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Abstract. Accelerated progress in climate modeling is urgently needed for proactive and effective climate
change adaptation. The central challenge lies in accurately representing processes that are small in scale yet
climatically important, such as turbulence and cloud formation. These processes will not be explicitly resolv-
able for the foreseeable future, necessitating the use of parameterizations. We propose a balanced approach that
leverages the strengths of traditional process-based parameterizations and contemporary artificial intelligence
(AI)-based methods to model subgrid-scale processes. This strategy employs AI to derive data-driven closure
functions from both observational and simulated data, integrated within parameterizations that encode system
knowledge and conservation laws. In addition, increasing the resolution to resolve a larger fraction of small-
scale processes can aid progress toward improved and interpretable climate predictions outside the observed
climate distribution. However, currently feasible horizontal resolutions are limited to O(10km) because higher
resolutions would impede the creation of the ensembles that are needed for model calibration and uncertainty
quantification, for sampling atmospheric and oceanic internal variability, and for broadly exploring and quantify-
ing climate risks. By synergizing decades of scientific development with advanced AI techniques, our approach
aims to significantly boost the accuracy, interpretability, and trustworthiness of climate predictions.

1 Introduction

Climate models serve two distinct purposes. First, they en-
code our collective knowledge about the climate system.
They instantiate theories and provide a quantitative account
of climate processes – the complex interplay of causes and
effects that governs how the climate system operates. In this
role, they belong to the realm of episteme, or explanatory
science (Russo, 2000; Parry, 2021). Second, climate models
function as practical tools that allow us to calculate how the
climate system might behave under different circumstances
that have not yet been directly observed. In this role, they fall
under the realm of techne, or goal-oriented applied science
(Russo, 2000; Parry, 2021). The requirements for climate
models differ depending on their primary role as episteme

or techne. As encodings of our understanding (episteme), cli-
mate models should strive for explainability and simplicity,
even if it means sacrificing a certain level of accuracy. An
understanding of the climate system at different levels of
description emerges through a hierarchy of models, rang-
ing from simpler ones such as one-dimensional radiative–
convective equilibrium models to more complex ones such as
atmospheric general circulation models with simplified pa-
rameterizations of subgrid-scale processes (Held, 2005; Jee-
vanjee et al., 2017; Mansfield et al., 2023). On the other hand,
as calculation tools (techne), climate models should aim to
simulate the climate system as accurately as possible under
unobserved circumstances.

Over the past 6 decades, climate modeling has operated
under the tacit assumption that these two roles of climate
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models align, implying that the most complex models re-
flecting our understanding of the system are also the most
accurate tools for predicting its behavior in unobserved con-
ditions. This is a desirable goal, but it may not always be
attainable in systems as complex as the climate system.

In this essay, we focus on the use of climate models as
techne, emphasizing their role as tools for accurately calcu-
lating the behavior of the climate system in unobserved cir-
cumstances, although, as we will see, this role cannot entirely
be decoupled from episteme.

The goal of calculating the behavior of the climate sys-
tem is to obtain its statistics, including average temperatures
at specific locations and seasons, the probability that daily
precipitation in a given region exceeds some threshold, or
the covariance between temperature and humidity, which can
lead to potentially dangerous humid heat extremes. These
calculations correspond to what Lorenz (1975) defined as
predictions of the second kind, where future climate statis-
tics are estimated given evolving boundary conditions, such
as human-induced greenhouse gas emissions. This contrasts
with predictions of the first kind, which focus on forecast-
ing the future state of a system given its initial conditions ζ 0,
as seen in weather forecasting. Consequently, when used as
techne, climate models should aim to minimize a loss func-
tion of the form (Schneider et al., 2017a)

L= ‖〈y(t)〉− 〈H ·G
(
t;θ ,λ,ν;ζ 0

)
〉‖

2
0. (1)

Here, the angle brackets 〈·〉 indicate an appropriate time
averaging, such as a seasonal average over multiple years.
The vector y(t) represents time-varying observables of the
climate system, including those whose time average 〈y(t)〉
gives rise to higher-order statistics such as the frequency of
exceeding a daily precipitation threshold in a specific region.
It may also include frequency-space observables, such as the
amplitude and phase of the diurnal cycle of precipitation. The
climate model, denoted as G(t;θ ,λ,ν;ζ 0), is a mapping of
parameter vectors (θ ,λ,ν) and an initial condition vector ζ 0
(usually important only for slowly varying components of
the climate system, such as oceans and ice sheets) to time-
varying simulated climate states ζ (t)= G(t;θ ,λ,ν;ζ 0). The
observation operator H maps simulated climate states ζ (t)
to the desired observables y(t). Lastly, ‖ · ‖0 = ‖0−1/2

· ‖2
represents a weighted Euclidean norm, or Mahalanobis dis-
tance. The weight is determined by the inverse of the covari-
ance matrix 0, which reflects model and observational errors
and noise due to fluctuations from internal variability in the
finite-time average 〈·〉. The weighted Euclidean norm is cho-
sen because the climate statistics are aggregated over time,
meaning that, due to the central limit theorem, it is reason-
able to assume that these statistics exhibit Gaussian fluctu-
ations (Iglesias et al., 2013; Schneider et al., 2017a; Dun-
bar et al., 2021). However, the specific choice of norm in
the loss function is not crucial for the following discussion.
The essence is that the loss function penalizes mismatches

between simulated and observed climate statistics, with less-
noisy statistics receiving greater weight. This can be done
for longer-term aggregate statistics or for shorter-term pre-
dictions (for example, those of El Niño and its impact on
the climate system). The relatively sparse statistics available
from reconstructions of past climates can additionally serve
as a useful test of climate models outside the distribution of
the present climate (Zhu et al., 2022).

To achieve accurate simulations of climate statistics, the
objective is to minimize the loss function (Eq. 1) for unob-
served climate statistics 〈y〉 with respect to the parameters
(θ ,λ,ν). Importantly, the climate statistics may fall outside
the distribution of observed climate statistics, particularly in
the context of global warming projections. Therefore, the
ability of a model to generalize beyond the distribution of
the observed data becomes essential. Merely minimizing the
loss over observed climate statistics or even driving the loss
to zero in an attempt to imitate observations and pass a “cli-
mate Turing test” (Palmer, 2016) is not sufficient. Instead,
fundamental science and data science tools, such as cross-
validation and Bayesian tools, need to be brought to bear to
plausibly minimize the loss for unobserved statistics.

In the loss function, we distinguish three types of parame-
ters:

1. The parameters θ appear in process-based models of
subgrid-scale processes, such as entrainment and de-
trainment rates in parameterizations of convection.
These parameters are directly interpretable and theoret-
ically measurable, although their practical measurement
can be challenging.

2. The parameters λ represent the characteristics of the cli-
mate model’s resolution, such as the horizontal and ver-
tical resolution in atmosphere and ocean models.

3. The parameters ν pertain to artificial intelligence (AI)-
based data-driven models that capture subgrid-scale
processes or correct for structural model errors, either
within process-based models of subgrid-scale processes
or holistically for an entire climate model (Kennedy and
O’Hagan, 2001; Levine and Stuart, 2022; Bretherton
et al., 2022; Wu et al., 2024). These parameters are nei-
ther easily interpretable nor directly measurable but are
learned from data.

This distinction among the parameters is useful as it reflects
three different dimensions along which climate models can
be optimized. First, optimization can be achieved by calibrat-
ing parameters and improving the structure of process-based
models that represent subgrid-scale processes such as tur-
bulence, convection, and clouds. These processes have long
been identified as a dominant source of biases and uncer-
tainties in climate simulations (Cess et al., 1989; Bony and
Dufresne, 2005; Stephens, 2005; Vial et al., 2013; Schnei-
der et al., 2017b; Zelinka et al., 2020). Second, optimiza-
tion can be accomplished by increasing the resolution of
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the models, which reduces the need for parameterization
(Bauer et al., 2021; Slingo et al., 2022). Finally, optimization
can be pursued by integrating AI-based data-driven models.
These models have the potential to replace (Gentine et al.,
2018; O’Gorman and Dwyer, 2018; Yuval and O’Gorman,
2020; Yuval et al., 2021) or complement (Schneider et al.,
2017a; Lopez-Gomez et al., 2022) process-based models for
subgrid-scale processes. Additionally, they can serve as com-
prehensive error corrections for climate models (Watt-Meyer
et al., 2021; Bretherton et al., 2022; Wu et al., 2024).

