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Abstract. Persistent organic pollutants (POPs) are synthetic compounds that were intentionally produced in
large quantities and have been distributed in the global environment, originating a threat due to their persistence,
bioaccumulative potential, and toxicity. POPs reach the Antarctic continent through long-range atmospheric
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transport (LRAT). In these areas, low temperatures play a significant role in the environmental fate of POPs,
retaining them for a long time due to cold trapping by diffusion and wet deposition, acting as a net sink for
many POPs. However, in the current context of climate change, the remobilization of POPs that were trapped
in water, ice, and soil for decades is happening. Therefore, continuous monitoring of POPs in polar air is neces-
sary to assess whether there is a recent re-release of historical pollutants back to the environment. We reviewed
the scientific literature on atmospheric levels of several POP families (polychlorinated biphenyls – PCBs, hex-
achlorobenzene – HCB, hexachlorocyclohexanes – HCHs, and dichlorodiphenyltrichloroethane – DDT) from
1980 to 2021. We estimated the atmospheric half-life using characteristic decreasing times (TD). We observed
that HCB levels in the Antarctic atmosphere were higher than the other target organochlorine pesticides (OCPs),
but HCB also displayed higher fluctuations and did not show a significant decrease over time. Conversely, the
atmospheric levels of HCHs, some DDTs, and PCBs have decreased significantly. The estimated atmospheric
half-lives for POPs decreased in the following order: 4,4’ DDE (13.5 years)> 4,4’ DDD (12.8 years)> 4,4’
DDT (7.4 years)> 2,4’ DDE (6.4 years)> 2,4’ DDT (6.3 years)>α-HCH (6 years)>HCB (6 years)>γ -
HCH (4.2 years). For PCB congeners, they decreased in the following order: PCB 153 (7.6 years)>PCB 138
(6.5 years)>PCB 101 (4.7 years)>PCB 180 (4.6 years)>PCB 28 (4 years)>PCB 52 (3.7 years)>PCB 118
(3.6 years). For HCH isomers and PCBs, the Stockholm Convention (SC) ban on POPs did have an impact on
decreasing their levels during the last decades. Nevertheless, their ubiquity in the Antarctic atmosphere shows
the problematic issues related to highly persistent synthetic chemicals.

1 Introduction

Persistent organic pollutants (POPs) are a group of toxic
chemicals primarily produced and used by the agricultural,
industrial, and household applications during the third in-
dustrial revolution (Safe, 1994; Qiu et al., 2004; Jayaraj et
al., 2016). In the last 3 decades, studies have reported that
POP levels have soared in the environment worldwide, as
these chemicals are highly stable and resistant to degradation
(Pennington, 2001). This persistence and their hydrophobic-
ity result in POP bioaccumulation within organisms and bio-
magnification along food webs (Hop et al., 2002; Fisk et
al., 2001a, b; Borga and Di Guardo, 2005), where they may
elicit toxic effects, such as endocrine disruption, threaten-
ing the health of both wildlife and humans (Brown et al.,
2014; Bourgeon et al., 2012). Given their detrimental effects,
35 POP substances are currently regulated internationally by
the Stockholm Convention (SC), which seeks to reduce and
eliminate POP production and use (UNECE, 1999; UNEP,
2001). However, despite regulatory action among SC signa-
tory nations, considerable levels of POPs are still detected
in water, atmosphere, biota, and sediments worldwide due
to their persistence and potential for long-range transport, as
well as their current emission sources (e.g., Vergara et al.,
2019; Vasseghian et al., 2021; Avila et al., 2021; Die et al.,
2021; Garcia-Cegarra et al., 2021). Of utmost concern is that
these toxic pollutants are present in the environmental com-
partments of regions far from emission sources that have pre-
viously been considered pristine areas, including polar re-
gions (Galbán-Malagón et al., 2013a, b, c; Pozo et al., 2017;
Wu et al., 2020; Azcune et al., 2022; Xie et al., 2022).

The Antarctic continent is the most remote region from
primary sources of POPs (Von Waldow et al., 2010). POPs

reach Antarctica mainly through long-range atmospheric
transport (LRAT), which generally occurs by the process
known as “grasshopping”, consisting of successive atmo-
spheric volatilization and depositions (Blais et al., 2007;
Brown and Wania, 2008; Bengtson-Nash, 2011; Jurado and
Dachs, 2008). Ocean currents also contribute to their trans-
port processes, albeit at longer timescales since the Antarc-
tic Circumpolar Current acts as a barrier limiting the oceanic
transport of POPs to the Antarctic continent (Bengtson-Nash,
2011). The “barrier theory” has been questioned by Lozoya
et al. (2022) for the South Shetland Islands, where the current
experiences topographical forcing through the Drake Pas-
sage. Finally, another minor transport process is biological,
mediated by migratory biota (Braune et al., 2005; Wild et
al., 2022). In addition, there may be local sources of POPs,
such as research stations and tourist hotspots, that can con-
tribute to detectable and sometimes elevated concentrations
of POPs. For example, PCBs have been reported in the vicin-
ity of such local sources (Larsson et al., 1992; Risebrough
et al., 1990; Hale et al., 2008). The low temperatures of
Antarctica play an important role in the environmental fate
of POPs, repressing re-volatilization processes and favoring
cold trapping (Wania and Mackay, 1996; Casal et al., 2019),
limiting any potential degradation, and enhancing bioaccu-
mulation. In this context, several studies show that polar re-
gions act as a net sink for many POPs; Antarctica is a vast
continent covered in ice surrounded by the Southern Ocean,
hence chemicals deposited through LRAT will first deposit
in these compartments (Mackay and Wania, 1995; Kallen-
born et al., 1998; Dickhut et al., 2005; Gioia et al., 2008;
Cincinelli et al., 2009; Baek et al., 2011; Cabrerizo et al.,
2017; Galbán-Malagón et al., 2012, 2013a, c; Montone et al.,
2013). For example, there is evidence supporting oceanic se-
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questration by the biological pump during blooms that bury
these compounds on the seafloor (Galbán-Malagón et al.,
2013a, c) or by biodegradation due to the microbial loop
(Galbán-Malagón et al., 2013d). In the context of rapid cli-
mate change experienced in polar regions, the remobiliza-
tion of POPs previously trapped in water, ice, and soil for
decades is expected (Nizzetto et al., 2010; Ma et al., 2011;
Cabrerizo et al., 2013). The re-emission of POPs to the en-
vironment will affect global efforts to moderate human and
environmental exposure to these toxic compounds (Bigot et
al., 2016); therefore, continuous monitoring of POP levels
in polar abiotic matrices is necessary to assess the extent to
which such re-emissions to the atmosphere occur.

