Articles | Volume 23, issue 14
https://doi.org/10.5194/acp-23-8103-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-8103-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Levels of persistent organic pollutants (POPs) in the Antarctic atmosphere over time (1980 to 2021) and estimation of their atmospheric half-lives
Thais Luarte
CORRESPONDING AUTHOR
Programa de Doctorado en Medicina de la Conservación, Facultad
Ciencias de La Vida, Universidad Andrés Bello, Santiago, 8370251, Chile
GEMA, Center for Genomics, Ecology & Environment, Universidad
Mayor, Camino La Pirámide, 5750 Huechuraba, Santiago, 8580745, Chile
Anillo en Ciencia y Tecnología Antártica POLARIX, Santiago de Chile, Chile
Victoria A. Gómez-Aburto
GEMA, Center for Genomics, Ecology & Environment, Universidad
Mayor, Camino La Pirámide, 5750 Huechuraba, Santiago, 8580745, Chile
Anillo en Ciencia y Tecnología Antártica POLARIX, Santiago de Chile, Chile
Ignacio Poblete-Castro
Biosystems Engineering Laboratory, Department of Chemical and
Bioprocess Engineering, Universidad de Santiago de Chile (USACH), 9170022, Santiago,
Chile
Eduardo Castro-Nallar
Anillo en Ciencia y Tecnología Antártica POLARIX, Santiago de Chile, Chile
Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Campus Talca, Av. Lircay s/n, Talca, 3460000, Chile
Centro de Ecología Integrativa, Universidad de Talca, Campus
Talca, Av. Lircay s/n, Talca, 3460000, Chile
Nicolas Huneeus
Anillo en Ciencia y Tecnología Antártica POLARIX, Santiago de Chile, Chile
Center for Climate and Resilience Research (CR), Santiago,
8370415, Chile
Department of Geophysics, Faculty of Physical and Mathematical
Sciences, University of Chile, Santiago, 8370456, Chile
Marco Molina-Montenegro
Anillo en Ciencia y Tecnología Antártica POLARIX, Santiago de Chile, Chile
Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Facultad de Ciencias del Mar, Univ. Católica del Norte, Larrondo 1281, Coquimbo,
Chile
Claudia Egas
Centro de Ecología Integrativa, Universidad de Talca, Campus
Talca, Av. Lircay s/n, Talca, 3460000, Chile
Germán Azcune
Departamento de Desarrollo Tecnológico – DDT, Centro
Universitario Regional del Este (CURE), Universidad de la República,
Ruta 9 y Ruta 15, Rocha, 27000, Uruguay
Andrés Pérez-Parada
Departamento de Desarrollo Tecnológico – DDT, Centro
Universitario Regional del Este (CURE), Universidad de la República,
Ruta 9 y Ruta 15, Rocha, 27000, Uruguay
Rainier Lohmann
Graduate School of Oceanography, University of Rhode Island,
Narragansett, Rhode Island 02882, USA
Pernilla Bohlin-Nizzetto
NILU – Norwegian Institute for Air Research, P.O. Box 100, Kjeller, 2027, Norway
Jordi Dachs
Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona
18-26, Barcelona, Catalonia, 08034, Spain
Susan Bengtson-Nash
Southern Ocean Persistent Organic Pollutants Program, Centre for
Planetary Health and Food Security, School of Environment and Science,
Griffith University, Nathan, Queensland, 4111, Australia
Gustavo Chiang
Center for Sustainable Research & Department of Ecology and
Biodiversity, Faculty of Life Sciences, Universidad Andres Bello, Santiago,
8370251, Chile
Karla Pozo
Facultad de Ingeniería y Tecnología, Universidad San
Sebastián, Lientur 1457, Concepción, Chile
RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
Cristóbal J. Galbán-Malagón
CORRESPONDING AUTHOR
GEMA, Center for Genomics, Ecology & Environment, Universidad
Mayor, Camino La Pirámide, 5750 Huechuraba, Santiago, 8580745, Chile
Anillo en Ciencia y Tecnología Antártica POLARIX, Santiago de Chile, Chile
Institute of Environment, Florida International University,
University Park, Miami, Florida 33199, USA
Related authors
No articles found.
Laura Gallardo, Charlie Opazo, Camilo Menares, Kevin Basoa, Nikos Daskalakis, Maria Kanakidou, Carmen Vega, Nicolás Huneeus, Roberto Rondanelli, and Rodrigo Seguel
EGUsphere, https://doi.org/10.5194/egusphere-2025-5643, https://doi.org/10.5194/egusphere-2025-5643, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We assert the role of methane and other drivers of change in explaining the growing tropospheric ozone (O3) trend at Tololo (30.17° S, 70.80° W, 2154 m a.s.l.), and we quantify the contributions of biomass burning and stratosphere-to-troposphere transport on O3, particularly during the late winter and spring. These findings enhance understanding of O3 variability in the Southern Hemisphere free troposphere and underscore the importance of sustained observations at Tololo amid climate change.
Ricardo Morales-Betancourt, Cristóbal Galbán-Malagón, Thalia Montejo-Barato, Estela Blanco, Paula Tapia-Pino, Rosario Vargas, Cynthia Cordova, Colin Finnegan, Abenezer Shankute, Nicolas Jorge Huneeus, Sebastián Hernandez-Suarez, Paola Valencia, Marcelo Mena-Carrasco, and Robert B. Jackson
EGUsphere, https://doi.org/10.5194/egusphere-2025-3457, https://doi.org/10.5194/egusphere-2025-3457, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We measured methane and nitrogen oxide emissions from household gas stoves in Chile and Colombia. We found that emissions are much higher than official estimates, mainly due to small leaks and ignition. These hidden emissions contribute to climate change and air pollution. Our work shows the need for better measurement, reporting, and appliance standards to reduce environmental impacts from everyday cooking.
Jorge E. Pachón, Mariel A. Opazo, Pablo Lichtig, Nicolas Huneeus, Idir Bouarar, Guy Brasseur, Cathy W. Y. Li, Johannes Flemming, Laurent Menut, Camilo Menares, Laura Gallardo, Michael Gauss, Mikhail Sofiev, Rostislav Kouznetsov, Julia Palamarchuk, Andreas Uppstu, Laura Dawidowski, Nestor Y. Rojas, María de Fátima Andrade, Mario E. Gavidia-Calderón, Alejandro H. Delgado Peralta, and Daniel Schuch
Geosci. Model Dev., 17, 7467–7512, https://doi.org/10.5194/gmd-17-7467-2024, https://doi.org/10.5194/gmd-17-7467-2024, 2024
Short summary
Short summary
Latin America (LAC) has some of the most populated urban areas in the world, with high levels of air pollution. Air quality management in LAC has been traditionally focused on surveillance and building emission inventories. This study performed the first intercomparison and model evaluation in LAC, with interesting and insightful findings for the region. A multiscale modeling ensemble chain was assembled as a first step towards an air quality forecasting system.