In the past 2 decades, efforts to optimize climate mod-
els have often focused on individual dimensions in isolation.
For example, Climate Process Teams initiated under the US
Climate Variability and Predictability Program have concen-
trated on enhancing process-based models by incorporating
knowledge from observational and process-oriented studies
into climate modeling (Subramanian et al., 2016). The res-
olution of atmosphere and ocean models has gradually in-
creased, albeit at a pace slower than the advances in computer
performance would have allowed (Schneider et al., 2017b).
More recently, there have been calls to prioritize increasing
the resolution; the aim is to achieve kilometer-scale resolu-
tions in the horizontal, with the expectation that this would
alleviate the need for subgrid-scale process parameteriza-
tions, such as those for deep convection, and substantially
increase the reliability of climate predictions (Bauer et al.,
2021; Slingo et al., 2022). Moreover, there is rapidly grow-
ing interest in advancing climate modeling by using AI tools,
broadly understood to include tools such as Bayesian learn-
ing, deep learning, and generative AI (e.g., Schneider et al.,
2017a; Reichstein et al., 2019; Chantry et al., 2021; Watson-
Parris, 2021; Balaji et al., 2022; Irrgang et al., 2022; Schnei-
der et al., 2023).

Beginning with a review of recent advances in the good-
ness of fit between climate simulations and observed records,
here we will explore the potential benefits and challenges as-
sociated with optimizing each of the three dimensions men-
tioned earlier. Our analysis will highlight the importance
of adopting a balanced approach that encompasses progress
along each dimension, as this is likely to yield the most ro-
bust and accurate climate models and the most trustworthy
and usable predictions.

2 Evolution of climate models

The climate statistics 〈y〉 used in the loss function (Eq. 1)
can vary depending on the specific application. For exam-
ple, a national climate model may prioritize minimizing the
loss within a particular country. However, there are several
climate statistics that are generally considered important and
should be included in any comprehensive loss function. Two
such examples are the top-of-atmosphere (TOA) radiative en-
ergy fluxes and surface precipitation rates.

The inclusion of TOA radiative energy fluxes is crucial
because accurately simulating these fluxes is a prerequisite
for accurately simulating the changes in any climate statis-
tic. After all, radiative energy is the primary driver of the
climate system. Changes in radiative energy fluxes caused
by changes in greenhouse gas concentrations drive global
climate change; climate models must accurately simulate
changes in these energy fluxes and their effect on multiple
climate system components, from oceans and land surfaces
to clouds. As a consequence, errors in radiative energy fluxes
affect many aspects of a simulated climate, from wind to pre-
cipitation distributions. The balance of TOA radiative energy
fluxes must also be closed to machine precision. A closed en-
ergy balance is necessary to achieve a steady climate in un-
forced centennial to millennial integrations in which tiny im-
balances of the energy budget otherwise accumulate over 107

discrete time steps, leading to large-scale climate drift. The
conservation requirements for climate predictions – for what
John von Neumann called the “infinite forecast” (Edwards,
2010) – are more stringent than those for the short-term in-
tegrations needed for weather forecasting. Similarly, precip-
itation rates are of significant importance as they are part of
what closes the water balance and they directly impact hu-
man activities. Achieving accurate simulations of precipita-
tion rates relies on accurately simulating numerous subgrid-
scale processes within the climate system. Therefore, precip-
itation is an emergent property that serves as a holistic metric
to assess the goodness of fit of a climate model.

Figure 1 assesses the evolution of climate models over
the past 2 decades in simulating the observed climatology
of TOA radiative energy fluxes and precipitation rates, tem-
porarily setting aside that the loss minimization should oc-
cur for unobserved records. The figure displays the median
root mean square (rms) error between model seasonal cli-
matologies and observations, with all data conservatively
remapped to a common 2.5° latitude–longitude grid using
Climate Data Operators (Schulzweida, 2023).1 The plot in-
cludes three generations of climate models from the Cou-
pled Model Intercomparison Project (CMIP) as well as re-
cent higher-resolution simulations. It is evident that, over
time, there has been a gradual improvement in the fidelity of
models in simulating TOA radiative energy fluxes and pre-
cipitation. For example, in CMIP6 (late 2010s), the median
rms error relative to CMIP3 (mid-2000s) is reduced by 15 %
for precipitation, 31 % for TOA outgoing longwave flux, and
30 % for TOA reflected shortwave flux, with all values indi-
cating average seasonal-mean improvements (Fig. 1, upper
row). Individual modeling centers have surpassed this me-
dian rate of improvement; for example, there are rms error

1That is, what is displayed in Fig. 1 are unweighted errors,
in contrast to the loss function (Eq. 1), which downweights mis-
matches between simulations and observations for variables that
have high error variance, e.g., because of internal variability in
finite-time averages.
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Figure 1. Normalized rms error (RMSE) in the seasonal climatology of precipitation, top-of-atmosphere (TOA) longwave (LW) radiation,
and TOA shortwave (SW) radiation for different models and model intercomparison projects. The rms errors are relative to climatologies
from the Global Precipitation Climatology Project (GPCP) (Adler et al., 2018) and CERES-EBAF (Loeb et al., 2009) datasets over the period
2001–2020. CMIP and AMIP rms errors represent median values of the RMSE computed separately for each of the included models. Cli-
matologies were computed as follows: for CMIP3, over 2001–2020 for the B1 scenario; for CMIP5/6, over 2001–2020 for a combination of
the historical and RCP4.5/SSP2.45 scenarios; for AMIP, over 1995–2014 for models contributing to CMIP6; for HadGEM3-GC31 and MPI-
ESM1-2, over 1995–2014 for the historical simulations and over 4 simulated years for the kilometer-scale nextGEMS cycle 3 simulations
(Hohenegger et al., 2023; Rackow et al., 2024), which are shown together with averages over the equivalent simulation length in CMIP6.
The rms error is normalized by the median across the CMIP3 and CMIP5 models for each field and across all seasons, with normalization
constants shown below the color bar. HadGEM3-GC3.1 and MPI-ESM1.2 from HighResMIP (Haarsma et al., 2016) are sorted in order of
increasing horizontal resolution, with the atmospheric resolution for each configuration stated over the respective column (see Table 1).

reductions of 30 % for precipitation, 49 % for TOA outgo-
ing longwave flux, and 36 % for TOA reflected shortwave
flux in the progression from CCSM3 to CESM2 at the Na-
tional Center for Atmospheric Research (NCAR) (Fig. 1,
lower row). These improvements primarily stem from ad-
vances in process-based parameterizations and model tun-
ing (e.g., Danabasoglu et al., 2020). The average resolu-
tion has also increased across the model generations, shifting
from around 200–400 km horizontally in the atmosphere in
CMIP3 to around 100–200 km in CMIP6 (Schneider et al.,
2017b; Intergovernmental Panel on Climate Change, 2021).

To specifically examine the impact of resolution, we con-
sider two models from the High Resolution Model Inter-
comparison Project (HighResMIP; Haarsma et al., 2016):
HadGEM3-GC3.1 (Roberts et al., 2019) and MPI-ESM1.2
(Gutjahr et al., 2019). These models have conducted sim-
ulations at three different resolutions, with horizontal reso-
lutions in the atmosphere between 25 and 200 km, without
resolution-specific tuning (Table 1).

Both models exhibit a modest but consistent reduction in
error metrics as resolution increases. However, there is one
exception: the doubling in atmospheric horizontal resolu-
tion from MPI-ESM1.2-HR (100 km) to MPI-ESM1.2-XR
(50 km), without an increase in ocean resolution or atmo-
spheric vertical resolution, did not result in an improvement
in error metrics. This finding suggests that ocean resolution
and atmospheric vertical resolution are also important factors
contributing to the improvements with resolution.

Recently, there has been a push to increase the resolu-
tion of climate models even further, to kilometer scales,
allowing for partial resolution of deep convection and po-
tential improvements in simulating precipitation and its ex-
tremes (Bauer et al., 2021; Slingo et al., 2022). In numer-
ical weather prediction, enhanced horizontal resolution has
led to improvements, for example, in rainfall predictions on
timescales from hours to days (Clark et al., 2016). However,
whereas the assimilation of data at the initialization of a fore-
cast continuously pulls numerical weather predictions close
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Table 1. Atmosphere and ocean model resolutions of the HighResMIP simulations included in Fig. 1.

