H. Samset, and Christopher J. Smith
Atmos. Chem. Phys., 24, 11207–11226, https://doi.org/10.5194/acp-24-11207-2024,https://doi.org/10.5194/acp-24-11207-2024, 2024
Short summary
A novel method for detecting tropopause structures based on the bi-Gaussian function
Kun Zhang, Tao Luo, Xuebin Li, Shengcheng Cui, Ningquan Weng, Yinbo Huang, and Yingjian Wang
Atmos. Chem. Phys., 24, 11157–11173, https://doi.org/10.5194/acp-24-11157-2024,https://doi.org/10.5194/acp-24-11157-2024, 2024
Short summary

Cited articles

Adler, R. F., Sapiano, M. R. P., Huffman, G. J., Wang, J.-J., Gu, G., Bolvin, D., Chiu, L., Schneider, U., Becker, A., Nelkin, E., Xie, P., Ferraro, R., and Shin, D.-B.: The Global Precipitation Climatology Project (GPCP) monthly analysis (new version 2.3) and a review of 2017 global precipitation, Atmosphere, 9, 138, https://doi.org/10.3390/atmos9040138, 2018. a, b
Anber, U. M., Giangrande, S. E., Donner, L. J., and Jensen, M. P.: Updraft constraints on entrainment: insights from Amazonian deep convection, J. Atmos. Sci., 76, 2429–2442, https://doi.org/10.1175/JAS-D-18-0234.1, 2019. a
Arakawa, A. and Schubert, W. H.: Interaction of a cumulus cloud ensemble with the large-scale environment. Part I, J. Atmos. Sci., 31, 674–701, 1974. a, b, c
Arakawa, A. and Wu, C.-M.: A unified representation of deep moist convection in numerical modeling of the atmosphere: Part I, J. Atmos. Sci., 70, 1977–1992, https://doi.org/10.1175/JAS-D-12-0330.1, 2013. a
Arakawa, A., Jung, J.-H., and Wu, C.-M.: Toward unification of the multiscale modeling of the atmosphere, Atmos. Chem. Phys., 11, 3731–3742, https://doi.org/10.5194/acp-11-3731-2011, 2011. a
Download
Executive editor
This article was solicited for the ACP 20th Anniversary collection. It received positive reviews that very nicely contributed to the ideas and to which the authors responded thoroughly. It is a stimulating read, combining 'big-picture' considerations with more detailed technical discussion of important and illuminating examples.
Short summary

Climate models are crucial for predicting climate change in detail. This paper proposes a balanced approach to improving their accuracy by combining traditional process-based methods with modern artificial intelligence (AI) techniques while maximizing the resolution to allow for ensemble simulations. The authors propose using AI to learn from both observational and simulated data while incorporating existing physical knowledge to reduce data demands and improve climate prediction reliability.

Altmetrics
Final-revised paper
Preprint