The detection of chemicals in remote regions serves as
direct empirical evidence of a compound’s persistence and
potential for long-term environmental transport (Bengston-
Nash et al., 2017). POPs were first reported in Antarctic biota
in the 1960s (Sladen et al., 1966; Tatton and Ruzicka, 1967),
sparking interest in studying the transport, fate, and levels
present in different environmental compartments. Through
the collation of decades of coordinated monitoring data of
POPs in the Arctic atmosphere, studies have explored the
fate, sources, and long-range transport of POPs in the North-
ern Hemisphere (Hung et al., 2010, 2016; Wu et al., 2010,
2011). A general downward trend of many airborne POPs
has been demonstrated in the Arctic (Hung et al., 2010, 2016;
Kong et al., 2014). However, continuous and consistent at-
mospheric measurements on POPs in Antarctica are limited,
due to the remote geographical location and complex cli-
matic conditions of this continent, which put logistical con-
straints on any monitoring program. These knowledge gaps
make it difficult to understand the fundamental patterns of
POPs in this area (Bengston-Nash, 2011) but also facilitate
systematic comparison with studies conducted in the Arctic.

This paper presents the first systematic review of the most
reported POPs in the Antarctic atmosphere, allowing us to
summarize the data collected by the different studies and
compare the concentrations recorded over the years and at the
different sampling sites. Such a compilation allows the iden-
tification of temporal trends and calculate the atmospheric
half-lives of the predominant POPs being monitored to pro-
vide insights into expected impacts of environmental remo-
bilization under changing Antarctic conditions.

2 Methods

2.1 Compilation of bibliographical data

We reviewed all published studies on atmospheric lev-
els of the most reported POP families in the Antarc-
tic atmosphere (polychlorinated biphenyls (PCBs), hex-
achlorobenzene (HCB), hexachlorocyclohexane (HCH), and
dichlorodiphenyltrichloroethane (DDT) and its degradation
products) from 1980 to 2021. An exhaustive search was per-
formed in the Web of Science and Scopus databases using the

words “Persistent Organic Pollutants”, “atmospheric”, and
“Antarctica”, including only articles written in English; ex-
cluding from the analysis references that do not refer to a
good quality assurance and quality control measures. Thus,
studies not reporting information about blank samples, limits
of detection, limits of quantification, and/or instrumental de-
tection limits, and referring to previous works reporting the
quality criteria used, were not included in the present study.
This is important because the reported concentrations are at
very low levels, and to avoid bias, it is necessary to be sure
about the quality measures of sample collection and analy-
sis. A total of 34 publications were found, from which we
retrieved data on the levels reported, the year in which the
samples were collected, and the sampling sites (Tables 1, 2
and 3). We worked exclusively with the levels of the target
compounds in the gas phase, obtained from active and pas-
sive sampling. Furthermore, compounds scarcely reported in
the Antarctic atmosphere, such as polybrominated diphenyl
ethers (PBDEs), polycyclic aromatic hydrocarbons (PAHs),
and per- and polyfluoroalkyl substances (PFASs), were ex-
cluded.

2.2 Statistical analysis

To evaluate the differences between the levels present in West
Antarctica and East Antarctica, a non-parametric Mann–
Whitney U variance analysis was conducted. To estimate
the trend in the change of concentrations, a linear regression
was performed between the natural logarithm of the concen-
trations for each year studied. Finally, a generalized linear
model (GLM) was performed to elucidate whether the vari-
ability in the atmospheric POP levels reviewed is due to the
different types of sampling used by the different studies (ac-
tive or passive sampling) or the time variable. All the analy-
ses were performed using the R statistical software (R Core
Team, 2022).

2.3 Estimation of characteristic decreasing times (TD)

Atmospheric half-lives were estimated by deriving the e-
folding or characteristic decreasing times (TD), following the
methodology of Galbán-Malagón et al. (2013a). The half-
live is defined as the time needed to decrease the atmo-
spheric concentration by 35 % (e−1) of its initial concen-
tration, which is given by 0.69 TD. First, only the studies
that reported all the values recorded for each sample were
used (Tables S1 and S2). These studies were ordered by year
of sampling, and their respective TD was calculated by least
squares adjusting the concentrations to Eq. (1):

lnCAtm =−kdt + b, (1)

where kd is the inverse of the e-folding time TD (in years), t
is the time in years, and b is the independent term; TD was
not calculated for β-HCH, due to the limited data available.
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Table 1. HCB and HCH levels (pg m−3) in the Antarctic atmosphere from 1980 to present.
∑
n indicates the number of isomers included in

the study. The notation “n.d” indicates “not detected”.