Atmos. res. Ocean res. Vertical levels

HadGEM3-GC3.1-LL N96 (135 km) 100 km 85
HadGEM3-GC3.1-MM N216 (60 km) 25 km 85
HadGEM3-GC3.1-HH N512 (25 km) 8 km 85
MPI-ESM1.2-LR T63 (200 km) 150 km 47
MPI-ESM1.2-HR T127 (100 km) 40 km 95
MPI-ESM1.2-XR T255 (50 km) 40 km 95

to the climate attractor, long-term climate simulations require
a realistically closed energy balance to remain on the climate
attractor. The energy balance also depends on dynamics at
scales well below 1 km (e.g., in tropical low clouds, which
are crucial for climate but less important for weather pre-
diction), making it less clear that increased resolution by it-
self results in better climate simulations. Figure 1 displays
the rms errors of two kilometer-scale coupled models (IFS
and ICON) in simulating the seasonal climatology of TOA
radiative energy fluxes and precipitation.2 For direct com-
parison to these short kilometer-scale simulations, Fig. 1 in-
cludes the rms errors in CMIP6 simulations for the equiva-
lent averaging period of 4 years. Compared to the coarser-
resolution simulations, the kilometer-scale simulations show
improvements in TOA shortwave fluxes and longwave fluxes
but little improvement – or in some cases even increases – in
the errors in precipitation. These simulations highlight that
a higher resolution alone does not guarantee an improved fit
in climate simulations. Many crucial climate-regulating pro-
cesses, such as shallow clouds and cloud microphysics, re-
main unresolved at kilometer scales, requiring appropriate
parameterization. Extensive calibration or even a re-design
of the subgrid-scale parameterizations at kilometer-scale res-
olution is necessary to reduce large-scale biases that can oth-
erwise exceed those seen in coarser-resolution models (Wedi
et al., 2020; Hohenegger et al., 2023). However, the high
computational cost at kilometer-scale resolutions has so far
inhibited systematic model calibration or the exploration of
novel parameterization approaches needed at these resolu-
tions.

Figure 2 provides a more detailed illustration of how
kilometer-scale models can inherit longstanding biases from
coarse-resolution models. The figure compares August pre-
cipitation between observations and simulations. The sim-
ulations include coarse-resolution AMIP models and a set
of kilometer-scale simulations conducted under the DYA-
MOND project (Stevens et al., 2019). The figure reveals

2NextGEMS cycle 3 output (Koldunov et al., 2023) was aver-
aged over 2021–2024 in ICON to avoid the influence of sea sur-
face temperature (SST) nudging during the spin-up period and the
subsequent ∼ 0.8 °C drift in global-mean SST over the first year of
simulation; the output was averaged over 2020–2022 and 2024 in
IFS due to missing data in 2023.

that the kilometer-scale simulations capture more intricate
details in the precipitation patterns, such as the strong oro-
graphic precipitation in the Himalayas, New Guinea, and the
Sierra Madre Occidental. However, they still exhibit similar
large-scale biases to the coarse-resolution simulations, such
as excessive precipitation over the tropical regions of the
south Pacific and Indian Oceans, commonly referred to as the
double-intertropical convergence zone (ITCZ) bias (Tian and
Dong, 2020). The double-ITCZ bias has important implica-
tions for regional precipitation projections over land (Dong
et al., 2021).

Over the past 2 decades, then, climate models have shown
gradual improvements in key metrics, with error reductions
of 10 %–20 % per decade, as seen in Fig. 1 and in other stud-
ies (Bock et al., 2020). However, there are still errors that
are large compared to the climate change signals we aim to
predict. For instance, the radiative forcing due to doubling
CO2 concentrations is about 4Wm−2, while rms errors in
TOA radiative energy fluxes areO(10Wm−2). The response
of climate models to increasing greenhouse gas concentra-
tions also varies widely across models. For example, the
time when the 2°C warming threshold of the Paris Agree-
ment is exceeded varies by several decades among models
(Schneider et al., 2017b; Intergovernmental Panel on Climate
Change, 2021). This indicates that there is significant room
for further improvement.

Given the significant errors in simulating the current cli-
mate and the uncertainties in future projections, there exists
a large gap between the demands placed on climate mod-
els for adaptation decisions – such as designing stormwa-
ter management systems or sea walls to handle a 100-year
flood in the decades ahead – and the capabilities of models
today (Fiedler et al., 2021; President’s Council of Advisors
on Science and Technology, 2023). Yet, the need for such
decision-making is immediate. Therefore, it is urgently nec-
essary to accelerate the improvement of climate models be-
yond the gradual advances of recent decades, i.e., to achieve
a step-change enhancement in both accuracy and usability
for decision-making. The question is how to achieve such a
step change.
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Figure 2. August precipitation in satellite observations (top), coarse-resolution AMIP simulations (middle), and kilometer-scale DYAMOND
simulations (bottom). Observations are based on GPCP (Adler et al., 2018). AMIP simulations are from 14 models that participated in CMIP6.
Both the GPCP data and the AMIP simulations are interpolated to a common 1°×1° grid, and the August climatology is derived from 1979–
2014. The DYAMOND results, shown at the models’ native resolutions, are based on the average of five models with horizontal resolutions
ranging from 3.3 to 7.8 km for August 2020. The figure was adapted from Zhou et al. (2022).

3 Process-based parameterizations

The uncertainties and biases in climate simulations, as shown
in Figs. 1 and 2, have their roots in the parameterization
of unresolved small-scale processes. So far, these processes
have been primarily parameterized based on process knowl-
edge, in a reductionist approach. For example, the influential
work of Arakawa and Schubert (1974) laid the foundation
for widely used parameterizations of moist convection, em-
ploying a reductionist process model of convective plumes
that are, at all times, in statistical equilibrium with their envi-
ronment and incorporate environmental air by entrainment.
Research over the past 2 decades has focused on refining the
formulation of the entrainment rate, a key control on climate
model sensitivity to greenhouse gas concentrations (Stain-
forth et al., 2005; Knight et al., 2007). Typically, this rate is
represented by a constant parameter ε = θ or a parametric
function ε = ε(z,ζ ;θ ) of height z and (usually local) plume
and environmental properties encoded in the model state ζ
(e.g., de Rooy et al., 2013; Yeo and Romps, 2013; Anber
et al., 2019; Savre and Herzog, 2019; Cohen et al., 2020).
Similarly, diffusive closures of various types have been com-
monly employed for boundary layer turbulence in the atmo-
sphere and oceans. These closures employ diffusivities that
may depend on height, other flow variables, or a turbulence
kinetic energy determined by separate equations, and they

are sometimes augmented by correction terms to represent
upgradient fluxes in convective boundary layers (e.g., Mellor
and Yamada, 1982; Large et al., 1994; Lock et al., 2000).

The process-based approach offers the advantage that
the parameters or parametric functions that require closure
are interpretable and theoretically measurable. For example,
Monin–Obukhov similarity theory reduced the problem of
parameterizing turbulence in a thin (∼ 100m) layer near the
surface to finding universal functions that characterize the
vertical structure of turbulent fluxes (Foken, 2006). Later,
these functions were empirically derived based on measure-
ments over a field of wheat stubble in Kansas during the
summer of 1968 (Businger et al., 1971); they have since
been widely incorporated into climate models. This repre-
sents a success story for the process-based approach. It led
to a parametrically sparse and interpretable representation of
near-surface turbulent fluxes. It also demonstrates invariance
properties that make it applicable not only to summer condi-
tions over Kansas wheat fields but across most of the globe,
with relatively few limitations, particularly in convective sit-
uations.

However, despite this progress, the dominant source of un-
certainties and biases in climate simulations, even 50 years
after the introduction of the convection parameterization by
Arakawa and Schubert (1974), lies in the representation of
turbulence, convection, and clouds (including their micro-
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physics) above the near-surface layer. This indicates that the
reductionist approach to developing process-based models
for these components has encountered significant challenges.
For example, measuring entrainment rates directly, despite
being theoretically possible, remains challenging in practice,
whether using observational data or high-resolution simula-
tions (e.g., Romps, 2010). The search for universal functions
to accurately represent entrainment has been unsuccessful
thus far. Consequently, the process-based approach to model-
ing convection and clouds is widely perceived as being dead-
locked (Randall et al., 2003; Randall, 2013; Gentine et al.,
2018).