Ruben Urraca, Greet Janssens-Maenhout, Nicolás Álamos, Lucas Berna-Peña, Monica Crippa, Sabine Darras, Stijn Dellaert, Hugo Denier van der Gon, Mark Dowell, Nadine Gobron, Claire Granier, Giacomo Grassi, Marc Guevara, Diego Guizzardi, Kevin Gurney, Nicolás Huneeus, Sekou Keita, Jeroen Kuenen, Ana Lopez-Noreña, Enrique Puliafito, Geoffrey Roest, Simone Rossi, Antonin Soulie, and Antoon Visschedijk
Earth Syst. Sci. Data, 16, 501–523, https://doi.org/10.5194/essd-16-501-2024, https://doi.org/10.5194/essd-16-501-2024, 2024
Short summary
Short summary
CoCO2-MOSAIC 1.0 is a global mosaic of regional bottom-up inventories providing gridded (0.1×0.1) monthly emissions of anthropogenic CO2. Regional inventories include country-specific information and finer spatial resolution than global inventories. CoCO2-MOSAIC provides harmonized access to these datasets and can be considered as a regionally accepted reference to assess the quality of global inventories, as done in the current paper.
Rémy Lapere, Nicolás Huneeus, Sylvain Mailler, Laurent Menut, and Florian Couvidat
Atmos. Chem. Phys., 23, 1749–1768, https://doi.org/10.5194/acp-23-1749-2023, https://doi.org/10.5194/acp-23-1749-2023, 2023
Short summary
Short summary
Glaciers in the Andes of central Chile are shrinking rapidly in response to global warming. This melting is accelerated by the deposition of opaque particles onto snow and ice. In this work, model simulations quantify typical deposition rates of soot on glaciers in summer and winter months and show that the contribution of emissions from Santiago is not as high as anticipated. Additionally, the combination of regional- and local-scale meteorology explains the seasonality in deposition.
Mauricio Osses, Néstor Rojas, Cecilia Ibarra, Víctor Valdebenito, Ignacio Laengle, Nicolás Pantoja, Darío Osses, Kevin Basoa, Sebastián Tolvett, Nicolás Huneeus, Laura Gallardo, and Benjamín Gómez
Earth Syst. Sci. Data, 14, 1359–1376, https://doi.org/10.5194/essd-14-1359-2022, https://doi.org/10.5194/essd-14-1359-2022, 2022
Short summary
Short summary
This paper presents a detailed estimate of on-road vehicle emissions for Chile, between 1990–2020, and an analysis of emission trends for greenhouse gases and local pollutants. Data are disaggregated by type of vehicle and region at 0.01° × 0.01°. While the vehicle fleet grew 5-fold, CO2 emissions increased at a lower rate and local pollutants decreased. These trends can be explained by changes in improved vehicle technologies, better fuel quality and enforcement of emission standards.
Stephen M. Platt, Øystein Hov, Torunn Berg, Knut Breivik, Sabine Eckhardt, Konstantinos Eleftheriadis, Nikolaos Evangeliou, Markus Fiebig, Rebecca Fisher, Georg Hansen, Hans-Christen Hansson, Jost Heintzenberg, Ove Hermansen, Dominic Heslin-Rees, Kim Holmén, Stephen Hudson, Roland Kallenborn, Radovan Krejci, Terje Krognes, Steinar Larssen, David Lowry, Cathrine Lund Myhre, Chris Lunder, Euan Nisbet, Pernilla B. Nizzetto, Ki-Tae Park, Christina A. Pedersen, Katrine Aspmo Pfaffhuber, Thomas Röckmann, Norbert Schmidbauer, Sverre Solberg, Andreas Stohl, Johan Ström, Tove Svendby, Peter Tunved, Kjersti Tørnkvist, Carina van der Veen, Stergios Vratolis, Young Jun Yoon, Karl Espen Yttri, Paul Zieger, Wenche Aas, and Kjetil Tørseth
Atmos. Chem. Phys., 22, 3321–3369, https://doi.org/10.5194/acp-22-3321-2022, https://doi.org/10.5194/acp-22-3321-2022, 2022
Short summary
Short summary
Here we detail the history of the Zeppelin Observatory, a unique global background site and one of only a few in the high Arctic. We present long-term time series of up to 30 years of atmospheric components and atmospheric transport phenomena. Many of these time series are important to our understanding of Arctic and global atmospheric composition change. Finally, we discuss the future of the Zeppelin Observatory and emerging areas of future research on the Arctic atmosphere.
Nicolás Álamos, Nicolás Huneeus, Mariel Opazo, Mauricio Osses, Sebastián Puja, Nicolás Pantoja, Hugo Denier van der Gon, Alejandra Schueftan, René Reyes, and Rubén Calvo
Earth Syst. Sci. Data, 14, 361–379, https://doi.org/10.5194/essd-14-361-2022, https://doi.org/10.5194/essd-14-361-2022, 2022
Short summary
Short summary
This study presents the first high-resolution national inventory of anthropogenic emissions for Chile (Inventario Nacional de Emisiones Antropogénicas, INEMA). Emissions for vehicular, industrial, energy, mining and residential sectors are estimated for the period 2015–2017 and spatially distributed onto a high-resolution grid (1 × 1 km). This inventory will support policies seeking to mitigate climate change and improve air quality by providing qualified scientific spatial emission information.
Paula Castesana, Melisa Diaz Resquin, Nicolás Huneeus, Enrique Puliafito, Sabine Darras, Darío Gómez, Claire Granier, Mauricio Osses Alvarado, Néstor Rojas, and Laura Dawidowski
Earth Syst. Sci. Data, 14, 271–293, https://doi.org/10.5194/essd-14-271-2022, https://doi.org/10.5194/essd-14-271-2022, 2022
Short summary
Short summary
This work presents the results of the first joint effort of South American and European researchers to generate regional maps of emissions. The PAPILA dataset is a collection of annual emission inventories of reactive gases (CO, NOx, NMVOCs, NH3, and SO2) from anthropogenic sources in the region for the period 2014–2016. This was developed on the basis of the CAMS-GLOB-ANT v4.1 dataset, enriching it with derived data from locally available emission inventories for Argentina, Chile, and Colombia.
Rémy Lapere, Laurent Menut, Sylvain Mailler, and Nicolás Huneeus
Atmos. Chem. Phys., 21, 6431–6454, https://doi.org/10.5194/acp-21-6431-2021, https://doi.org/10.5194/acp-21-6431-2021, 2021
Short summary
Short summary
Based on modeling, the transport dynamics of ozone and fine particles in central Chile are investigated. Santiago emissions are found to influence air quality along a 1000 km plume as far as Argentina and northern Chile. In turn, emissions outside the metropolis contribute significantly to its recorded particles concentration. Emissions of precursors from Santiago are found to lead to the formation of a persistent ozone bubble in altitude, a phenomenon which is described for the first time.