Sampling area Type of Year HCB α-HCH γ -HCH
∑

HCHs
∑
n Reference

sampling

Southern Ocean Active 1980–1981 90–170 Tanabe et al. (1982)

Southern Ocean Active 1981–1982 44-170 Tanabe et al. (1983)

Cape Town and
Newmayer Station

Active 1999 0.36 0.15 Lakaschus et al. (2002)

Ross Island Passive 1988–1999 25.8 (0.5–118) Larsson et al. (1992)

East Antarctica Passive 1990 62.6 (40–78) 3.2 (2.8–3.6) 2.4 (1.1–5.6) 5.7 2 Bidleman et al. (1993)

Signy Island Active 1994–1995 2.8 21.8 26.97 3 Kallenborn et al., 1998

East Antarctica Passive 1997–1998 1.06 (0.81–1.4) Jantunen et al. (2004)

Terra Nova Bay Passive 1993 21 (n.d.–28) 13 (5–20.0) 3 Kallenborn et al. (1998)

Ross Island Active 1995 (<0.6–25.3) 3.9–32.5 2 Montone et al. (2005)

West of the Antarctic
Peninsula and south-
west of Adelaide Island

Active 2001–2002 19.4 (<5–32.1) 0.3 (<0.05–0.52) 0.755 (<0.02–2.98) Dickhut et al. (2005)

Terra Nova Bay Active 2003–2004 11.4 (6.0–20) 0.8 (0.3–1.2) 2 Gambaro et al. (2005)

Terra Nova Bay Active 2003–2004 11.4 (5.93–20.4) 0.22 (0.1–0.35) 2 Cincinelli et al. (2009)

Ny-Ålesund,
King George Island,
and Chuuk

Passive 2005–2009 Baek et al. (2011)

South Scotia Active 2008 8.1 (2.18–15.82) 1.7(0.06–5.84) 4.6 (1.5–7.1) Galbán-Malagón et
al. (2013b)

Weddell Active 2009 19.5 (2.4–30.1) 0.16 (0.05–2.09) 0.84 (0.1–1.87) Galbán-Malagón et
al. (2013b)

Bransfield Sea Active 2009 16.7 (3.3–34.24) 0.14 (0.04–0.46) 1.15 (0.2–3) Galbán-Malagón et
al. (2013b)

Bellingshausen Active 2009 42.9 (27.31–49.71) 0.26 (0.22–0.16) 0.14 (0.07–0.19) Galbán-Malagón et
al. (2013b)

Palmer Station Active 2010 34 (26.2–37.7) 0.81–1.68 0.87–2.31 Khairy et al. (2016)

Troll Station/
Queen Maud Land

Active 2010 22.9 Kallenborn et al. (2013)

Ross Sea Passive 2010–2011 22.8 (0.8–50) 0.5 (n.d.–0.5) n.d. 0.5 (n.d.–0.5) 2 Pozo et al. (2017)

Antarctic Plateau Active 2011 (0.67–2.7) BD-2.7 Cabrerizo et
al. (2017)

Antarctic marginal seas Active 2013–2014 2.6 (0.081–10) (n.d.–6.8) 3 Wu et al. (2020)

Southern Ocean
between Australia and
Antarctica

Active 2014 (<22–35) <0.13–1.1 <0.70–4.3 n.d.–3.65 3 Bigot et al. (2016)

King George Island Passive 2012–2018 163 (99.2–252) 1.4 (0.5–13.6) 0.1–7.9 0.7–22.3 4 Hao et al. (2019)

3 Results and discussion

3.1 Organochlorine pesticides (OCPs)

Organochlorine pesticides (OCPs) represent most of the
POPs listed in the Stockholm Convention. These organic
compounds have been widely produced and commercialized
since the 1950s for agricultural use and vector control (UN-
ECE, 1999; UNEP, 2001). The application of technical HCH
in agriculture has been banned since the early 1980s, while
DDT, Lindane (γ -HCH), and HCB were banned in the 1990s

(UNECE, 1999; UNEP, 2001). The OCPs were first reported
in Antarctic marine biota in the late 1960s by Sladen et
al. (1966) and Tatton and Ruzicka (1967). To date, their lev-
els in different environmental compartments continue to be
reported (e.g., Vergara et al., 2019; Wu et al., 2020; Kras-
nobaev et al., 2020; Xie et al., 2022).

Atmos. Chem. Phys., 23, 8103–8118, 2023 https://doi.org/10.5194/acp-23-8103-2023
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Table 2. DDT levels (pg m−3) in Antarctic atmosphere from 1988 to present.

Sampling area Type of Year 2,4 DDE 4,4-DDE 2,4DDD 4,4 DDD 2,4 DDT 4,4 DDT Reference
sampling

Ross Island Passive 1988–1999 1 2 Larsson et al. (1992)

East Antarctica Passive 1990 0.53 Bidleman et al. (1993)

Signy Island Active 1994–1995 0.07 0.4 0.068 0.098 0.195 0.2 Kallenborn et al. (1998)

Ross Island Active 1995 9.2 11.7 8.1 Montone et al. (2005)

Antarctic marginal seas Active 2013–2014 0.097 0.35 0.043 0.034 0.17 0.12 Wu et al. (2020)

Southern Ocean
between Australia
and Antarctica

Active 2014 <0.51 <0.15–0.44 <1.6 <1.8 <2.7 <7.8 Bigot et al. (2016)

King George Island Passive 2012–2018 0.2 0.6 0.1 0.2 0.1 0.24 Hao et al. (2019)