However, prematurely dismissing process-based model-
ing as obsolete would ignore its advantages and its poten-
tial for further development. Contrasting the achievements
of Monin–Obukhov similarity theory and moist-convection
parameterizations is illuminating. Monin–Obukhov similar-
ity theory systematically coarse-grained the equations of
motion, employing controlled approximations and identi-
fying the nondimensional groups of variables that govern
near-surface turbulent fluxes. The approach reduced the clo-
sure problem to finding universal functions of the identi-
fied nondimensional groups, with well-defined limits in dif-
ferent scenarios. This led to its near-universal applicability.
In contrast, the moist-convection parameterizations in cur-
rent use emerged phenomenologically, without a systematic
coarse-graining of the known equations of motion through
controlled approximations. Even when starting from a rigor-
ous basis like the Arakawa and Schubert (1974) parameter-
ization, operational parameterizations often introduced arti-
ficial scale breaks between boundary layer turbulence, shal-
low convection, and deep convection or even between con-
vection over land and oceans, leading to separate parame-
terizations with discontinuous differences in parameters and
structure. Such discontinuities do not exist in nature. As a re-
sult, these parameterizations lack well-defined limits. For ex-
ample, they do not converge to a well-defined dry limit when
the latent heats of fusion and vaporization of water approach
zero, and they do not converge to the Navier–Stokes equation
as resolution increases. This approach hindered the system-
atic removal of unnecessary approximations, particularly as
model resolution increased and common assumptions, such
as small plume area fractions relative to the host model’s grid
scale or statistical equilibrium between moist convection and
the environment, became inadequate (Arakawa et al., 2011;
Arakawa and Wu, 2013; Randall, 2013).

Therefore, rather than declaring that process-based mod-
eling for moist convection and other complex processes is
at a dead end, a more nuanced perspective recognizes the
need for further development with greater mathematical and
physical rigor, particularly in light of the abundant data and
enhanced computational capabilities available today, which
surpass what the early pioneers of these approaches had at
their disposal. The invariance properties, such as conserva-
tion laws and symmetries, inherited by this approach from

the underlying equations of motion may well hold the key
to developing universal parameterizations that enable us to
minimize the loss (Eq. 1) for unobserved climate statistics
and to generalize beyond the observed distribution. That is,
progress on macroscopic techne here hinges on microscopic
episteme.

These considerations suggest that successful process-
informed parameterizations satisfy four clear requirements:

1. Parameterizations should be grounded in the govern-
ing equations of subgrid-scale processes whenever fea-
sible. Equations for parameterizations can be obtained
by systematic coarse-graining through methods such as
conditional averaging – for example, resulting in dis-
tinct equation sets for coherent structures like updrafts
and their more isotropically turbulent environment – or
the derivation of moment equations rooted in distribu-
tion assumptions on subgrid-scale fluctuations. What-
ever approach is adopted, it is crucial that assumptions
are explicitly laid out and subject to empirical validation
or revision. Examples of such approaches for turbulence
and convection include Lappen and Randall (2001), Go-
laz et al. (2002), Soares et al. (2004), Siebesma et al.
(2007), Witek et al. (2011), Guo et al. (2015), Firl and
Randall (2015), Tan et al. (2018), Thuburn et al. (2018),
Cohen et al. (2020), and Lopez-Gomez et al. (2020).

2. Artificial scale breaks, such as those between shallow
and deep convection, should be avoided. These breaks
lack correspondence to nature and introduce unphys-
ically discontinuous dynamical transitions. They also
lead to correlated parameters that are difficult to cali-
brate with data. For example, discontinuous transitions
between shallow and deep convection impede an ac-
curate simulation of the diurnal cycle of convection
(Christopoulos and Schneider, 2021; Tao et al., 2024)
and result in correlated parameters in the shallow and
deep convection schemes that are difficult to identify
from data. Moreover, bridging these discontinuous scale
breaks becomes problematic as resolution increases,
for example, through the “gray zone”, where processes
such as deep convection become partially resolved.

3. When scale separation is absent between the param-
eterized subgrid-scale processes and the resolved grid
scale, parameterizations must incorporate subgrid-scale
memory and stochastic terms. This implies that con-
vection and cloud parameterizations, for example, must
be explicitly time dependent (i.e., have memory) and
cannot be assumed to be in instantaneous equilibrium
with the environment. Homogenization theories such as
those of Mori and Zwanzig (Zwanzig, 2001), which em-
ploy averaging but also shows how fluctuations about
averages arise on the macroscale, support the inclusion
of these features (Majda et al., 2003; Wouters and Lu-
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carini, 2013; Lucarini et al., 2014; Wouters et al., 2016;
Lucarini and Chekroun, 2023).

4. Parameterization schemes for different processes must
be coupled such that they interact consistently
(Devine et al., 2006; Gross et al., 2018). For example,
models for subgrid-scale fluctuations of cloud dynam-
ics must be coupled consistently with parameterizations
for cloud microphysics, ensuring that nonlinear interac-
tions between microphysical processes such as ice nu-
cleation and the thermodynamics and velocities of up-
drafts are consistently modeled (Gettelman et al., 2019).
This is likely particularly important for processes such
as the formation of supercooled liquid in strong up-
drafts, which occur out of thermodynamic equilibrium
and hence are dependent on the history, and not just the
instantaneous state, of air masses. Such processes are
known to strongly affect the response of climate mod-
els to increased greenhouse gas concentrations (Zelinka
et al., 2020).

Developing process-based parameterizations by systemati-
cally coarse-graining equations of motion will lead to un-
closed terms, similar to the universal functions in Monin–
Obukhov similarity theory. These terms should be expressed
in terms of nondimensional variable groups that make them
as “climate invariant” as possible (Beucler et al., 2024).
Whether they contain parameters, parametric functions, or
non-parametric functions, they then become excellent targets
for AI-enabled learning from data.

There is accumulating evidence that a program focused
on process-based parameterizations that satisfy the above re-
quirements can achieve success. For example, Lopez-Gomez
et al. (2020) and Cohen et al. (2020) have demonstrated
the effectiveness of a unified parameterization approach for
the spectrum of small-scale motions from boundary layer
turbulence to deep moist convection. This parametrically
sparse approach is based on conditionally averaged equa-
tions of motion, which leads to additional evolution equa-
tions for subgrid-scale quantities such as updraft energies
and mass fluxes. The equations for the subgrid-scale quan-
tities carry additional information, including subgrid-scale
memory, augmenting the information available on the grid
scale of a model. Within one continuous parameterization
framework, they are able to accurately represent a wide range
of cloud dynamics observed on Earth, from stable bound-
ary layers to stratocumulus-topped boundary layers and deep
convection. Furthermore, Lopez-Gomez et al. (2022) have
shown that machine learning can be employed to identify
closure functions in these parameterizations, such as entrain-
ment rates that depend on climate-invariant nondimensional
groups.

As climate models reach resolutions where deep convec-
tion becomes marginally resolved, using an inadequate deep-
convection parameterization based on instantaneous statisti-
cal equilibrium assumptions may well be less effective than

not using any parameterization at all. For this reason, in the
kilometer-scale simulations shown in Figs. 1 and 2, deep-
convection parameterizations are either turned off or run with
reduced activity (Stevens et al., 2019). However, parameter-
izations for boundary layer turbulence and low-cloud cover
are usually kept, and sometimes those for shallow convection
(e.g., in IFS in Fig. 1) are too, even though they were origi-
nally developed for resolutions in the 100 km range, where,
for example, assumptions of instantaneous statistical equi-
librium of subgrid scales with resolved scales are more jus-
tifiable. As seen in the above figures, this approach has not
yet achieved the hoped-for success; in particular, it has not
significantly improved large-scale precipitation simulations
at kilometer-scale resolutions. Consequently, it is essential
to advance the development of parameterizations that effec-
tively bridge the scales between marginally resolved convec-
tion and the dynamics that remain unresolved in this reso-
lution range, in addition to parameterizations of yet-smaller
scales, such as the microphysics of cloud droplet and ice
crystal formation.

4 Resolution

Climate is regulated by turbulent motions in the atmosphere
and oceans. Horizontal motions transport energy, momen-
tum, and, in the atmosphere, water vapor, shaping surface
temperatures, winds, and precipitation patterns. Vertical mo-
tions couple the atmosphere and surface, creating clouds,
driving precipitation, and mixing heat and tracers such as car-
bon dioxide in the oceans. Representing these turbulent mo-
tions accurately is crucial for climate models, but it is chal-
lenging due to their vast range of length scales, from plane-
tary to millimeter scales.

