Articles | Volume 24, issue 12
https://doi.org/10.5194/acp-24-7041-2024
https://doi.org/10.5194/acp-24-7041-2024
Opinion
 | Highlight paper
 | 
19 Jun 2024
Opinion | Highlight paper |  | 19 Jun 2024

Opinion: Optimizing climate models with process knowledge, resolution, and artificial intelligence

Tapio Schneider, L. Ruby Leung, and Robert C. J. Wills

Related authors

Toward Routing River Water in Land Surface Models with Recurrent Neural Networks
Mauricio Lima, Katherine Deck, Oliver R. A. Dunbar, and Tapio Schneider
EGUsphere, https://doi.org/10.48550/arXiv.2404.14212,https://doi.org/10.48550/arXiv.2404.14212, 2024
Short summary
Large-eddy simulations with ClimateMachine v0.2.0: a new open-source code for atmospheric simulations on GPUs and CPUs
Akshay Sridhar, Yassine Tissaoui, Simone Marras, Zhaoyi Shen, Charles Kawczynski, Simon Byrne, Kiran Pamnany, Maciej Waruszewski, Thomas H. Gibson, Jeremy E. Kozdon, Valentin Churavy, Lucas C. Wilcox, Francis X. Giraldo, and Tapio Schneider
Geosci. Model Dev., 15, 6259–6284, https://doi.org/10.5194/gmd-15-6259-2022,https://doi.org/10.5194/gmd-15-6259-2022, 2022
Short summary

Related subject area

Subject: Climate and Earth System | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Future reduction of cold extremes over East Asia due to thermodynamic and dynamic warming
Donghuan Li, Tianjun Zhou, Youcun Qi, Liwei Zou, Chao Li, Wenxia Zhang, and Xiaolong Chen
Atmos. Chem. Phys., 24, 7347–7358, https://doi.org/10.5194/acp-24-7347-2024,https://doi.org/10.5194/acp-24-7347-2024, 2024
Short summary
General circulation models simulate negative liquid water path–droplet number correlations, but anthropogenic aerosols still increase simulated liquid water path
Johannes Mülmenstädt, Edward Gryspeerdt, Sudhakar Dipu, Johannes Quaas, Andrew S. Ackerman, Ann M. Fridlind, Florian Tornow, Susanne E. Bauer, Andrew Gettelman, Yi Ming, Youtong Zheng, Po-Lun Ma, Hailong Wang, Kai Zhang, Matthew W. Christensen, Adam C. Varble, L. Ruby Leung, Xiaohong Liu, David Neubauer, Daniel G. Partridge, Philip Stier, and Toshihiko Takemura
Atmos. Chem. Phys., 24, 7331–7345, https://doi.org/10.5194/acp-24-7331-2024,https://doi.org/10.5194/acp-24-7331-2024, 2024
Short summary
Global scenarios of anthropogenic mercury emissions
Flora Maria Brocza, Peter Rafaj, Robert Sander, Fabian Wagner, and Jenny Marie Jones
Atmos. Chem. Phys., 24, 7385–7404, https://doi.org/10.5194/acp-24-7385-2024,https://doi.org/10.5194/acp-24-7385-2024, 2024
Short summary
Impact of Asian aerosols on the summer monsoon strongly modulated by regional precipitation biases
Zhen Liu, Massimo A. Bollasina, and Laura J. Wilcox
Atmos. Chem. Phys., 24, 7227–7252, https://doi.org/10.5194/acp-24-7227-2024,https://doi.org/10.5194/acp-24-7227-2024, 2024
Short summary
Assessing methane emissions from collapsing Venezuelan oil production using TROPOMI
Brian Nathan, Joannes D. Maasakkers, Stijn Naus, Ritesh Gautam, Mark Omara, Daniel J. Varon, Melissa P. Sulprizio, Lucas A. Estrada, Alba Lorente, Tobias Borsdorff, Robert J. Parker, and Ilse Aben
Atmos. Chem. Phys., 24, 6845–6863, https://doi.org/10.5194/acp-24-6845-2024,https://doi.org/10.5194/acp-24-6845-2024, 2024
Short summary

Cited articles

Adler, R. F., Sapiano, M. R. P., Huffman, G. J., Wang, J.-J., Gu, G., Bolvin, D., Chiu, L., Schneider, U., Becker, A., Nelkin, E., Xie, P., Ferraro, R., and Shin, D.-B.: The Global Precipitation Climatology Project (GPCP) monthly analysis (new version 2.3) and a review of 2017 global precipitation, Atmosphere, 9, 138, https://doi.org/10.3390/atmos9040138, 2018. a, b
Anber, U. M., Giangrande, S. E., Donner, L. J., and Jensen, M. P.: Updraft constraints on entrainment: insights from Amazonian deep convection, J. Atmos. Sci., 76, 2429–2442, https://doi.org/10.1175/JAS-D-18-0234.1, 2019. a
Arakawa, A. and Schubert, W. H.: Interaction of a cumulus cloud ensemble with the large-scale environment. Part I, J. Atmos. Sci., 31, 674–701, 1974. a, b, c
Arakawa, A. and Wu, C.-M.: A unified representation of deep moist convection in numerical modeling of the atmosphere: Part I, J. Atmos. Sci., 70, 1977–1992, https://doi.org/10.1175/JAS-D-12-0330.1, 2013. a
Arakawa, A., Jung, J.-H., and Wu, C.-M.: Toward unification of the multiscale modeling of the atmosphere, Atmos. Chem. Phys., 11, 3731–3742, https://doi.org/10.5194/acp-11-3731-2011, 2011. a
Download
Executive editor
This article was solicited for the ACP 20th Anniversary collection. It received positive reviews that very nicely contributed to the ideas and to which the authors responded thoroughly. It is a stimulating read, combining 'big-picture' considerations with more detailed technical discussion of important and illuminating examples.
Short summary

Climate models are crucial for predicting climate change in detail. This paper proposes a balanced approach to improving their accuracy by combining traditional process-based methods with modern artificial intelligence (AI) techniques while maximizing the resolution to allow for ensemble simulations. The authors propose using AI to learn from both observational and simulated data while incorporating existing physical knowledge to reduce data demands and improve climate prediction reliability.

Altmetrics
Final-revised paper
Preprint