3.1.1 Atmospheric levels of organochlorine pesticides
(OCPs)

In the Arctic atmosphere, HCB concentrations are the high-
est of any OCPs (De March et al., 1998). Similarly, atmo-
spheric concentrations of HCB reported from the Antarctic
have been observed to be higher than the other target OCPs
(Tables 1 and 2), being the most frequently detected and
abundant POP in the Antarctic atmosphere (Kallenborn et al.,
2013; Wang et al., 2018; Hao et al., 2019; Wu et al., 2020).
Temporal patterns of atmospheric HCB concentrations in the
Antarctic show significant interannual fluctuations with low
but significant decreasing trend (p<0.001, See Table 1), with
a higher variability over time,specially in the last decade
(Fig. 1a). A clear decrease in concentrations is shown until
about 2010; thereafter, a large variability of data is shown
where the trend seems to be changing. However, there is a
lack of sufficient data to be able to confirm this trend. The
maximum values were reported by Hao et al. (2019) dur-
ing the 2012–2018 sampling period on King George Island
(Table 1). Such increases in HCB gaseous levels could be
mainly associated with re-emission from environmental sur-
faces (water, soil, and snow) shifting from a reservoir to a
secondary source of this compound on the Antarctic conti-
nent. The HCB is the most persistent OCP chemical assessed
here, as suggested before (Galbán-Malagón et al., 2013b). In
addition, there may still be an important influence of trans-
port from current primary sources (i.e., combustion and ther-
mal processes) on a global scale and unintentional forma-
tion during thermal processing or combustion of chlorine-
containing materials (Barber et al., 2005). The trend shown in
Fig. 1a points out that concentrations of HCB in the Antarc-
tic atmosphere may be regionally dependent and may be high
due to the climate and/or environmental change processes oc-
curring in different Antarctic regions.

The reported atmospheric concentrations of 6HCHs in
Antarctica from 1980 to 2019 show a decreasing trend over
time (Table 1; Fig. 1b and c), with significant differences
in interannual levels (P<0.05). The maximum concentra-
tion of HCHs was 170 pg m−3, reported in 1980–1982 (Tan-

abe et al., 1982, 1983), and progressively lower concen-
trations reaching values under detection levels and below
1 pg m−3 are reported from 2003 to 2019 (Gambaro et al.,
2005; Cincinelli et al., 2009; Baek et al., 2011; Galbán-
Malagón et al., 2013b; Kallenborn et al., 2013; Pozo et al.,
2017; Cabrerizo et al., 2017; Wu et al., 2020; Bigot et al.,
2016; Hao et al., 2019). The γ -HCH isomer was found at
high concentrations in Antarctica between 1989 and 1990,
with a maximum atmospheric concentration of 118 pg m−3

in 1988 at Ross Island, by Larsson et al. (1992) (Fig. 1c,
Table S1). Decreasing concentrations are then reported for
γ -HCH in 2000, which is unsurprising if fresh sources have
been removed, given the lower volatility and higher water
solubility of this isomer. On the other hand, the α-HCH
isomer, has been increasing since 2006 (Baek et al., 2011;
Galbán-Malagón et al., 2013b; Hao et al., 2019), compared
to the concentrations recorded during 2001–2004 by Dickhut
et al. (2005) and Cincinelli et al. (2009).

Published studies reporting gaseous levels for DDT and
their isomers from 1988–2021 were lower than the rest of the
target OCPs, and like HCHs, the DDTs showed a decreasing
trend over the years (Table 2, Fig. 2), with significant inter-
annual differences (p<0.05) for compounds 4,4’-DDT, 4,4’-
DDE, 2,4’-DDT, and 2,2’-DDE, and non-significant annual
differences (p>0.05) for compounds 4,4’-DDD and 2,4’-
DDD.

To date, atmospheric concentrations of HCB, α-HCH, β-
HCH, γ -HCH, 2,4’-DDTs, 4,4’-DDTs, and 2,4’ DDD iso-
mers have been studied over much of the Antarctic continent,
both in West Antarctica (Kallenborn et al., 1998; Montone et
al., 2005; Dickhut et al., 2005; Baek et al., 2011; Galbán-
Malagón et al., 2013c; Khairy et al., 2016; Hao et al., 2019)
and in East Antarctica (Tanabe et al., 1982, 1983; Lakaschus
et al., 2002; Larsson et al., 1992; Jantunen et al., 2004; Bidle-
man et al., 1993; Gambaro et al., 2005; Cincinelli et al., 2009;
Kallenborn et al., 2013; Pozo et al., 2017; Cabrerizo et al.,
2017; Wu et al., 2020; Bigot et al., 2016). The detected con-
centrations of HCB, α-HCH, and 4,4’-DDT indicate signifi-
cant spatial differences (P<0.05), with higher atmospheric

https://doi.org/10.5194/acp-23-8103-2023 Atmos. Chem. Phys., 23, 8103–8118, 2023
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Table 3. PCB levels (pg m−3) in the Antarctic atmosphere from 1988 to present.
∑
n indicates the number of congeners included in the

study. The notation “n.d.” indicates “not detected”.

