Articles | Volume 23, issue 13
https://doi.org/10.5194/acp-23-7741-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-7741-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A thermodynamic framework for bulk–surface partitioning in finite-volume mixed organic–inorganic aerosol particles and cloud droplets
Ryan Schmedding
Department of Atmospheric and Oceanic Sciences, McGill University, Montréal, Quebec, Canada
Department of Atmospheric and Oceanic Sciences, McGill University, Montréal, Quebec, Canada
Related authors
Ryan Schmedding and Andreas Zuend
EGUsphere, https://doi.org/10.5194/egusphere-2024-1690, https://doi.org/10.5194/egusphere-2024-1690, 2024
Short summary
Short summary
Four different approaches for computing the interfacial tension between liquid phases in aerosol particles were tested for particles with diameters from 10 nm to more than 5 μm. Antonov's rule led to the strongest reductions in the onset relative humidity of liquid–liquid phase separation and reproduced measured interfacial tensions for highly immiscible systems. A modified form of the Butler equation was able to best reproduce measured interfacial tensions in more miscible systems.
Ryan Schmedding, Quazi Z. Rasool, Yue Zhang, Havala O. T. Pye, Haofei Zhang, Yuzhi Chen, Jason D. Surratt, Felipe D. Lopez-Hilfiker, Joel A. Thornton, Allen H. Goldstein, and William Vizuete
Atmos. Chem. Phys., 20, 8201–8225, https://doi.org/10.5194/acp-20-8201-2020, https://doi.org/10.5194/acp-20-8201-2020, 2020
Short summary
Short summary
Accurate model prediction of aerosol concentrations is a known challenge. It is assumed in many modeling systems that aerosols are in a homogeneously mixed phase state. It has been observed that aerosols do phase separate and can form a highly viscous organic shell with an aqueous core impacting the formation processes of aerosols. This work is a model implementation to determine an aerosol's phase state using glass transition temperature and aerosol composition.
Camilo Serrano Damha, Kyle Gorkowski, and Andreas Zuend
EGUsphere, https://doi.org/10.5194/egusphere-2024-2712, https://doi.org/10.5194/egusphere-2024-2712, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Organic aerosol water content impacts the gas–particle partitioning of semivolatile organics. We used an aerosol thermodynamic model in the GEOS-Chem chemical transport model to efficiently account for organic aerosol water uptake and nonideal mixing. This led to a substantial enhancement in mean organic aerosol mass concentration with respect to GEOS-Chem's most advanced scheme. The water-sensitive scheme could be a valuable tool for reconciling model estimations and field measurements.
Ryan Schmedding and Andreas Zuend
EGUsphere, https://doi.org/10.5194/egusphere-2024-1690, https://doi.org/10.5194/egusphere-2024-1690, 2024
Short summary
Short summary
Four different approaches for computing the interfacial tension between liquid phases in aerosol particles were tested for particles with diameters from 10 nm to more than 5 μm. Antonov's rule led to the strongest reductions in the onset relative humidity of liquid–liquid phase separation and reproduced measured interfacial tensions for highly immiscible systems. A modified form of the Butler equation was able to best reproduce measured interfacial tensions in more miscible systems.
Liviana K. Klein, Allan K. Bertram, Andreas Zuend, Florence Gregson, and Ulrich K. Krieger
EGUsphere, https://doi.org/10.5194/egusphere-2024-1459, https://doi.org/10.5194/egusphere-2024-1459, 2024
Short summary
Short summary
The viscosity of ammonium nitrate–sucrose–H2O was quantified with three methods ranging from liquid to solid state depending on the relative humidity. Moreover, the corresponding estimated internal aerosol mixing times remain below an hour for most tropospheric conditions, making equilibrium partitioning a reasonable assumption.
Rani Jeong, Joseph Lilek, Andreas Zuend, Rongshuang Xu, Man Nin Chan, Dohyun Kim, Hi Gyu Moon, and Mijung Song
Atmos. Chem. Phys., 22, 8805–8817, https://doi.org/10.5194/acp-22-8805-2022, https://doi.org/10.5194/acp-22-8805-2022, 2022
Short summary
Short summary
In this study, the viscosities of particles of sucrose–H2O, AS–H2O, and sucrose–AS–H2O for OIRs of 4:1, 1:1, and 1:4 for decreasing RH, were quantified by poke-and-flow and bead-mobility techniques at 293 ± 1 K. Based on the viscosity results, the particles of binary and ternary systems ranged from liquid to semisolid, and even the solid state depending on the RH. Moreover, we compared the measured viscosities of ternary systems to the predicted viscosities with excellent agreement.