Laura Röhler, Pernilla Bohlin-Nizzetto, Pawel Rostkowski, Roland Kallenborn, and Martin Schlabach
Atmos. Chem. Phys., 21, 1697–1716, https://doi.org/10.5194/acp-21-1697-2021, https://doi.org/10.5194/acp-21-1697-2021, 2021
Short summary
Short summary
A novel non-destructive, sulfuric-acid-free clean-up method for high-volume air samples was developed and evaluated with organic chemicals covering a wide range of polarities (logP 2–11). This method, providing quantitative results of comparable quality to traditional methods, was combined with newly developed data treatment strategies for simultaneous suspect and non-target screening. The application to air samples from southern Norway revealed 90 new potential chemicals of emerging concern.
Cited articles
Atkinson, R.: Kinetics and mechanisms of the gas-phase reactions of the
hydroxyl radical with organic compounds under atmospheric conditions, Chem. Rev., 86,
69–201, 1986.
Avila, B. S., Mendoza, D. P., Ramírez, A., and Peñuela, G. A.:
Occurrence and Distribution of Persistent Organic Pollutants (POPs) in the
Atmosphere of the Andean City of Medellin, Colombia, Chemosphere, 307,
135648, https://doi.org/10.1016/j.chemosphere.2022.135648, 2021.
Azcune, G., Griffero, L., Pareja, L., Ríos, J. M.,
Galbán-Malagón, C., and Pérez-Parada, A.: Trends in the monitoring
of legacy and emerging organic pollutants in protected areas, Trends
Environ. Anal. Chem., 34, e00165, https://doi.org/10.1016/j.teac.2022.e00165, 2022.
Baek, S. Y., Choi, S. D., and Chang, Y. S.: Three-year atmospheric monitoring of
organochlorine pesticides and polychlorinated biphenyls in polar regions and
the South Pacific, Environ. Sci. Technol., 45, 4475–4482, https://doi.org/10.1021/es1042996, 2011.
Barber, J. L., Sweetman, A. J., Thomas, G. O., Braekevelt, E., Stern, G. A.,
and Jones, K. C.: Spatial and temporal variability in air concentrations of
short-chain (C10–C13) and medium-chain (C14–C17) chlorinated n-alkanes
measured in the U.K. atmosphere, Environ. Sci. Technol., 39, 4407–4415, https://doi.org/10.1021/es047949w, 2005.
Bengtson-Nash, S.: Persistent organic pollutants in Antarctica: current and
future research priorities, J. Environ. Monit., 13, 497–504, https://doi.org/10.1039/C0EM00230E, 2011.
Bengtson-Nash, S. M., Wild, S. J., Hawker, D. W., Cropp, R. A., Hung, H.,
Wania, F., Xiao, H., Bohlin-Nizzetto, P., Bignert, A., and Broomhall, S.:
Persistent organic pollutants in the East Antarctic atmosphere: inter-annual
observations from 2010 to 2015 using high-flow-through passive sampling,
Environ. Sci. Technol., 51, 13929–13937, https://doi.org/10.1021/acs.est.7b04224,
2017.
Bidleman, T. F., Walla, M. D., Roura, R., Carr, E., and Schmidt, S.:
Organochlorine pesticides in the atmosphere of the Southern Ocean and
Antarctica, January–March 1990, Mar. Pollut. Bull., 26, 258–262, https://doi.org/10.1016/0025-326X(93)90064-Q, 1993.
Bigot, M., Muir, D. C., Hawker, D. W., Cropp, R., Dachs, J., Teixeira, C.
F., and Bengtson Nash, S.: Air–seawater exchange of organochlorine pesticides
in the Southern Ocean between Australia and Antarctica, Environ. Sci.
Technol., 50, 8001–8009, https://doi.org/10.1021/acs.est.6b01970, 2016.
Blais, J. M., Macdonald, R. W., Mackay, D., Webster, E., Harvey, C., and Smol,
J. P.: Biologically mediated transport of contaminants to aquatic systems,
Environ. Sci. Technol., 41, 1075–1084, https://doi.org/10.1021/es061314a, 2007.
Borgå, K. and Di Guardo, A.: Comparing measured and predicted PCB
concentrations in Arctic seawater and marine biota, Sci. Total
Environ., 342, 281–300, https://doi.org/10.1016/j.scitotenv.2004.12.043, 2005.
Bourgeon, S., Leat, E. H., Magnusdottir, E., Fisk, A. T., Furness, R. W.,
Strøm, H., and Gabrielsen, G. W.: Individual variation in biomarkers of
health: influence of persistent organic pollutants in Great skuas
(Stercorarius skua) breeding at different geographical locations, Environ. Res., 118, 31–39,
https://doi.org/10.1016/j.envres.2012.08.004, 2012.
Braune, B. M., Outridge, P. M., Fisk, A. T., Muir, D. C. G., Helm, P. A.,
Hobbs, K., Hoekstra, P. F., Kuzyk, Z. A., Kwan, M., Letcher, R. J. Lockhart,
W. L., Norstrom, R. J., Stern, G. A., and Stirling, I.: Persistent organic
pollutants and mercury in marine biota of the Canadian Arctic: an overview
of spatial and temporal trends, Sci. Total Environ., 351, 4–56, https://doi.org/10.1016/j.scitotenv.2004.10.034, 2005.
Brown, F. R., Whitehead, T. P., Park, J. S., Metayer, C., and Petreas, M. X.:
Levels of non-polybrominated diphenyl ether brominated flame retardants in
residential house dust samples and fire station dust samples in California,
Environ. Res., 135, 9–14, https://doi.org/10.1016/j.envres.2014.08.022, 2014.
Brown, T. N. and Wania, F.: Screening chemicals for the potential to be
persistent organic pollutants: A case study of Arctic contaminants, Environ.
Sci. Technol., 42, 5202–5209, https://doi.org/10.1021/es8004514, 2008.
Cabrerizo, A., Dachs, J., Barceló, D., and Jones, K. C.: Cclimatic and
biogeochemical controls on the remobilization and reservoirs of persistent
organic pollutants in Antarctica, Environ. Sci. Technol., 47, 4299–4306,
https://doi.org/10.1021/es400471c, 2013.
Cabrerizo, A., Larramendi, R., Albar, J. P., and Dachs, J.: Persistent
organic pollutants in the atmosphere of the Antarctic Plateau, Atmos. Environ., 149, 104–108,
https://doi.org/10.1016/j.atmosenv.2016.11.015, 2017.