Figure 3a shows the kinetic energy spectra of horizontal
and vertical motions in the atmosphere, measured by aircraft.
The spectra are displayed as functions of the inverse hori-
zontal wavelength λ−1, which is proportional to the horizon-
tal wavenumber k = 2π/λ. At large scales (small wavenum-
bers), the spectrum of horizontal kinetic energy follows a
k−3 power law, as predicted by geostrophic turbulence the-
ory (Vallis, 2006, Chap. 9). At mesoscales below approxi-
mately 500 km, the spectrum becomes shallower, resembling
a k−5/3 power law. The reason for this change has been de-
bated. The shallower spectrum seems to be caused by lin-
ear inertia-gravity waves, which are internal waves modified
by planetary rotation that coexist with the nonlinear, primar-
ily geostrophic, atmospheric turbulence (Dewan, 1979; Van-
Zandt, 1982; Callies et al., 2014).

At scales greater than 10–20 km, the kinetic energy of ver-
tical motions is much weaker than that of horizontal motions,
with a relatively flat spectrum. This difference is mainly due
to two factors: (1) the scale of vertical motions is limited by
the depth of the troposphere (about 10–20 km), which con-
tains the most important vertical motions; and (2) the vertical
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Figure 3. Kinetic energy spectra and cumulative energy in the
atmosphere. (a) Spectral kinetic energy density based on aircraft
measurements, shown as a function of inverse horizontal wave-
length λ−1

= k/(2π ). (b) Cumulative kinetic energy from λmax =
5000km to λ on the upper horizontal axis, normalized by the en-
ergy for λmin = 10m. The lower horizontal axis expresses the wave-
length λ through the required horizontal model grid spacing 1x,
using λ≈ 71x. Blue is for horizontal-motion kinetic energy; red is
for vertical-motion kinetic energy. Data from Callies et al. (2014)
(MOZAIC) and Schumann (2019) (NAWDEX). Dashed lines in (a)
indicate linear extrapolations in log-log space, except for the dashed
blue line where NAWDEX and MOZAIC data overlap; there, the
dashed line represents the NAWDEX spectrum multiplied by a fit-
ting constant to match the MOZAIC spectrum. Cumulative energies
are obtained by numerical integration over the spectra, including the
extrapolations. The dashed line in (b), for wavelengths λ≤ 25km,
represents a power law fit (1− a(λβ − λβmin), with β ≈ 0.4 and
a ≈ 0.5) to the cumulative vertical kinetic energy. Note that the ex-
trapolations of vertical kinetic energy to large scales may not be
very accurate due to possible deviations from a completely flat spec-
trum, which can slightly shift the position of the inflection point in
the cumulative energy (Skamarock et al., 2014; Schumann, 2019).

velocity depends on the divergence of the horizontal veloc-
ity, which is weaker (by a factor of order Rossby number)
than the dominant rotational velocity at large scales, though
it becomes comparable to it on mesoscales. The divergence
involves horizontal derivatives, leading to a multiplication by
k2 of the kinetic energy spectra in wavenumber space at hori-
zontal scales above 10–20 km, where the vertical depth scale
is constrained by the depth of the troposphere (see Schu-

mann, 2019 for a detailed model from which these insights
are drawn). This results in the relatively flat spectrum with
low vertical kinetic energy at larger horizontal scales. At hor-
izontal scales smaller than about 10–20 km, where the hori-
zontal scale is comparable to the vertical scale and the latter
is no longer constrained by the depth of the troposphere, the
vertical kinetic energy spectrum starts to decay at a rate of
roughly k−5/3, like the horizontal kinetic energy spectrum.
At yet smaller scales in the meter range, the turbulence be-
comes increasingly isotropic, which also results in a k−5/3

power law because three-dimensional turbulence follows a
Kolmogorov spectrum. The figure shows an extrapolation of
both the horizontal and vertical kinetic energy spectra from
the smallest measured scale near 100 m down to 10 m for
illustrative purposes. However, in reality, the spectra con-
tinue without a break to the Kolmogorov scale at millimeters,
where kinetic energy is dissipated.

As the horizontal climate model resolution increases, the
continuity of the atmospheric energy spectrum implies a
gradual improvement as resolved motions replace imper-
fectly parameterized smaller scales. To quantitatively assess
the benefits of higher resolution in climate models, we in-
tegrate the energy spectra Ê(k) over a wavenumber interval
from kmin = 2π/λmax to k = 2π/λ:

E(kmin,k)∝

k∫
kmin

Ê(k′) dk′. (2)

Figure 3b illustrates the cumulative energy between λmax =

5000km and a given λ on the upper horizontal axis, normal-
ized by the cumulative energy extrapolated to λmin = 10m.
Because of the steepness of the horizontal kinetic energy
spectrum at large scales, the benefits of increased resolu-
tion for horizontal kinetic energy level off at wavelengths
just under 1000 km. This corresponds to a grid spacing of
around 1x ≈ 150km (lower horizontal axis in Fig. 3) be-
cause the minimum wavelength λ a model can resolve is
approximately 71x (Skamarock, 2004; Wedi, 2014; Klaver
et al., 2020). Climate models reached this “geostrophic tur-
bulence plateau” in resolution in the past decade (Schnei-
der et al., 2017b). However, the vertical kinetic energy spec-
trum remains relatively flat at larger scales, leading to con-
tinued benefits in resolving vertical kinetic energy as λ de-
creases.3 Concretely, the data in Fig. 3 indicate that resolving
wavelengths of 1000, 100, and 10 km (grid spacings 1x of
about 150, 15, and 1.5 km, respectively) increases the frac-
tion of resolved vertical kinetic energy between 5000 km
and 10 m from 0.6 % to 7 % and 43 %, respectively. The re-
turns on increasing the resolution only begin to diminish for

3For a k−α spectrum, the cumulative vertical kinetic energy
scales as −λβ , where β = α− 1. This gives β = 2/3 for α = 5/3.
The curves in Fig. 3, for wavelengths λ < 25km, are well fitted with
β ≈ 0.4. This shows that there is no qualitative change in behavior
over those scales, only gradual gains from increasing the resolution.
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wavelengths below 1 km; that is, grid spacings 1x . 150m.
The specific results depend on the data and extrapolations
used (Schumann, 2019), but the main finding is clear: even
at kilometer-scale resolution, most vertical motions require
parameterization. This is especially true for the motions at
horizontal scales in the meter to 100 m range, which gen-
erate the low clouds that help control Earth’s energy bal-
ance (Bony and Dufresne, 2005; Stephens, 2005; Vial et al.,
2013; Schneider et al., 2017b, 2019). Therefore, as we push
the resolution frontier, it is crucial to concurrently improve
the parameterization of smaller-scale turbulent motions in
ways that, as discussed in Sect. 3, are commensurate with
the model resolution; for example, statistical equilibrium as-
sumptions for subgrid-scale fluctuations must be relaxed at
resolutions where scale separation between resolved and pa-
rameterized processes disappears.

Increasing the horizontal resolution of climate models
incurs a substantial computational cost, which grows as
(1x)−3 for a fixed vertical resolution. This cost arises from
the increasing number of horizontal grid points, ∝ (1x)−2,
and the necessity for smaller time steps, ∝ (1x)−1, to main-
tain numerical stability. To illustrate using the previous ex-
ample from Fig. 3, reducing the grid spacing from 1x ≈

15km to 1x ≈ 1.5 km increases the computational cost by
a factor of 1000 while enhancing the cumulative vertical ki-
netic energy resolved by a factor of 6, from 7 % to 43 %.
That is, the rate of improvement in resolved vertical kinetic
energy (a low power of 1x) is significantly smaller than the
additional computational expense. From this perspective, in-
creasing the horizontal resolution is an inefficient means of
improving climate models. Moreover, the vertical grid spac-
ing 1z must also be considered and typically should scale
with 1x (Lindzen and Fox-Rabinovitz, 1989); however, ex-
isting process-based parameterizations are often manually
calibrated to a specific vertical resolution, resulting in a re-
luctance to increase the vertical resolution alongside the hor-
izontal resolution in practice. Increasing the vertical resolu-
tion entails a more modest computational cost, which gen-
erally scales as (1z)−1. This is because fast vertical dynam-
ics are generally treated implicitly in climate models to cir-
cumvent time-step limitations, ideally using implicit solvers
with computational costs that are linear in (1z)−1. As sug-
gested in Fig. 1, increasing the vertical resolution at a coarser
horizontal resolution can be advantageous because it can im-
prove the representation of parameterized subgrid-scale dy-
namics (Harlaß et al., 2015; Kawai et al., 2019; Smalley
et al., 2023). At higher horizontal resolutions where the re-
solved dynamics become more isotropic, proportionately in-
creasing both the vertical and horizontal resolution becomes
necessary, leading to a computational cost that scales even
less favorably, like (1x)−4.