Joseph Lilek and Andreas Zuend
Atmos. Chem. Phys., 22, 3203–3233, https://doi.org/10.5194/acp-22-3203-2022, https://doi.org/10.5194/acp-22-3203-2022, 2022
Short summary
Short summary
Depending on temperature and chemical makeup, certain aerosols can be highly viscous or glassy, with atmospheric implications. We have therefore implemented two major upgrades to the predictive viscosity model AIOMFAC-VISC. First, we created a new viscosity model for aqueous electrolyte solutions containing an arbitrary number of ion species. Second, we integrated the electrolyte model within the existing AIOMFAC-VISC framework to enable viscosity predictions for organic–inorganic mixtures.
Hang Yin, Jing Dou, Liviana Klein, Ulrich K. Krieger, Alison Bain, Brandon J. Wallace, Thomas C. Preston, and Andreas Zuend
Atmos. Chem. Phys., 22, 973–1013, https://doi.org/10.5194/acp-22-973-2022, https://doi.org/10.5194/acp-22-973-2022, 2022
Short summary
Short summary
Iodine and carbonate species are important components in marine and dust aerosols, respectively. We introduce an extended version of the AIOMFAC thermodynamic mixing model, which includes the ions I−, IO3−, HCO3−, CO32−, OH−, and CO2(aq) as new species, and we discuss two methods for solving the carbonate dissociation equilibria numerically. We also present new experimental water activity data for aqueous iodide and iodate systems.
Dalrin Ampritta Amaladhasan, Claudia Heyn, Christopher R. Hoyle, Imad El Haddad, Miriam Elser, Simone M. Pieber, Jay G. Slowik, Antonio Amorim, Jonathan Duplissy, Sebastian Ehrhart, Vladimir Makhmutov, Ugo Molteni, Matti Rissanen, Yuri Stozhkov, Robert Wagner, Armin Hansel, Jasper Kirkby, Neil M. Donahue, Rainer Volkamer, Urs Baltensperger, Martin Gysel-Beer, and Andreas Zuend
Atmos. Chem. Phys., 22, 215–244, https://doi.org/10.5194/acp-22-215-2022, https://doi.org/10.5194/acp-22-215-2022, 2022
Short summary
Short summary
We use a combination of models for gas-phase chemical reactions and equilibrium gas–particle partitioning of isoprene-derived secondary organic aerosols (SOAs) informed by dark ozonolysis experiments conducted in the CLOUD chamber. Our predictions cover high to low relative humidities (RHs) and quantify how SOA mass yields are enhanced at high RH as well as the impact of inorganic seeds of distinct hygroscopicities and acidities on the coupled partitioning of water and semi-volatile organics.
Young-Chul Song, Joseph Lilek, Jae Bong Lee, Man Nin Chan, Zhijun Wu, Andreas Zuend, and Mijung Song
Atmos. Chem. Phys., 21, 10215–10228, https://doi.org/10.5194/acp-21-10215-2021, https://doi.org/10.5194/acp-21-10215-2021, 2021
Short summary
Short summary
We report viscosity of binary mixtures of organic material / H2O and inorganic salts / H2O, as well as ternary mixtures of organic material / inorganic salts/ H2O, over the atmospheric relative humidity (RH) range. The viscosity measurements indicate that the studied mixed organic–inorganic particles range in phase state from liquid to semi-solid or even solid across the atmospheric RH range at a temperature of 293 K.
Weigang Wang, Ting Lei, Andreas Zuend, Hang Su, Yafang Cheng, Yajun Shi, Maofa Ge, and Mingyuan Liu
Atmos. Chem. Phys., 21, 2179–2190, https://doi.org/10.5194/acp-21-2179-2021, https://doi.org/10.5194/acp-21-2179-2021, 2021
Short summary
Short summary
Aerosol mixing state regulates the interactions between water molecules and particles and thus controls aerosol activation and hygroscopic growth, which thereby influences visibility degradation, cloud formation, and its radiative forcing. However, there are few studies attempting to investigate their interactions with water molecules. Here, we investigated the effect of organic coatings on the hygroscopic behavior of the inorganic core.
Hoi Ki Lam, Rongshuang Xu, Jack Choczynski, James F. Davies, Dongwan Ham, Mijung Song, Andreas Zuend, Wentao Li, Ying-Lung Steve Tse, and Man Nin Chan
Atmos. Chem. Phys., 21, 2053–2066, https://doi.org/10.5194/acp-21-2053-2021, https://doi.org/10.5194/acp-21-2053-2021, 2021
Short summary
Short summary
This work demonstrates that organic compounds present at or near the surface of aerosols can be subjected to oxidation initiated by gas-phase oxidants, such as hydroxyl radicals (OH). The heterogeneous reactivity is sensitive to their surface concentrations, which are determined by the phase separation behavior. This results of this work emphasize the effects of phase separation and potentially distinct aerosol morphologies on the chemical transformation of atmospheric aerosols.