Casal, P., Casas, G., Vila-Costa, M., Cabrerizo, A., Pizarro, M., Jimenez, B., and Dachs, J.: Snow amplification of persistent organic pollutants at coastal Antarctica, Environ. Sci. Technol., 53, 8872–8882, 2019.
Casas, G., Martinez-Varela, A., Vila-Costa, M., Jiménez, B., and Dachs, J.: Rain amplification of persistent organic pollutants, Environ. Sci. Technol., 55, 12961–12972, https://doi.org/10.1021/acs.est.1c03295, 2021.
Channa, K. R., Röllin, H. B., Wilson, K. S., Nøst, T. H., Odland, J.
Ø., Naik, I., and Sandanger, T. M.: Regional variation in pesticide
concentrations in plasma of delivering women residing in rural Indian Ocean
coastal regions of South Africa, J. Environ Monit., 14, 2952–2960, https://doi.org/10.1039/C2EM30264K, 2012.
Cincinelli, A., Martellini, T., Del Bubba, M., Lepri, L., Corsolini, S.,
Borghesi, N., King, M. D., and Dickhut, R. M.: Organochlorine pesticide
air–water exchange and bioconcentration in krill in the Ross Sea, Environ.
Pollut., 157, 2153–2158, https://doi.org/10.1016/j.envpol.2009.02.010, 2009.
Dachs, J., Lohmann, R., Ockenden, W. A., Méjanelle, L., Eisenreich, S.
J., and Jones, K. C.: Oceanic biogeochemical controls on global dynamics of
persistent organic pollutants, Environ. Sci. Technol., 36, 4229–4237,
https://doi.org/10.1021/es025724k, 2002.
De March, B. G. E., De Wit, C. A., Muir, D. C. G., Braune, B. M., Gregor, D. J., Norstrom, R. J., and Stange, K.: Persistent organic pollutants, in: AMAP assessment report: Arctic pollution issues, 183–371, Oslo, Norway, ISBN 82-7655-061-4, 1998.
Dickhut, R. M., Cincinelli, A., Cochran, M., and Ducklow, H. W.: Atmospheric
concentrations and air–water flux of organochlorine pesticides along the
Western Antarctic Peninsula, Environ. Sci. Technol., 39, 465–470, https://doi.org/10.1021/es048648p, 2005.
Die, Q., Lu, A., Li, C., Li, H., Kong, H., and Li, B.: Occurrence of dioxin-like
POPs in soils from urban green space in a metropolis, North China:
implication to human exposure, Environ. Sci. Pollut. Res., 28,
5587–5597, https://doi.org/10.1007/s11356-020-10953-3, 2021.10.1007/s11356-020-10953-3,
2021.
FAO/UNEP: Polychlorinated biphenyls, in: Operation of the prior informed consent procedure for banned or severely restricted chemicals in international trade: decision guidance documents, FAO/United Nations, Rome-Geneva,
11–16, 1992.
Fisk, A. T., Hobson, K. A., and Norstrom, R. J.: Influence of chemical and
biological factors on trophic transfer of persistent organic pollutants in
the Northwater Polynya marine food web, Environ. Sci. Technol., 35, 732–738,
https://doi.org/10.1021/es001459w, 2001a.
Fisk, A. T., Stern, G. A., Hobson, K. A., Strachan, W. J., Loewen, M. D., and
Norstrom, R. J.: Persistent organic pollutants (POPs) in a small,
herbivorous, Arctic marine zooplankton (Calanus hyperboreus): trends from April to July and the
influence of lipids and trophic transfer, Mar. Pollut. Bull., 43, 93–101,
https://doi.org/10.1016/S0025-326X(01)00038-8, 2001b.
Fuoco, R., Colombini, M. P., Abete, C., and Carignani, S.: Polychlorobiphenyls
in sediment, soil and sea water samples from Antarctica, Int. J. Environ.
Anal. Chem., 61, 309–318, https://doi.org/10.1080/03067319508027246, 1995.
Galbán-Malagón, C., Berrojalbiz, N., Ojeda, M. J., and Dachs, J.: The
oceanic biological pump modulates the atmospheric transport of persistent
organic pollutants to the Arctic, Nat. Commun., 3, 862, https://doi.org/10.1038/ncomms1858, 2012.
Galbán-Malagón, C. J., Del Vento, S., Berrojalbiz, N., Ojeda, M. J., and
Dachs, J.: Polychlorinated biphenyls, hexachlorocyclohexanes and
hexachlorobenzene in seawater and phytoplankton from the Southern Ocean
(Weddell, South Scotia, and Bellingshausen Seas), Environ. Sci. Technol., 47,
5578–5587, https://doi.org/10.1021/es400030q, 2013a.
Galbán-Malagón, C., Cabrerizo, A., Caballero, G., and Dachs, J.:
Atmospheric occurrence and deposition of hexachlorobenzene and
hexachlorocyclohexanes in the Southern Ocean and Antarctic Peninsula,
Atmos. Environ., 80, 41–49, https://doi.org/10.1016/j.atmosenv.2013.07.061, 2013b.
Galbán-Malagón, C. J., Del Vento, S., Cabrerizo, A., and Dachs, J.: Factors affecting the atmospheric occurrence and deposition of polychlorinated biphenyls in the Southern Ocean, Atmos. Chem. Phys., 13, 12029–12041, https://doi.org/10.5194/acp-13-12029-2013, 2013c.
Galbán-Malagón, C. J., Berrojalbiz, N., Gioia, R., and Dachs, J.: The
“Degradative” and “Biological” Pumps Controls on the Atmospheric
Deposition and Sequestration of Hexachlorocyclohexanes and Hexachlorobenzene
in the North Atlantic and Arctic Oceans, Environ. Sci. Technol., 47,
7195–7203, https://doi.org/10.1021/es4011256, 2013d.
Galbán-Malagón, C. J., Hernán, G., Abad, E., and Dachs, J.:
Persistent organic pollutants in krill from the Bellingshausen, South
Scotia, and Weddell Seas, Sci. Total. Environ., 610–611, 1487–1495, https://doi.org/10.1016/j.scitotenv.2017.08.108, 2018.
Gambaro, A., Manodori, L., Zangrando, R., Cincinelli, A., Capodaglio, G., and
Cescon, P.: Atmospheric PCB concentrations at Terra Nova Bay, Antarctica,
Environ. Sci. Technol., 39, 9406–9411, https://doi.org/10.1021/es0510921, 2005.
Garcia-Cegarra, A. M., Jung, J. L., Orrego, R., Padilha, J. D. A., Malm, O.,
Ferreira-Braz, B., Santelli, R. E., Pozo. K., Pribylova, P., Alvarado-Rybak,
M., Azat, C., Kidd, K. A., Espejo, W., Chiang, G., and Bahamonde, P.:
Persistence, bioaccumulation and vertical transfer of pollutants in
long-finned pilot whales stranded in Chilean Patagonia, Sci. Total
Environ., 770, 145259, https://doi.org/10.1016/j.scitotenv.2021.145259, 2021.