Therefore, optimizing the parameters λ that define model
resolution requires inevitable trade-offs. Even at foresee-
able future resolutions, unresolved scales of atmosphere and
ocean turbulence plus even finer scales controlling cloud mi-

crophysics and other processes will still require parameter-
ization. While increasing the resolution gradually improves
the representation of turbulent dynamics and enhances the
resolution of the surface topography, gravity waves, and
land–sea contrasts, the 1000-fold increase in computational
cost from O(10km) to O(1km) is unlikely to justify the
benefits (Wedi et al., 2020). It will remain crucial to make
parameterizations as resolution independent (“scale aware”)
as possible and to allocate some computational resources to
calibrating parameterizations with data, which requires hun-
dreds to thousands of climate simulations. Although cali-
brating over shorter (weather) timescales is computationally
feasible and may be beneficial, it does not guarantee im-
proved simulations of longer-term climate statistics (Schir-
ber et al., 2013). Moreover, to quantify climate risks, it is
necessary to run ensembles of climate simulations to broadly
explore possible climate outcomes. Doing so requires O(10)
ensemble members to sample atmospheric and oceanic inter-
nal variability (Deser et al., 2020; Wills et al., 2020; Bevac-
qua et al., 2023), ideally with each of those also sampling
model uncertainties by drawing from a posterior distribution
over plausible models (Dunbar et al., 2021; Howland et al.,
2022), resulting in hundreds of decades-long climate simu-
lations. Ensemble generation lends itself well to distributed
(cloud) computing as it is embarrassingly parallel. However,
it also constrains the routinely achievable resolution in cli-
mate models.

Therefore, kilometer-scale resolution remains an experi-
mental frontier. Currently, routinely achievable atmospheric
resolution lies in the 10–50km range (Schneider et al., 2023),
while ocean resolutions of 5–10km are achievable (Chang
et al., 2020; Silvestri et al., 2024). By finding the right bal-
ance between resolution and parameterization learning and
calibration, we can make significant strides in improving cli-
mate simulations within realistic computational constraints.

5 AI for learning parameterizations

Even at the highest resolutions achievable in climate mod-
eling, parameterizing small-scale processes remains essen-
tial. While it may be tempting to learn about all small-scale
processes holistically from data, this approach is more likely
to be successful in weather prediction, where short-term ac-
curacy is prioritized and energy conservation is less critical
because daily data assimilation prevents model drift. In con-
trast, climate prediction faces two primary challenges.

First, energy conservation and predicting changes in
Earth’s energy balance are paramount, as exemplified by
Suki Manabe’s Nobel-Prize-winning work. His climate mod-
eling work began with radiative–convective equilibrium
models to explore the energetic effects of changes in atmo-
spheric composition on the atmosphere and surface (Manabe
and Strickler, 1964; Manabe and Wetherald, 1967). In the
same vein, climate models must accurately predict responses
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to changes in atmospheric composition, such as greenhouse
gas concentrations and aerosol loading. Some of these re-
sponses involve rapid adjustments that are independent of
surface temperature changes. For example, changes in green-
house gas concentrations can modulate cloud cover through
rapid adjustments mediated by changes in longwave radia-
tive fluxes, in addition to the response of clouds to surface
temperature changes (Gregory and Webb, 2008; Sherwood
et al., 2015; Bretherton, 2015). Predicting these effects sep-
arately is essential for future climate scenarios: in future cli-
mates, changes in aerosol loadings and greenhouse gas con-
centrations can decorrelate, and changes in longwave radia-
tive fluxes can decouple from surface temperature changes,
as is the case in solar geoengineering scenarios (Schneider
et al., 2020). Learning their compound effects holistically
from data will not enable such predictions because the effects
cannot be disentangled from data alone, where, for example,
changes in greenhouse gas concentrations and surface tem-
perature are correlated; instead, modeling the processes sep-
arately using known physics as guardrails appears essential.

Second, climate change prediction is an out-of-distribution
challenge, as we lack data for future, warmer climates. While
using simulated data for learning is one approach, it restricts
learning to model emulation and may not capture complex
processes such as aerosol effects on clouds, which currently
cannot be simulated reliably, even in limited domains. There-
fore, learning from observations must be informed by known
physics to ensure models generalize beyond the observed cli-
mate distribution.

To make progress and generalize beyond observed cli-
mate data, we can build on process-based parameterizations,
which encode known physics through conservation laws and
invariance properties. AI-based methods, broadly understood
to include methods ranging from Bayesian to deep learning,
can aid in learning about entire parameterizations for individ-
ual processes or unclosed terms and functions within them.
This can reduce inaccuracies in climate models and poten-
tially also allow the quantification of uncertainties.

AI approaches require the specification of a loss func-
tion. The most suitable loss function (Eq. 1) penalizes dif-
ferences between simulated and observed climate statistics,
weighted by the inverse of a covariance matrix representing
noise sources such as observational error and internal vari-
ability. The loss function should include variables such as
TOA radiative energy fluxes and global precipitation fields,
as shown in Fig. 1. It may also include higher-order statis-
tics, such as the covariance between surface temperature and
cloud cover (Schneider et al., 2017a). This covariance rep-
resents an emergent constraint: a statistic that, across cli-
mate models, correlates with the response of cloud cover to
greenhouse gas concentration increases (e.g., Klein and Hall,
2015; Brient and Schneider, 2016; Caldwell et al., 2018; Hall
et al., 2019). Such emergent constraints can arise, for exam-
ple, from fluctuation–dissipation theorems that relate fluctu-
ations in a system to the response of the system to external

perturbations (Ruelle, 1998; Lucarini and Chekroun, 2023).
Emergent-constraint statistics, previously used only for ret-
rospective model assessments, can be proactively minimized
in the loss function to improve model accuracy in simulating
greenhouse gas responses.4

However, using climate statistics in a loss function chal-
lenges traditional machine-learning (ML) methods. Super-
vised learning (SL), the dominant ML approach, depends on
labeled input–output pairs for process modeling and learns
regressions of outputs onto inputs. For example, a convec-
tion parameterization requires at least temperature and hu-
midity inputs, which must be paired with the output – the
convective time tendencies of temperature and humidity – for
training. Since such data are unavailable from Earth observa-
tions, SL has been limited to simulated data (e.g., O’Gorman
and Dwyer, 2018; Rasp et al., 2018; Gentine et al., 2018;
Yuval and O’Gorman, 2020; Yuval et al., 2021; Yu et al.,
2023). Conversely, the climate statistics in the loss function
(Eq. 1) provide only indirect information about processes
such as convection. For example, the loss function may in-
clude fields such as precipitation and cloud cover – noisy
fields with missing data that are influenced by multiple pro-
cesses, including but not limited to convection (Schneider
et al., 2017a).

To illustrate, consider determining closures in a conserva-
tion equation:

Dq
Dt
= F +S. (3)

Here, q(x, t) is a tracer, such as total specific humidity, de-
pendent on space x and time t , and D/Dt = ∂/∂t +u · ∇ is
the material derivative with the fluid velocity u(x, t). The
quantities on the left-hand side are taken to be resolved on
the model’s grid. The right-hand side consists of two compo-
nents: F(x, t) represents unresolved subgrid-scale flux diver-
gences in need of parameterization; S(x, t) denotes all other,
separately modeled, sources and sinks.

In SL approaches, the objective is to map the model state ζ
to approximate subgrid-scale flux divergences F̂(ζ ;ν), with
parameters ν (e.g., neural-network weights and biases). To
make the problem tractable, the mapping is usually con-
sidered locally in the horizontal, mapping column states
ζ (zi, t) at discrete levels zi (for i = 1, . . .,Nz) to parame-
terized flux divergences F̂j

(
ζ (zi, t);ν)

)
at levels zj . This

is achieved by using the column state ζ (zi, t) as input and
the remainder Dq/Dt −S as output to learn a regression

4If emergent-constraint statistics are used during loss minimiza-
tion, they can no longer serve as retrospective constraints on the re-
sponse of the model to perturbations. In retrospective studies, there
is a risk in using emergent constraints because the correlation be-
tween emergent-constraint statistics and the climate response may
be spurious (Caldwell et al., 2014, 2018). When using emergent-
constraint statistics during loss minimization, by contrast, the statis-
tics may, at worst, merely be uninformative about model parameters
and processes.
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F̂ ≈Dq/Dt−S+ε. The material derivative Dq/Dt is rolled
out over time intervals typically spanning hours to days. The
aim is to minimize the residual ε over parameters ν, typi-
cally using methods such as backpropagation that compute
the gradients of a loss function with respect to the parame-
ters ν.