Sampling area Type of Year
∑

PCBs
∑

n Reference
sampling

Ross Island Passive 1988–1990 15.2 6 Larsson et al. (1992)

King George Island Active 1993–1994 20.8 (12.09–42.8) 10 Montone et al. (2003)

Signy Island Active 1994–1995 (0.01–17.2) 22 Kallenborn et al. (1998)

Ross Island Active 1995 62.4 11 Montone et al. (2005)

King George Island Active 1996–1996 37.4 (12.1–92.6) 10 Montone et al. (2003)

Terra Nova Bay Active 2003–2004 1.06 (0.61–1.78) 61 Gambaro et al. (2005)

Ny-Ålesund, King George
Island, and Chuuk

Passive 2005–2009 60.3(22.8–87.1) 11 Baek et al. (2011)

Ny-Ålesund, King George
Island, and Chuuk

Passive 2005–2009 19.8 (11.1–31.9) 205 Baek et al. (2011)

ICEPOS Active 2005 16.84 (7.12–25.65) 25 Galbán-Malagón et al. (2013c)

South Scotia sea Active 2008 45.13 (6.2–78.9) 25 Galbán-Malagón et al. (2013c)

Antarctic Peninsula Active 2009 12.13 (1.8–38.1) 25 Galbán-Malagón et al. (2013c)

Polish beach Active 2009 (2.1–3.1) 25 Galbán-Malagón et al. (2013c)

Livingston Island Active 2009 7.23 (3.5–12.9) 25 Galbán-Malagón et al. (2013c)

King George Island Passive 2009–2010 1.142 7 Li et al. (2012b)

King George Island Passive 2009–2010 36.837 19 Li et al. (2012a)

King George Island, Antarctica. Passive 2009–2010 4.34 7 Li et al. (2012b)

Troll Station/Queen Maud Land Active 2010 0.5 32 Kallenborn et al. (2013)

Palmer Station Active 2010 12 29 Khairy et al. (2016)

Ross Sea Passive 2010–2011 0.46 (0.14–1.13) 7 Pozo et al. (2017)

Antarctic Plateau Active 2011 (0.8–27) 26 Cabrerizo et al. (2017)

King George Island Passive 2011–2014 5.39 (0.91–35.9) 7 Wang et al. (2015)

King George Island Active 2011–2014 5.87 (26.1–72.7) 20 Wang et al. (2017)

King George Island Passive 2010–2018 10.4 (1.5–29.7) 19 Hao et al. (2019)

Antarctic marginal seas Active 2013–2014 1.1 (n.d.–6.7) 14 Wu et al. (2020)

concentrations in West Antarctica than in East Antarctica
(Table S4). The γ -HCH and 2,4’-DDT isomers did not show
spatial differences between the two zones (P>0.05) (Ta-
ble S4), but the usage of these compounds decreased in a
similar way from 1990 to 2000 (Vijgen, 2006). This can be
explained by two causes together. The first is the greater
proximity of South America to the Antarctic Peninsula. The
proximity itself has to do with the possibility of transport of
these compounds from southern South America where it is
suggested that air samples influenced by the continent are
capable of transporting pollutants from South America to

Antarctica (Dickhut et al., 2005) such as Heptachlor epoxide.
However, when looking to usage reported in South America
compared to Africa (Li, 1999), this could influence the abun-
dance of α-HCH in the western Antarctic area. Examining
previous information for both HCB and 4,4’-DDT, there is
not a great deal of information about the use of these com-
pounds in areas near Antarctica, but the proximity to South
America could explain these variations in conjunction with
the paucity of data in East Antarctica. On the other hand,
the Mann–Whitney U variance analysis was not performed
for the β-HCH and 2,4’-DDD isomers, because all levels re-
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Figure 1. Atmospheric levels (pg m−3) of (a) HCB, (b) α-HCH, and (c) γ -HCH over time.

ported in East Antarctica were below the detection limit. In
addition, the results of the generalized linear model indicate
that the variability of atmospheric OCPs is mainly due to the
year variable, with no significant differences (p>0.05) be-
tween the atmospheric levels obtained from active and pas-
sive sampling (see Table S5).

3.1.2 Atmospheric half-lives of organochlorine
pesticides (OCPs)

The half-life was estimated for all OCP compounds with
significant interannual differences (p<0.05 or lower). The
estimated half-lives decreased in the following order:
4,4’-DDT (17.2 years)> 2,4’-DDT (14.4 years)>α-HCH
(14.3 years)>HCB (14.0 years)>γ -HCH (10.1 years)
(more details are given in Table 4). The higher atmospheric
half-life values estimated in this study for DDTs isomers,
compared to the values estimated for HCHs and HCB, might
be related to the years in which these compounds were
banned, since DDTs were banned approximately 10 years
after HCHs isomers. It may also be due to continuous pro-
duction and use of DDTs in some parts of the world due
to exemptions to the Stockholm Convention. The estimated
values are higher than the atmospheric half-lives reported
by other authors, such as Atkinson (1986); Howard (1991);
Mortimer and Connel (1995); and Kelly et al. (1994), whose
estimated and published values do not exceed 1 year. How-
ever, the methodologies employed differ from the one used
in the present study where Atkinson (1986); Howard (1991);

and Mortimer and Connel (1995) were based on rate con-
stant of gas-phase reaction with OH radical for trichloro-
biphenyls, while Kelly et al. (1994) were based on atmo-
spheric transformation lifetime. On the other hand, if we
compare studies with similar methodology, the study by Ve-
nier and Hites (2010) in Great Lakes shows that the half-life
estimates for α-HCH and γ -HCH are in a similar range to
our estimates, while the one obtained for 4,4’-DDT is slightly
lower (Fig. 4a). Similarly, according to the half-life estimates
by Wong et al. (2021), HCB shows higher values than those
reported by us, but they report similar values than ours for
α-HCH, γ -HCH, 2,4’-DDT, and 4,4’-DDT (Fig. 4a).