Gioia, R., Lohmann, R., Dachs, J., Temme, C., Lakaschus, S., Schulz-Bull,
D., and Jones, K. C.: Polychlorinated biphenyls in air and water of the
North Atlantic and Arctic Ocean, J. Geophys. Res.-Atmos., 113, D19302, https://doi.org/10.1029/2007JD009750, 2008.
Gupta, R. S., Sarkar, A., and Kureishey, T. W.: PCBs and organochlorine
pesticides in krill, birds and water from Antartica, Deep-Sea Res. Pt. II, 43, 119–126, https://doi.org/10.1016/0967-0645(95)00086-0,
1996.
Hale, R. C., Kim, S. L., Harvey, E., La Guardia, M. J., Mainor, T. M., Bush,
E. O., and Jacobs, E. M.: Antarctic research bases: local sources of
polybrominated diphenyl ether (PBDE) flame retardants, Environ. Sci.
Technol., 42, 1452–1457, https://doi.org/10.1021/es702547a, 2008.
Hao, Y., Li, Y., Han, X., Wang, T., Yang, R., Wang, P., Xiao, K., Li, W.,
Lu, H., H., Fu, J., Wang, Y., Shi, J., Zhang, Q., Jiang, G.: Air monitoring
of polychlorinated biphenyls, polybrominated diphenyl ethers and
organochlorine pesticides in West Antarctica during 2011–2017:
Concentrations, temporal trends and potential sources, Environ.
Pollut., 249, 381–389, https://doi.org/10.1016/j.envpol.2019.03.039, 2019.
Hop, H., Borgå, K., Gabrielsen, G. W., Kleivane, L., and Skaare, J. U.: Food
web magnification of persistent organic pollutants in poikilotherms and
homeotherms from the Barents Sea, Environ. Sci. Technol., 36, 2589–2597,
https://doi.org/10.1021/es010231l, 2002.
Harner, T., Jantunen, L. M., Bidleman, T. F., Barrie, L. A., Kylin, H.,
Strachan, W. M., and Macdonald, R. W.: Microbial degradation is a key
elimination pathway of hexachlorocyclohexanes from the Arctic Ocean,
Geophys. Res. Lett., 27, 1155–1158, https://doi.org/10.1029/1999GL011326, 2000.
Helm, P. A., Diamond, M. L., Semkin, R., Strachan, W. M., Teixeira, C., and
Gregor, D.: A mass balance model describing multiyear fate of organochlorine
compounds in a high Arctic Lake, Environ. Sci. Technol., 36, 996–1003, https://doi.org/10.1021/es010952k, 2002.
Howard, P. H. (Ed.): Handbook of Environmental Fate and Exposure Data: For Organic Chemicals, Volume III Pesticides, 1st edn., Routledge, https://doi.org/10.1201/9780203719305, 1991.
Huang, Y., Xu, Y., Li, J., Xu, W., Zhang, G., Cheng, Z., Liu, J., Wang, Y., and
Tian, C.: Organochlorine pesticides in the atmosphere and surface water from
the equatorial Indian Ocean: enantiomeric signatures, sources, and fate,
Environ. Sci. Technol., 47, 13395–13403, https://doi.org/10.1021/es403138p, 2013.
Hung, H., Kallenborn, R., Breivik, K., Su, Y., Brorström-Lundén, E.,
Olafsdottir, K., and Fellin, P.: Atmospheric monitoring of organic
pollutants in the Arctic under the Arctic Monitoring and Assessment
Programme (AMAP): 1993–2006, Sci. Total Environ., 408, 2854–2873, https://doi.org/10.1016/j.scitotenv.2009.10.044, 2010.
Hung, H., Katsoyiannis, A. A., Brorström-Lundén, E., Olafsdottir,
K., Aas, W., Breivik, K., and Wilson, S.:Temporal trends of Persistent
Organic Pollutants (POPs) in arctic air: 20 years of monitoring under the
Arctic Monitoring and Assessment Programme (AMAP), Environ, Poll., 217, 52–61, https://doi.org/10.1016/j.envpol.2016.01.079, 2016.
Hung, H., Halsall, C., Ball, H., Bidleman, T. F., Dachs, J., De Silva, A.,
Hermanson, M., Kallenborn, R., Muir, D., Suhring, R., Wang, X., and Wilson, S.: Climate change influence on the levels and trends of
persistent organic pollutants (POPs) and chemicals of emerging Arctic
concern (CEACs) in the Arctic physical environment – a review, Environ. Sci. Process. Impacts, 24, 1577–1615, https://doi.org/10.1039/D1EM00485A, 2022.
Jantunen, L. M., Kylin, H., Bidleman, T. F.: Air–water gas exchange of
α-hexachlorocyclohexane enantiomers in the South Atlantic Ocean and
Antarctica, Deep-Sea Res. Pt., 51,
2661–2672, https://doi.org/10.1016/j.dsr2.2004.02.002, 2004.
Jayaraj, R., Megha, P., and Sreedev, P.: Organochlorine pesticides, their toxic
effects on living organisms and their fate in the environment, Interdiscip.
Toxicol., 9, 90–100, https://doi.org/10.1515/intox-2016-0012, 2016.
Jurado, E. and Dachs, J.: Seasonality in the “grasshopping” and
atmospheric residence times of persistent organic pollutants over the
oceans, Geophy. Res. Lett., 35, L17805, https://doi.org/10.1029/2008GL034698, 2008.
Kallenborn, R., Breivik, K., Eckhardt, S., Lunder, C. R., Manø, S., Schlabach, M., and Stohl, A.: Long-term monitoring of persistent organic pollutants (POPs) at the Norwegian Troll station in Dronning Maud Land, Antarctica, Atmos. Chem. Phys., 13, 6983–6992, https://doi.org/10.5194/acp-13-6983-2013, 2013.
Kallenborn, R., Oehme, M., Wynn-Williams, D. D., Schlabach, M., and Harris, J.:
Ambient air levels and atmospheric long-range transport of persistent
organochlorines to Signy Island, Antarctica, Sci. Total Environ., 220,
167–180, https://doi.org/10.1016/S0048-9697(98)00257-5, 1998.
Kelly, T. J., Mukund, R., Spicer, C. W., and Pollack, A. J.: Concentrations and
transformations of hazardous air pollutants, Environ. Sci. Technol., 28,
378A–387A, https://doi.org/10.1021/es00057a003, 1994.
Kennish, M. J.: Practical Handbook of Estuarine and Marine Pollution, 1st edn., CRC Press, https://doi.org/10.1201/9780203742488, 2017.