This approach leverages the expressive capabilities of deep
learning and has shown some promise, as evidenced in stud-
ies demonstrating that moist convection or ocean turbulence
parameterizations can be effectively learned in this manner
(e.g., O’Gorman and Dwyer, 2018; Rasp et al., 2018; Gentine
et al., 2018; Bolton and Zanna, 2019; Yuval and O’Gorman,
2020; Yuval et al., 2021; Zanna and Bolton, 2020; Wang
et al., 2022; Sane et al., 2023). Error corrections to exist-
ing parameterizations have been learned in a similar man-
ner (Watt-Meyer et al., 2021; Bretherton et al., 2022). How-
ever, focusing solely on minimizing the short-term residual ε
presents several limitations:

1. The learned parameterization F̂ may not necessarily
minimize the climate-relevant loss function (Eq. 1),
which is concerned with longer-term statistics, as op-
posed to the shorter-term trajectories of states on which
SL approaches have focused. Schirber et al. (2013) pro-
vide an example of how short-term optimization over
trajectories can lead to no improvement or even the
degradation of the longer-term climate statistics in a
model.

2. Supervised learning of the parameterization F̂ is typ-
ically restricted to data generated computationally in
higher-resolution simulations, restricting it to the em-
ulation of imperfect models, because labeled parame-
terization output (Dq/Dt−S) is generally not available
from Earth observations.

3. The parameterization F̂ , typically learned for a multi-
tude of processes jointly, usually does not generalize
well out of the training distribution and is resolution
dependent, necessitating training with a broad range of
simulated climates (e.g., O’Gorman and Dwyer, 2018)
and re-training whenever the resolution is changed.

4. Climate models incorporating the learned parameteriza-
tion F̂ often struggle with conserving essential quan-
tities such as energy and exhibit instabilities during
extended integrations (e.g., Brenowitz and Bretherton,
2018) because minimizing the short-term residual ε
does not inherently ensure conservation or stability.

Some of the challenges associated with SL approaches
in climate modeling can be addressed or alleviated. For
example, longer rollouts of the material derivative Dq/Dt
have been shown to reduce instabilities when integrating the
learned parameterization F̂ into a climate model (Brenowitz
et al., 2020), and constraints on the loss function may be used

to enforce conservation laws (Beucler et al., 2021). Addition-
ally, the issue of resolution dependence in the learned pa-
rameterization F̂ can be tackled by shifting from learning
a finite-dimensional discrete mapping between model grid
points to learning an infinite-dimensional operator. Such op-
erators map between function spaces; they would effectively
represent the atmospheric or oceanic column state as a con-
tinuous function, rather than as a set of discrete points (e.g.,
Nelsen and Stuart, 2021; Kovachki et al., 2023). This ap-
proach allows for a more flexible representation of the un-
derlying physical processes that is potentially adaptable to
different resolutions without the need for retraining.

An alternative approach that avoids the restrictions of SL
views learning parameterizations F̂ and ML parameters ν
within them as an inverse problem (Kovachki and Stuart,
2019), minimizing a climate-relevant loss function (Eq. 1)
that focuses on statistics. However, this loss function is based
on data that are only indirectly informative about the process
being modeled; that is, the parameterization F̂ influences
the climate model output G(t;θ ,λ,ν;ζ 0) in the loss function
only indirectly, through the complex and nonlinear interac-
tions of other components in the climate model (Schneider
et al., 2017a). In this case, calculating gradients of the loss
function with respect to the parameters ν would involve dif-
ferentiation through the model G, which may not be differ-
entiable (e.g., at discontinuous phase transitions) or may be
difficult to differentiate.

In this context, learning about the parameterization F̂ is
no longer a straightforward regression of outputs onto inputs.
However, this does not preclude the inclusion of parameter-
rich and expressive deep-learning models within the parame-
terization. The parameters ν, together with the process-model
parameters θ , can be estimated by minimizing a climate-
relevant loss function using derivative-free ensemble Kalman
inversion techniques, which are proven to scale well to high-
dimensional problems, can be used with models that are
not differentiable or are difficult to differentiate, and have
smoothing properties that are desirable for chaotic dynami-
cal systems such as the climate system (Kovachki and Stu-
art, 2019). As in many inverse problems, minimizing the loss
function is often an ill-posed problem with many possible so-
lutions which may be sensitive to small changes in the data
(Tarantola, 1987; Hansen, 1998; Iglesias et al., 2013). This
requires regularization, for example, through the use of prior
information on the parameters ν to select “good” parameter
sets among the many that may minimize the loss. Such prior
information may be obtained, for example, by pre-training on
computationally generated data, which can be more detailed
than observational data (Lopez-Gomez et al., 2022). This in-
verse problem approach, augmented with prior information,
not only makes it possible to learn from heterogeneous and
noisy Earth observations but also allows for the quantifica-
tion of uncertainties (e.g., Cleary et al., 2021; Huang et al.,
2022). Stochastic elements can also be incorporated into the
parameterizations (e.g., Schneider et al., 2021b), which, as
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discussed in Sect. 3, is particularly relevant in the absence of
clear scale separation, offering a more principled and realis-
tic representation of climate processes.

This expanded perspective on incorporating AI methods
into climate models broadens the scope of where these meth-
ods can be effectively integrated. It moves beyond automati-
cally calibrating scalar parameters in climate models (Zhang
et al., 2015; Couvreux et al., 2021; Hourdin et al., 2023) to
encompass higher-dimensional parameter spaces, including
those relevant to deep-learning approaches. Rather than fo-
cusing solely on areas where SL is feasible, the emphasis
shifts to where AI can have the most significant impact. The
key challenge in climate modeling and prediction is minimiz-
ing the loss function (Eq. 1) for unobserved climate statistics,
especially in global-warming scenarios where these statis-
tics may fall outside the range of observed data. While tra-
ditional methods such as withholding part of the data for
cross-validation remain essential, they fall short in ensuring
model generalization beyond the training dataset. This lim-
itation becomes evident when attempting tasks such as pre-
dicting rapid adjustments in cloud cover (Gregory and Webb,
2008; Sherwood et al., 2015; Bretherton, 2015) or changes in
the photosynthetic productivity of the biosphere (Luo, 2007)
in response to increased CO2 concentrations, given the lim-
ited range of CO2 concentration variations and their inextri-
cable correlation with temperature variations in recent obser-
vations. Embedding AI-driven closures within process-based
parameterizations rooted in conservation laws can help in ob-
taining models that generalize out of the observed climate
distribution.

A valuable insight emerges from the success of similarity
theories, such as the Monin–Obukhov similarity theory dis-
cussed in Sect. 3, which generalized effectively from a few
specific measurements to a wide range of global conditions.
Similarly, AI methods may be most effective when used to
learn universal functions of relevant nondimensional variable
groups: functions that likely remain invariant across differ-
ent climates and are well sampled in current climate condi-
tions, including the seasonal cycle, whose amplitude in many
quantities exceeds the climate change signals we expect for
the coming decades (Schneider et al., 2021a). If such learn-
ing minimizes a loss (Eq. 1) in an online setting – that is,
while the learned functions are integrated into the large-scale
model – it is more likely to lead to long-term stable models,
because the existence of the statistics in the loss function im-
plies that the model is stable over the timescales over which
the statistics are aggregated. For example, rather than learn-
ing the convective-flux divergence F̂ for water or energy
holistically, it is likely beneficial to focus on learning cor-
rections to process-based parameterizations or key unknown
functions such as entrainment and detrainment rates within
the coarse-grained conservation laws for water and energy,
embedded online in a larger forward model. Lopez-Gomez
et al. (2022) demonstrated that this approach can success-
fully learn parameterizations that generalize well to warmer

climates not encountered during training; related results with
gradient-based online learning approaches are emerging for
turbulence closure models (Shankar et al., 2024). An an-
cillary benefit is that the quantification of uncertainties be-
comes more straightforward, and the parameterizations re-
main interpretable, facilitating the investigation of mecha-
nisms, for example, of cloud feedbacks and the differen-
tial effects of changing greenhouse gas concentrations and
warming in them. Models for structural errors can similarly
be incorporated where the errors are actually made – within
the parameterizations of unresolvable small-scale processes
(Levine and Stuart, 2022; Wu et al., 2024), rather than in the
space of the model output (Kennedy and O’Hagan, 2001).