Polar areas are often considered to be a net sink for
POPs. Studies have documented that α-HCH and γ -HCH
exchanges preferentially from air to water, with this diffu-
sion being the predominant atmospheric deposition mecha-
nism (Galbán-Malagón et al., 2013a, c; Dickhut et al., 2005;
Cincinelli et al., 2009; Jantunen et al., 2004; Lohmann et
al., 2009; Xie et al., 2011; Zhang et al., 2012; Huang et
al., 2013). Once deposited onto surface waters, they are sus-
ceptible to sequestration by the biological pump (Galbán-
Malagón et al., 2013a, c), as well as to degradation driven by
hydrolysis and biodegradation to a minor extent (Harner et
al., 2000; Helm et al., 2002; Galbán-Malagón et al., 2013c).
These processes minimize the opportunity for re-entry into
the atmosphere through volatilization. The lower half-life
values for HCHs may be related to their lower Henry’s law
constant (HLC) when compared to other POPs. On the con-
trary, to our knowledge, no degradation processes have been
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Table 4. Estimated atmospheric half-lives of examined POP compounds.

Compounds T1/2 (years) 95 % confidence interval R2 p value Equation

HCB 14.0 10.6–20.7 12.03 <0.0001 LnCg=−0.04931× year+ 100.2
α-HCH 14.3 12.4–17.0 32.55 <0.0001 LnCg=−0.04817× year+ 96.17
γ -HCH 10.1 8.6–12.3 44.63 <0.0001 LnCg=−0.06837× year+ 136.9
4,4’ DDT 17.2 11.8-31.7 23.54 <0.0001 LnCg=−0.04015× year+ 79.50
2,4 DDT 14.4 9.8–27.3 37.55 <0.001 LnCg=−0.04794× year+ 94.99
2,4 DDE 17.6 9.2–232 15.44 <0.05 LnCg=−0.03916× year+ 77.93
PCB 28 3.9 3.2–5.2 43.08 <0.0001 LnCg=−0.1748× year+ 351.2
PCB 52 3.7 3.2–4.3 63.53 <0.0001 LnCg=−0.1887× year+ 378.7
PCB 101 4.7 4.0–5.6 67.42 <0.0001 LnCg=−0.1480× year+ 295.8
PCB 118 3.6 3.0–4.3 55.91 <0.0001 LnCg=−0.1930× year+ 385.8
PCB 138 6.5 5.3–8.3 40.7 <0.0001 LnCg=−0.1066× year+ 212.7
PCB 153 7.6 6.0–10.4 31.59 <0.0001 LnCg=−0.09071× year+ 181.2
PCB 180 4.6 3.3–8.0 24.64 <0.0001 LnCg=−0.1486× year+ 296.2

documented for HCB in surface water, and, furthermore,
conditions close to air–water equilibrium have been reported
for this compound (Cincinelli et al., 2009; Galbán-Malagón
et al., 2013c). Similarly, DDTs are more hydrophobic with
much higher KOW values than HCHs (Table S3), so they are
rapidly removed from seawater as particles sink (Lohmann
et al., 2007). Thus, it is possible that the high half-lives esti-
mated for DDTs and their metabolites DDD and DDE may
be due to unknown current primary and secondary sources
(Voldner and Li, 1995; Channa et al., 2012, Li et al., 2020).

3.2 Polychlorinated biphenyls (PCBs)

Like OCPs, polychlorinated biphenyls (PCBs) were among
the first groups of POPs to be listed under the Stockholm
Convention and are characterized by their high chemical sta-
bility. Prior to their regulatory control in the 1970s, commer-
cial mixtures of PCBs were widely used in many industrial
applications, such as fluids in transformers and capacitors,
hydraulic fluids, lubricating oils, and as additives in pesti-
cides, inks and paints, flame retardants, plasticizers, sealants
for wood and cement surfaces, among others (Kennish, 2017;
FAO/UNEP 1992).

The PCBs were first reported in Antarctica in the 1960s
and 1970s (Risebrough et al., 1968, 1976), and since then,
numerous studies have reported their levels in air, water,
sediments, snow, and biota on the Antarctic continent (e.g.,
Kallenborn et al., 1998; Fuoco et al., 1995; Gupta et al.,
1996; Weber et al., 2003; Kim et al., 2015). Here, we selected
seven indicator PCB congeners (28, 52, 101, 118, 138, 153,
and 180) considering that they are the most reported PCB
congeners worldwide, including Antarctica.

3.2.1 Atmospheric levels of polychlorinated biphenyls
(PCBs)

The atmospheric concentrations of 67PCBs reported by the
reviewed studies were below those of the target OCPs (Ta-
ble 3). Overall, the levels of 67PCBs reported from 1980 to
2021 showed a decreasing trend over time (Tables 3 and 4,
Fig. 3), with significant differences in their levels (p<0.05).
Congeners 28 and 52 recorded the highest concentrations on
King George Island, with values of 69.9 pg m−3 in 1995, and
33.2 pg m−3 in 1996, reported by Montone et al. (2005, 2003)
(Fig. 3a and b, Table S2). In contrast, the lowest concentra-
tions of all target PCBs were reported for congener 180, rang-
ing from not detected (n.d.) to 3.4 pg m−3 (Fig. 3g, Table S2).