Khairy, M. A., Luek, J. L., Dickhut, R., and Lohmann, R.: Levels, sources and
chemical fate of persistent organic pollutants in the atmosphere and snow
along the western Antarctic Peninsula, Environ. Pollut., 216, 304–313, https://doi.org/10.1016/j.envpol.2016.05.092, 2016.
Kim, J. T., Son, M. H., Kang, J. H., Kim, J. H., Jung, J. W., and Chang, Y. S.:
Occurrence of legacy and new persistent organic pollutants in avian tissues
from King George Island, Antarctica, Environ. Sci. Technol., 49,
13628–13638, https://doi.org/10.1021/acs.est.5b03181, 2015.
Klánová, J., Matykiewiczová, N., Máčka, Z., Prošek, P., Láska, K., and Klán, P.: Persistent organic pollutants in soils and sediments from James Ross Island, Antarctica, Environ. Pollut., 152, 416–423, https://doi.org/10.1016/j.envpol.2007.06.026, 2008.
Kong, D., MacLeod, M., Hung, H., and Cousins, I. T.: Statistical analysis
of long-term monitoring data for persistent organic pollutants in the
atmosphere at 20 monitoring stations broadly indicates declining
concentrations, Environ. Sci. Technol., 48, 12492–12499, https://doi.org/10.1021/es502909n,
2014.
Krasnobaev, A., Ten Dam, G., Boerrigter-Eenling, R., Peng, F., van Leeuwen,
S. P., Morley, S. A., Peck, L. S., and Van Den Brink, N. W.: Legacy and emerging
persistent organic pollutants in Antarctic benthic invertebrates near
Rothera Point, Western Antarctic Peninsula, Environ. Sci. Technol., 54,
2763–2771, https://doi.org/10.1021/acs.est.9b06622, 2020.
Lakaschus, S., Weber, K., Wania, F., Bruhn, R., and Schrems, O.: The
air–sea equilibrium and time trend of hexachlorocyclohexanes in the
Atlantic Ocean between the Arctic and Antarctica, Environ. Sci. Technol., 36, 138–145, https://doi.org/10.1021/es010211j, 2002.
Larsson, P., Järnmark, C., and Södergren, A.: PCBs and chlorinated
pesticides in the atmosphere and aquatic organisms of Ross Island,
Antarctica,
Mar. Pollut. Bull., 25, 281–287, https://doi.org/10.1016/0025-326X(92)90683-W,
1992.
Larsson, P., Andersson, A., Broman, D., Nordbäck, J., and Lundberg, E.: Persistent organic pollutants (POPs) in pelagic systems, AMBIO, 29, 202–209, https://doi.org/10.1579/0044-7447-29.4.202, 2000.
Li, Y., Geng, D., Hu, Y., Wang, P., Zhang, Q., and Jiang, G.: Levels and
distribution of polychlorinated biphenyls in the atmosphere close to Chinese
Great Wall Station, Antarctica: Results from XAD-resin passive air
sampling, Chinese Sci. Bull., 57, 1499–1503, https://doi.org/10.1007/s11434-012-5048-8, 2012a.
Li, Y., Geng, D., Liu, F., Wang, T., Wang, P., Zhang, Q., and Jiang, G.: Study
of PCBs and PBDEs in King George Island, Antarctica, using PUF passive air
sampling, Atmos. Environ., 51, 140–145, https://doi.org/10.1016/j.atmosenv.2012.01.034,
2012b.
Li, Y., Lohmann, R., Zou, X., Wang, C., and Zhang, L.: Air-water exchange and
distribution pattern of organochlorine pesticides in the atmosphere and
surface water of the open Pacific Ocean, Environ. Pollut., 265, 114956, https://doi.org/10.1016/j.envpol.2020.114956, 2020.
Li, Y. F.: Global gridded technical hexachlorocyclohexane usage inventories
using a global cropland as a surrogate, J. Geophys. Res., 104, 23785–23797,
https://doi.org/10.1029/1999JD900448, 1999.
Lohmann, R., Breivik, K., Dachs, J., and Muir, D.: Global fate of POPs: current
and future research directions, Environ. Pollut., 150, 150–165, https://doi.org/10.1016/j.envpol.2007.06.051, 2007.
Lohmann, R., Gioia, R., Jones, K. C., Nizzetto, L., Temme, C., Xie, Z.,
Schulz-Bull, D., Hand, I., Morgan, E., and Jantunen, L.: Organochlorine
pesticides and PAHs in the surface water and atmosphere of the North
Atlantic and Arctic Ocean, Environ. Sci. Technol., 43, 5633–5639, https://doi.org/10.1021/es901229k, 2009.
Lozoya, J. P., Rodríguez, M., Azcune, G., Lacerot, G.,
Pérez-Parada, A., Lenzi, J., Rossi, F., and de Mello, F. T.: Stranded
pellets in Fildes Peninsula (King George Island, Antarctica): New evidence
of Southern Ocean connectivity, Sci. Total Environ., 838, 155830, https://doi.org/10.1016/j.scitotenv.2022.155830, 2022.
Ma, J., Hung, H., Tian, C., and Kallenborn, R.: Revolatilization of persistent
organic pollutants in the Arctic induced by climate change, Nat. Clim.
Change, 1, 255–260, https://doi.org/10.1038/nclimate1167, 2011.
Mackay, D. and Wania, F.: Transport of contaminants to the Arctic:
partitioning, processes and models, Sci. Total Environ., 160, 25–38, https://doi.org/10.1016/0048-9697(95)04342-X, 1995.
Montone, R. C., Taniguchi, S., and Weber, R. R.: PCBs in the atmosphere of King
George Island, Antarctica, Sci. Total Environ., 308, 167–173, https://doi.org/10.1016/S0048-9697(02)00649-6, 2003.
Montone, R. C., Taniguchi, S., Boian, C., and Weber, R. R.: PCBs and chlorinated
pesticides (DDTs, HCHs and HCB) in the atmosphere of the southwest Atlantic
and Antarctic oceans, Mar. Pollut. Bull., 50, 778–782, https://doi.org/10.1016/j.marpolbul.2005.03.002, 2005.
Montone, R. C., Alvarez, C. E., Bícego, M. C., Braga, E. S., Brito, T.
A., Campos, L. S. ..., and Weber, R. R.: Environmental Assessment of
Admiralty Bay, King George Island, Antarctica, in: Adaptation and Evolution in Marine Environments, Volume 2, 157–175,
https://doi.org/10.1007/978-3-642-27349-0_9, 2013.
Mortimer, M. R. and Connell, D. W.: A model of the environmental fate of
chlorohydrocarbon contaminants associated with Sydney sewage
discharges, Chemosphere, 30, 2021–2038, https://doi.org/10.1016/0045-6535(95)00081-I, 1995.