Therefore, we advocate for an approach that leverages our
extensive knowledge of conservation laws, expressed as par-
tial differential equations, and enhances it with AI methods
to learn about closure functions in parameterizations where
reductionist first-principle approaches fall short. The central
challenge is to find a balance: using first principles to en-
code system knowledge and conservation laws for general-
ization and interpretability while avoiding overly rigid con-
straints that limit the model’s adaptability to diverse datasets.
This balance will vary across different components of the cli-
mate system, and finding it requires domain expertise. For in-
stance, first-principle modeling has proven less effective than
data-driven approaches for river flows and snowpack thick-
ness, where systematic coarse-graining is challenging and
observed spatial and temporal variations plausibly sample
future scenarios (Kratzert et al., 2018, 2019; Nearing et al.,
2021; Kratzert et al., 2023; Moshe et al., 2020; Charbonneau
et al., 2023; Nearing et al., 2024). In contrast, the modeling
of phenomena such as turbulence, convection, and clouds,
including their microphysics, may benefit more from reduc-
tionist process-informed modeling because, among other rea-
sons, rapid radiative adjustments impact clouds and cannot
be learned solely from data; however, spatial and tempo-
ral variations in data may sample climate-invariant closure
functions appearing in them well. High-resolution simula-
tions, for example, of the dynamics of clouds and convection
(Hourdin et al., 2021; Shen et al., 2022) or of ocean turbu-
lence (Wagner et al., 2024), Lagrangian particle-based simu-
lations of cloud microphysics (Shima et al., 2009; Morrison
et al., 2020; Azimi et al., 2024), and laboratory data provide
increasingly rich datasets for the pre-training of individual
parameterizations and closure functions within them. Pre-
training can occur in a compartmentalized manner, process
by process, before jointly fine-tuning all processes with ob-
servations. Striking the right balance between first-principle
and data-driven approaches is crucial for developing climate
models that are physically grounded and trustworthy for pre-
dictions beyond observed climates yet flexible enough to in-
tegrate a wide range of data, leading to more accurate and
reliable predictions.
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6 A balanced path forward

Climate models, as a form of techne, aim to provide the
most accurate and reliable predictions of how the climate
system’s statistics will change under unobserved conditions,
such as increased greenhouse gas concentrations or changes
in aerosol loadings. Improving climate models is urgently
necessary for proactive and effective adaptation to the com-
ing climate changes. However, current models fall short in
accuracy and reliability (Fiedler et al., 2021; President’s
Council of Advisors on Science and Technology, 2023), as
evidenced by their still significant errors in simulating ob-
served climate statistics (Fig. 1).

Progress in climate modeling has been gradual and
achieved primarily through increasing the resolution and re-
fining process-based parameterizations for small, unresolv-
able scales. Yet, these approaches alone or in combination
seem unlikely to produce a significant leap in model accu-
racy and reliability. The complexity of the climate system
limits the effectiveness of reductionist approaches in devel-
oping process-based parameterizations. Additionally, while
higher resolution is beneficial, it is no panacea. At any reso-
lution reachable in the foreseeable future, many aspects, such
as large portions of the atmosphere’s and oceans’ vertical
motion and finer scales such as those controlling cloud mi-
crophysics, will remain unresolvable.

AI tools, in their broadest sense, hold promise for break-
throughs due to their capacity to learn from high-resolution
simulations and from the extensive array of Earth obser-
vations available. However, they cannot operate in isola-
tion. Climate change prediction is an archetypal out-of-
distribution prediction challenge. It is difficult to envision
how an unsupervised AI system could learn the effects of
unseen greenhouse gas concentrations on aspects such as
cloud cover or the biosphere’s photosynthetic productivity
using only higher-resolution simulations and current and re-
cent past observations. The limited range of greenhouse gas
variations is closely correlated with temperature changes in
recent observations, making it challenging to isolate their in-
dividual effects, which need to be predicted. Unlike weather
forecasting, where short-term predictions can be validated
daily and long-term stability and conservation properties of
simulations are less critical, climate prediction lacks the lux-
ury of immediate validation. Conservation, long-term stabil-
ity in an “infinite forecast”, and reliable generalization be-
yond observed climate states are essential. Trust in climate
predictions and the absence of immediate validation addi-
tionally require models to be interpretable and uncertainties
in predictions to be quantified.

Therefore, a balanced approach that capitalizes on the
strengths of all three dimensions – advancing process-based
parameterizations, maximizing resolution while allowing en-
sembles of simulations, and harnessing AI tools to incorpo-
rate data-driven models where reductionism reaches its limits
– is, in our view, the most promising path forward (Schnei-

Figure 4. A balanced approach capitalizing on all tools at our dis-
posal is the most promising path toward accurate, interpretable,
and trustworthy climate predictions and projections that can inform
decision-making.

der et al., 2021a) (Fig. 4). In situations where we have well-
defined equations of motion and can systematically coarse-
grain them, AI may be optimally employed to learn data-
driven yet climate-invariant closure functions of nondimen-
sional variable groups arising within coarse-grained equa-
tions. This approach is akin to how data have been used to
close Monin–Obukhov similarity theory for the atmospheric
surface layer. Conversely, in situations where first-principle
modeling and systematic coarse-graining are less effective,
but where spatial and temporal climate variations – partic-
ularly the seasonal cycle – may plausibly represent future
climate states, more direct data-driven models could prove
more fruitful. This may be particularly relevant for various
aspects of land surface modeling, such as snow, vegetation,
and river models.

To catalyze advances in climate modeling, we advocate
for the establishment of well-defined competitive challenge
problems, employing open benchmark data, shared code, and
clear quantitative success metrics. Such challenge problems
can foster innovation in climate process modeling, as they
have in other areas, such as machine vision, natural-language
processing, and protein folding (Donoho, 2023). For exam-
ple, benchmark challenges for cloud parameterizations could
leverage libraries of high-resolution simulations, employing
current-climate simulations for training and altered climate
conditions for evaluation (e.g., Hourdin et al., 2021; Shen
et al., 2022; Lopez-Gomez et al., 2022; Yu et al., 2023).
Other benchmark challenges may focus on the seasonal cy-
cle of land carbon uptake, evapotranspiration, snow cover, or
river discharge, using a subset of the available data for model
training while reserving other regional datasets for evalua-
tion. Benchmarking can also include retrospective analysis
of emergent properties such as climate trends in historical
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simulations, as long as the metrics evaluated were not used
in model calibration. Designing such structured challenges
can drive innovation, help determine what balance between
process-based and data-driven methods is most successful,
and lead to more accurate and reliable climate models.

Moreover, to engender trust in climate predictions, it
is imperative to develop and maintain carefully designed
open-source software, which should be accompanied by
rigorous unit and integration tests. This approach ensures
transparency, reproducibility, and replicability (National
Academies of Sciences, Engineering, and Medicine, 2019),
enabling the scientific community and stakeholders to scruti-
nize and validate the models’ predictions. Trustworthy soft-
ware infrastructure is a cornerstone for building confidence
in climate models and their predictions, especially as we in-
tegrate more complex data-driven components into modeling
frameworks.

Ultimately, the utility of climate predictions for decision-
making hinges on their trustworthiness and their ability to
explore a broad range of possible climate outcomes through
ensembles (Deser et al., 2020; Bevacqua et al., 2023). A bal-
anced approach that is grounded in decades of accumulated
intellectual capital, rigorous approximations, and carefully
designed software is likely to foster such trust. This approach
can enable a clear tracing of the causal chain leading to possi-
ble climate changes, allowing for interpretation and scrutiny
in line with centuries-old scientific traditions. If successful,
this strategy may eventually also narrow the gap between
episteme and techne in climate modeling. It may deepen our
understanding of the climate system’s complexities, allow-
ing us to investigate models that integrate data-driven com-
ponents and to use them to shed light on very different past
climates, such as at the Last Glacial Maximum or the Eocene
hothouse climates. Such a convergence would mark a signif-
icant advance in both the science and practical application of
climate modeling.
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