Like OCPs, atmospheric concentrations of the seven PCB
congeners have been reported over most of the Antarctic
zone, covering the zone in West Antarctica (Montone et
al., 2003, 2005; Kallenborn et al., 1998; Baek et al., 2011;
Galbán-Malagón et al., 2013c; Li et al., 2012a, b; Khairy et
al., 2016; Wang et al., 2017; Hao et al., 2019; Wu et al., 2020)
and East Antarctica (Larsson et al., 1992; Gambaro et al.,
2005; Kallenborn et al., 2013; Pozo et al., 2017; Cabrerizo
et al., 2017). Significant spatial differences (p<0.05) were
observed in the atmospheric concentrations of congeners
28, 52, 101, and 138, with higher concentrations in West
Antarctica than East Antarctica, while there was no signif-
icant difference among sites for congeners 101, 118, and 153
(p>0.05). These differences are consistent with the different
atmospheric patterns over the Antarctic peninsula regions,
with entrance of air masses from the north, and more perma-
nent wet deposition events by snow and rain, increasing the
regional concentrations of POPs (Casal et al., 2019; Casas et
al., 2021). On the other hand, it is essential to highlight that
the variability of PCBs reported in this study is substantially
due to the time variable (p<0.05), with no significant dif-
ferences (p>0.05) between the atmospheric levels of PCBs
obtained from active and passive sampling (see Table S5).

Atmos. Chem. Phys., 23, 8103–8118, 2023 https://doi.org/10.5194/acp-23-8103-2023



T. Luarte et al.: POP trends in the Antarctic atmosphere 8111

Figure 2. Atmospheric levels (pg m−3) of (a) 2,4’-DDT, (b) 4,4’-
DDT, and (c) 2,4’-DDE over time.

3.2.2 Atmospheric half-lives of polychlorinated
biphenyls (PCBs)

The estimated atmospheric half-lives for target PCBs de-
creased in the following order: PCB 153 (7.6 years)>PCB
138 (6.5 years)>PCB 101 (4.7 years)>PCB
180 (4.6 years)>PCB 28 (3.9 years)>PCB 52
(3.7 years)>PCB 118 (3.6 years) (Table 4). The esti-
mated half-lives were directly proportional to the congener’s

Figure 3. Atmospheric levels (pg m−3) of (a) PCB-28, (b) PCB-
52, (c) PCB-101, (d) PCB-118, (e) PCB-138, (f) PCB-153, and
(g) PCB-180 over time.

Henry’s law constant (HLC) values. (Table S3). Studies
by Atkinson (1986) and Sinkkonen and Paasivirta (2000)
reported half-lives lower than those estimated in the present
work, where none of the estimated half-lives for these com-
pounds exceeded 1 year. However, the methodology of both
studies differs from that of the present study, calculating the
half-lives of the compounds by means of the rate constant
of gas-phase reaction with the OH. Regarding studies using
a similar methodology, the atmospheric half-lives estimated
by Venier and Hites (2010) in the Great Lakes (United States
and Canada) and by Wong et al. (2021) in the Arctic were
higher relative to our results for PCBs 28, 52, 101, and 118.
They were in a similar range for PCBs 138, 153, and 180
(Fig. 4b).

Studies have documented that the biological pump is
highly efficient for PCBs with high hydrophobicity, i.e., high
KOW values (Table S3) (Dachs et al., 2002; Galbán-Malagón
et al., 2012, 2013a), thus reducing their re-volatilization.
The estimated atmospheric half-lives, however, do not re-
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Figure 4. Comparison among the estimated atmospheric half-lives
obtained in the present work (green) compared with similar esti-
mations from the Great Lakes (red; Venier and Hites, 2010) and
the Arctic (blue; Wong et al., 2021) for (a) organochlorine pes-
ticides (HCB, α-HCH, γ -HCH, 2,4’-DDT,and 4,4’-DDT) and (b)
polychlorinated biphenyls (28, 52, 101, 118, 138, 153, and 180).

flect lower values for the compounds with higher KOW (e.g.,
PCB 138, 153 and 180), so other factors may be influencing
the high estimated half-lives of the more hydrophobic PCBs.
One of these factors could be the presence of local sources of
certain PCB congeners, since it has been reported that higher
PCB concentrations are monitored near the research stations
compared to sites farther away from these stations, specifi-
cally PCB congeners 28, 52, 56, and 101 (Li et al., 2012b;
Montone et al., 2003). Furthermore, remobilization of PCBs
stored in soils and ice (Cabrerizo et al., 2013; Casal et al.,
2019) could be another factor modulating the surface, and
thus atmospheric, concentrations of POPs.

3.3 Influence of global climate change on the dynamics
of POPs in the Antarctic continent

Over the past decades, global climate changes and the effects
of increasing temperatures have been observed in the North-
ern and Southern hemispheres (Hung et al., 2022). Increases
in ambient temperature can influence physical and chemical
processes and ecosystem changes. For example, it has been
reported that increasing ambient temperature will affect the
dynamics and exchange of POPs between different environ-
mental matrices. Some studies have exposed the relationship
between climate change and POP concentrations (Vorkamp
et al., 2022; Potapowicz et al., 2018), describing how POPs
are temporarily stored in sediments/soils and can be released
into the environment with thawing permafrost (Potapowicz
et al., 2018) and that there is an increase in POP availability
following iceberg calving (Vorkamp et al., 2022) or increased
soil remobilization by up to 45 % (Cabrerizo et al., 2013).
In addition, several studies show that seawater, snow, and

presumably Antarctic soil are becoming critical secondary
sources for POP remobilization (Cabrerizo et al., 2012, 2013;
Klanová et al., 2008; Casal et al., 2019).