Nizzetto, L., Lohmann, R., Gioia, R., Dachs, J., and Jones, K. C.: Atlantic
Ocean surface waters buffer declining atmospheric concentrations of
persistent organic pollutants, Environ. Sci. Technol., 44, 6978–6984, https://doi.org/10.1021/es101293v, 2010.
Pennington, D. W.: An evaluation of chemical persistence screening
approaches, Chemosphere, 44, 1589–1601, https://doi.org/10.1016/S0045-6535(00)00530-0, 2001.
Potapowicz, J., Szumińska, D., Szopińska, M., and Polkowska, Ż.: The influence of global climate change on the environmental fate of anthropogenic pollution released from the permafrost: Part I. Case study of Antarctica, Sci. Total Environ., 651, 1534–1548, https://doi.org/10.1016/j.scitotenv.2018.09.168, 2019.
Pozo, K., Martellini, T., Corsolini, S., Harner, T., Estellano, V.,
Kukučka, P., and Cincinelli, A.: Persistent organic pollutants (POPs) in the
atmosphere of coastal areas of the Ross Sea, Antarctica: Indications for
long-term downward trends, Chemosphere, 178, 458–465, https://doi.org/10.1016/j.chemosphere.2017.02.118, 2017.
Prats, R. M., Van Drooge, B. L., Fernández, P., and Grimalt, J. O.: Field
comparison of passive polyurethane foam and active air sampling techniques
for analysis of gas-phase semi-volatile organic compounds at a remote
high-mountain site, Sci. Total Environ., 803, 149738, https://doi.org/10.1016/j.scitotenv.2021.149738, 2022.
Qiu, X., Zhu, T., Li, J., Pan, H., Li, Q., Miao, G., and Gong, J.:
Organochlorine pesticides in the air around the Taihu Lake, China, Environ.
Sci. Technol., 38, 1368–1374, https://doi.org/10.1021/es035052d, 2004.
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/, last access: 31 December 2022.
Risebrough, R. W., Rieche, P., Peakall, D. B., Herman, S. T., and Kirven,
M. N.: Polychlorinated biphenyls in the global ecosystem, Nature, 220,
1098–1102, https://doi.org/10.1038/2201098a0, 1968.
Risebrough, R. W., Walker, W., Schmidt, T. T., De Lappe, B. W., and
Connors, C. W.: Transfer of chlorinated biphenyls to Antarctica, Nature,
264, 738–739, https://doi.org/10.1038/264738a0, 1976.
Risebrough, R. W., De Lappe, B. W., and Younghans-Haug, C.: PCB and PCT
contamination in Winter Quarters Bay, Antarctica, Mar. Pollut. Bull., 21, 523–529, https://doi.org/10.1016/0025-326X(90)90300-W, 1990.
Safe, S. H.: Polychlorinated biphenyls (PCBs): environmental impact,
biochemical and toxic responses, and implications for risk assessment,
Crit. Rev. Toxicol., 24, 87–149, https://doi.org/10.3109/10408449409049308, 1994.
Sinkkonen, S. and Paasivirta, J.: Degradation half-life times of PCDDs, PCDFs
and PCBs for environmental fate modeling, Chemosphere, 40, 943–949,
https://doi.org/10.1016/S0045-6535(99)00337-9, 2000.
Sladen, W. J., Menzie, C. M., and Reichel, W. L.: DDT residues in Adelie
penguins and a crabeater seal from Antarctica, Nature, 210, 670–673, https://doi.org/10.1038/210670a0, 1966.
Tanabe, S., Kawano, M., and Tatsukawa, R.: Chlorinated hydrocarbons in the
Antarctic, western Pacific and eastern Indian Oceans, Trans. Tokyo Univ. Fish, 5, 97–109, 1982.
Tanabe, S., Hidaka, H., and Tatsukawa, R.: PCBs and chlorinated hydrocarbon
pesticides in Antarctic atmosphere and hydrosphere, Chemosphere, 12, 277–288, https://doi.org/10.1016/0045-6535(83)90171-6, 1983.
Tatton, J. G. and Ruzicka, J. H. A.: Organochlorine pesticides in
Antarctica, Nature, 215, 346–348, https://doi.org/10.1038/215346a0, 1967.
United Nations Environment Program (UNEP): Final Act of the Conference of Plenipotentiaries on the Stockholm Convention on Persistent Organic Pollutants, Geneva, Switzerland, 2001.
United Nations Economic Commission for Europe (UNECE): Aarhus Convention on Access to Information, Public Participation in Decision-making and Access to Justice in Environmental Matters, 2256 UNTS 119, 40 ILM 532, 1999.
Venier, M. and Hites, R. A.: Regression model of partial pressures of PCBs, PAHs, and organochlorine pesticides in the Great Lakes’ atmosphere, Environ. Sci. Technol., 44, 618–623, https://doi.org/10.1021/es902804s, 2010.
Vergara, E., Hernández, V., Barra, R., Munkittrick, K. R.,
Galbán-Malagón, C., and Chiang, G.: Presence of Organochlorine pollutants
in fat and scats of pinnipeds from the Antarctic Peninsula and South
Shetland Islands, and their relationship to trophic position, Sci. Total
Environ., 685, 1276–1283, https://doi.org/10.1016/j.scitotenv.2019.06.122, 2019.
Vasseghian, Y., Hosseinzadeh, S., Khataee, A., and Dragoi, E. N.: The
concentration of persistent organic pollutants in water resources: A global
systematic review, meta-analysis and probabilistic risk assessment, Sci.
Total Environ., 796, 149000, https://doi.org/10.1016/j.scitotenv.2021.149000, 2021.
Vaughan, D. G., Marshall, G. J., Connolley, W. M., Parkinson, C., Mulvaney, R., Hodgson, D. A., King, J. C., Pudsey, C. J., and Turner, J.: Recent rapid regional climate warming on the Antarctic Peninsula, Climatic Change, 60, 243–274, https://doi.org/10.1023/A:1026021217991, 2003.
Vijgen, J.: The legacy of Lindane HCH Isomer production in A global
overview of Residue management Formulation and Disposal, Internation HCH and
pesticides Association, ISBN 87-991210-1-8, http://www.ihpa.info/docs/library/reports/Lindane Main Report DEF20JAN06.pdf (last access: 10 March 2023), 2006.
Voldner, E. C. and Li, Y. F.: Global usage of selected persistent
organochlorines, Sci. Total Environ., 160, 201–210, https://doi.org/10.1016/0048-9697(95)04357-7, 1995.
Von Waldow, H., MacLeod, M., Scheringer, M., and Hungerbühler, K.: Quantifying remoteness from emission sources of persistent organic
pollutants on a global scale, Environ. Sci. Technol., 44, 2791–2796, https://doi.org/10.1021/es9030694, 2010.