On the other hand, the mean annual air temperature along
the western Antarctic Peninsula has been reported to have
increased by as much as 3.4 ◦C. In addition, the mid-winter
temperature increased by 6.0 ◦C over the past 50 years, mak-
ing the region one of the most critically affected by climate
change (Vaughan et al., 2003; Turner et al., 2005). How-
ever, evidence from field sampling indicated that, to date,
there is no relationship between atmospheric ambient tem-
perature and atmospheric concentrations of HCH and HCB
in East Antarctica (Bengtson-Nash et al., 2017). On the other
hand, increasing ambient temperature leads to decreased
snow cover, nutrient runoff from land to sea, and increased
bioavailability of nutrients on land, causing an increase in
primary producers on land and sea (Wasley et al., 2006). In
this context, it has been demonstrated in aquatic systems that
an increase in primary productivity is vital in the sedimenta-
tion processes of POPs from the surface to the aquatic bottom
through the biological pump (Larsson et al., 2000; Galbán-
Malagón et al., 2018). This process contributes mainly to the
removal of POPs from the environment, despite the adverse
effects of an increase in primary productivity in ecosystems
(e.g., increase in organic matter). Thus, global warming in
Antarctica not only implies a temperature change but also
leads to multiple processes that can affect the biogeochem-
ical dynamics of POPs, which plays an essential role in the
environmental fate of POPs. Depending on the future effects
of climate change, Antarctica can act as a secondary source
of POPs through the re-volatilization of these compounds or
as a sink, contributing to the decrease of their environmental
levels. Therefore, future exploration of the impact of climate
change is necessary and establishes the importance of estab-
lishing long-term monitoring networks.

3.4 Potential sources of bias

As presented here, several factors can be considered as
sources of bias from historical data analysis. First, in the time
frame of this study (1980–2021), analytical instrumentation
and laboratory techniques exhibited dramatic change, partic-
ularly with the advent of advanced mass spectrometry (MS)
over electron capture detection (ECD) or novel calibration
techniques based on isotopically labeled standards (Azcune
et al., 2022). Therefore, recent data are generated by more
sophisticated techniques and modern laboratory QA/QC cri-
teria. On the other hand, we also included studies using ac-
tive and passive sampling, but no major differences in the
values obtained were observed (See Tables 1, 2, and 3) for
the whole compounds which agrees with intercalibration ex-
periments conducted in other areas comparing passive and
active sampling together (Prats et al., 2022). The published
information from Antarctica is reduced to a group of indi-
vidual experiences in different geographical locations of in-
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ternational teams working in the field under different condi-
tions and levels of competence that are difficult to obtain and
analyze. One might expect that studies that show a strong
track record in Antarctic research, reporting POP levels over
a time series, might have greater validity due to constancy
and consistency in both sampling and the types of analyses
used (e.g., Larsson et al., 1992; Baek et al., 2011; Hao et al.,
2019).

In summary, the source of bias, related to the technolog-
ical advancement of the analyses of the collected samples,
could have relevance in the observed variability of the his-
torical trends of HCB and HCH (see Fig. 1a to c). In these
cases, it is suggested to continue with dedicated monitoring
of these POPs in the coming years to obtain robust obser-
vations and conclusions on the degradation of POPs in the
Antarctic atmosphere.

4 Conclusion

In the present review, a clear trend of decreasing concen-
trations of PCBs and most targeted OCPs in the Antarc-
tic atmosphere from 1980 to 2021 is documented. This is
in response to the hypothesis raised historically about the
decrease in atmospheric levels of historical POPs (Vecchi-
ato et al., 2015). However, it opens the door to study new
families of pollutants for which there is already analytical
capacity that was not available in previous decades. In the
case of HCH isomers, DDT, and PCB congeners, high at-
mospheric concentrations were reported for the 1990–1999
decade, but these compounds were highly restricted since
the 1970s. After that date, a strong decrease was observed in
the Antarctic atmosphere, which shows that the Stockholm
Convention ban on POPs did have the intended impact on
the (atmospheric) concentrations over time. However, these
compounds are still ubiquitous in the Antarctic atmosphere
with atmospheric half-lives of more than 3 years. On the
other hand, the revised atmospheric levels of HCB show a
decrease in the decade of its prohibition (1990). However,
from the year 2000 onwards, they show strong fluctuations
in the literature, with values even higher than those reported
in 1990. It is noteworthy to consider that a decrease of the at-
mospheric concentrations does not imply a decrease of the
total POPs in Antarctica, an issue that will require future
work. In fact, the re-emission of HCB and other POPs from
environmental surfaces, such as water, soil, and snow, is a
product of its high stability in the environment that has not
been deeply studied and could represent a potential source
of bias for future works. Studies to date in Antarctica do not
allow conclusions to be drawn about the influence of tem-
perature on the environmental fate of POPs on the Antarctic
continent. This is due to the lack of consistent time series
data as historically conducted in the Arctic. Moreover, our
results point to the importance of periodic monitoring and
the need to establish monitoring networks with continuous

sampling campaigns, not only with aim of monitoring the
legacy of POPs but also to identify new pollutants that have
the potential to reach Antarctica (e.g., new flame retardants,
per- and polyfluoroalkyl substances (PFAS), and polycyclic
aromatic hydrocarbons (PAHs), among others). There is in-
creasing evidence of the presence of emerging compounds
in different environmental matrices in Antarctica. However,
the current surveillance of atmospheric pollutants is related
to specific research groups, instead of coordinated efforts be-
tween countries with Antarctic presence, where continuous
monitoring networks could be generated with the inclusion
of various persistent toxic chemicals, as analogous to the ef-
forts done by the Arctic Monitoring and Assessment Program
(AMAP) or the Integrated Atmospheric Deposition Network
(IADN) in the Great Lakes. In this sense, to establish a moni-
toring program for assessment of POP levels in the Antarctic
atmosphere will depend on the capabilities and the facilities,
since an active sampling strategy will benefit from a higher
resolution in the assessment of POP trends in the monitor-
ing points, but on the other hand, the use of passive sampling
strategy could represent a high spatial coverage to monitor
trends but lower time resolution. However, there is need to
establish a bigger coordinated monitoring network in the fu-
ture following the previous experience gained from AMAP.
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