Vorkamp, K., Carlsson, P., Corsolini, S., de Wit, C. A., Dietz, R., Gribble, M. O., Houde, M., Kalia, V., Letcher, R. J., Morris, A., Rigét, F. F., Routti, H., and Muir, D. C.: Influences of climate change on long-term time series of persistent organic pollutants (POPs) in Arctic and Antarctic biota, Environ. Sci.-Proc. Imp., 24, 1643–1660, https://doi.org/10.1039/D2EM00134A, 2022.
Wang, P., Zhang, Q., Li, Y., Zhu, Ch., Chen, Z., Zheng, S., Sun, H., Liang, L., and Jiang, G.: Occurrence of chiral organochlorine compounds in the environmental
matrices from King George Island and Ardley Island, west Antarctica,
Scientific Reports, 5, 1–9, https://doi.org/10.1038/srep13913, 2015.
Wang, P., Li, Y., Zhang, Q., Yang, Q., Zhang, L., Liu, F., Fu, J., Meng, W.,
Wang, d., Sun, H., Zheng, S., Hao, Y., Liang, Y., and Jiang, G.: Three-year
monitoring of atmospheric PCBs and PBDEs at the Chinese Great Wall Station,
West Antarctica: levels, chiral signature, environmental behaviors and
source implication, Atmos. Environ., 150, 407–416, https://doi.org/10.1016/j.atmosenv.2016.11.036, 2017.
Wang, P., Meng, W., Li, Y., Zhang, Q., Zhang, L., Fu, J., Yang, R., and Jiang, G.: Temporal variation (2011–2014) of atmospheric OCPs at King George
Island, west Antarctica, Atmos. Environ., 191, 432–439, https://doi.org/10.1016/j.atmosenv.2018.08.036, 2018.
Wania, F. and Mackay, D.: Peer reviewed: tracking the distribution of
persistent organic pollutants, Environ. Sci. Technol., 30, 390A–396A,
https://doi.org/10.1021/es962399q, 1996.
Wasley, J., Robinson, S. A., Lovelock, C. E., and Popp, M.: Climate change
manipulations show Antarctic flora is more strongly affected by elevated
nutrients than water, Glob. Change Biol., 12, 1800–1812, https://doi.org/10.1111/j.1365-2486.2006.01209.x, 2006.
Weber, K. and Goerke, H.: Persistent organic pollutants (POPs) in Antarctic
fish: levels, patterns, changes, Chemosphere, 53, 667–678, https://doi.org/10.1016/S0045-6535(03)00551-4, 2003.
Wild, S., Eulaers, I., Covaci, A., Bossi, R., Hawker, D., Cropp, R., Southwell, C., Emmerson, L., Lepoint, G., Eisenmann, P., and Bengtson-Nash, S.: South polar skua (Catharacta maccormicki) as biovectors
for long-range transport of persistent organic pollutants to Antarctica,
Environ. Pollut., 292, 118358, https://doi.org/10.1016/j.envpol.2021.118358, 2022.
Wong, F., Hung, H., Dryfhout-Clark, H., Aas, W., Bohlin-Nizzetto, P., Breivik, K., Nerentorp Mastromonaco, M., Brorström Lundén, E., Ólafsdóttir, K., Sigurðsson, Á., Vorkamp, K., Bossi, R., Skov, H., Hakola, H., Barresi, E., Sverko, E., Fellin, P., Li, H., Vlasenko, A., Zapevalov, M., Samsonov, D., and Wilson, S.: Time trends of persistent organic pollutants (POPs) and Chemicals of Emerging Arctic Concern (CEAC) in Arctic air from 25 years of monitoring, Sci. Total Environ., 775, 145109, https://doi.org/10.1016/j.scitotenv.2021.145109, 2021.
Wu, X., Lam, J. C., Xia, C., Kang, H., Sun, L., Xie, Z., and Lam, P. K.:
Atmospheric HCH concentrations over the marine boundary layer from Shanghai,
China to the Arctic Ocean: Role of human activity and climate change,
Environ. Sci. Technol., 44, 8422–8428, https://doi.org/10.1021/es102127h, 2010.
Wu, X., Lam, J. C., Xia, C., Kang, H., Xie, Z., and Lam, P. K.:
Atmospheric concentrations of DDTs and chlordanes measured from Shanghai,
China to the Arctic Ocean during the Third China Arctic Research Expedition
in 2008, Atmos. Environ., 45, 3750–3757, https://doi.org/10.1016/j.atmosenv.2011.04.012, 2011.
Wu, X., Chen, A., Yuan, Z., Kang, H., and Xie, Z.: Atmospheric organochlorine
pesticides (OCPs) and polychlorinated biphenyls (PCBs) in the Antarctic
marginal seas: Distribution, sources and transportation, Chemosphere, 258,
127359, https://doi.org/10.1016/j.chemosphere.2020.127359, 2020.
Xie, J., Tao, L., Wu, Q., Bian, Z., Wang, M., Li, Y., Zhu. G., and Lin, T.:
Bioaccumulation of organochlorine pesticides in Antarctic krill (Euphausia
superba): Profile, influencing factors, and mechanisms, J. Hazard.
Mater., 426, 128115, https://doi.org/10.1016/j.jhazmat.2021.128115, 2022.
Xie, Z., Koch, B. P., Möller, A., Sturm, R., and Ebinghaus, R.: Transport and fate of hexachlorocyclohexanes in the oceanic air and surface seawater, Biogeosciences, 8, 2621–2633, https://doi.org/10.5194/bg-8-2621-2011, 2011.
Zhang, L., Bidleman, T., Perry, M. J., and Lohmann, R.: Fate of chiral and
achiral organochlorine pesticides in the North Atlantic bloom experiment,
Environ. Sci. Technol., 46, 8106–8114, https://doi.org/10.1021/es3009248.
Vecchiato, M., Argiriadis, E., Zambon, S., Barbante, C.,
Toscano, G., Gambaro, A., and Piazza, R.: Persistent Organic Pollutants
(POPs) in Antarctica: Occurrence in continental and coastal surface snow,
Microchem. J., 119, 75–82, https://doi.org/10.1016/j.microc.2014.10.010, 2015.
Short summary
In the last 40 years, different research groups have reported on the atmospheric concentrations of persistent organic pollutants in Antarctica. In the present work, we make a compilation to understand the historical trends and estimate the atmospheric half-life of each compound. Of the compounds studied, HCB was the only one that showed no clear trend, while the rest of the studied compounds showed a significant decrease over time. This is consistent with results for polar and sub-polar zones.
In the last 40 years, different research groups have reported on the atmospheric concentrations...
Altmetrics
Final-revised paper
Preprint