Ryan Schmedding, Quazi Z. Rasool, Yue Zhang, Havala O. T. Pye, Haofei Zhang, Yuzhi Chen, Jason D. Surratt, Felipe D. Lopez-Hilfiker, Joel A. Thornton, Allen H. Goldstein, and William Vizuete
Atmos. Chem. Phys., 20, 8201–8225, https://doi.org/10.5194/acp-20-8201-2020, https://doi.org/10.5194/acp-20-8201-2020, 2020
Short summary
Short summary
Accurate model prediction of aerosol concentrations is a known challenge. It is assumed in many modeling systems that aerosols are in a homogeneously mixed phase state. It has been observed that aerosols do phase separate and can form a highly viscous organic shell with an aqueous core impacting the formation processes of aerosols. This work is a model implementation to determine an aerosol's phase state using glass transition temperature and aerosol composition.
Havala O. T. Pye, Athanasios Nenes, Becky Alexander, Andrew P. Ault, Mary C. Barth, Simon L. Clegg, Jeffrey L. Collett Jr., Kathleen M. Fahey, Christopher J. Hennigan, Hartmut Herrmann, Maria Kanakidou, James T. Kelly, I-Ting Ku, V. Faye McNeill, Nicole Riemer, Thomas Schaefer, Guoliang Shi, Andreas Tilgner, John T. Walker, Tao Wang, Rodney Weber, Jia Xing, Rahul A. Zaveri, and Andreas Zuend
Atmos. Chem. Phys., 20, 4809–4888, https://doi.org/10.5194/acp-20-4809-2020, https://doi.org/10.5194/acp-20-4809-2020, 2020
Short summary
Short summary
Acid rain is recognized for its impacts on human health and ecosystems, and programs to mitigate these effects have had implications for atmospheric acidity. Historical measurements indicate that cloud and fog droplet acidity has changed in recent decades in response to controls on emissions from human activity, while the limited trend data for suspended particles indicate acidity may be relatively constant. This review synthesizes knowledge on the acidity of atmospheric particles and clouds.
Natalie R. Gervasi, David O. Topping, and Andreas Zuend
Atmos. Chem. Phys., 20, 2987–3008, https://doi.org/10.5194/acp-20-2987-2020, https://doi.org/10.5194/acp-20-2987-2020, 2020
Short summary
Short summary
Organic aerosols have been shown to exist often in a semi-solid or amorphous, glassy state. Highly viscous particles behave differently than their well-mixed liquid analogues with consequences for a variety of aerosol processes. Here, we introduce a new predictive mixture viscosity model called AIOMFAC-VISC. It enables us to predict the viscosity of aqueous organic mixtures as a function of temperature and chemical composition, covering the full range of liquid, semi-solid, and glassy states.
Kyle Gorkowski, Thomas C. Preston, and Andreas Zuend
Atmos. Chem. Phys., 19, 13383–13407, https://doi.org/10.5194/acp-19-13383-2019, https://doi.org/10.5194/acp-19-13383-2019, 2019
Short summary
Short summary
We present the new Binary Activity Thermodynamics (BAT) model, which is a water-sensitive reduced-complexity organic aerosol thermodynamics model. It can use bulk properties like O : C, molar mass, and RH to predict organic activity coefficients and water uptake behavior. We show applications in RH-dependent organic co-condensation, liquid–liquid phase separation, and Kohler curve predictions, and we validate the BAT model against laboratory measurements.
Hoi Ki Lam, Sze Man Shum, James F. Davies, Mijung Song, Andreas Zuend, and Man Nin Chan
Atmos. Chem. Phys., 19, 9581–9593, https://doi.org/10.5194/acp-19-9581-2019, https://doi.org/10.5194/acp-19-9581-2019, 2019
Short summary
Short summary
We show the presence of dissolved inorganic salts could reduce the overall heterogeneous reactivity of organic compounds with gas–phase OH radicals at the surface by lowering the surface concentration of organic compounds. Until recently, the kinetic parameters reported in the literature were mostly measured based on experiments with pure organic particles. The lifetime of organic compounds or chemical tracers against heterogeneous OH reaction in the atmosphere could be longer than expected.
James F. Davies, Andreas Zuend, and Kevin R. Wilson
Atmos. Chem. Phys., 19, 2933–2946, https://doi.org/10.5194/acp-19-2933-2019, https://doi.org/10.5194/acp-19-2933-2019, 2019
Short summary
Short summary
The formation of cloud droplets involves the condensation of water onto preexisting particles in the atmosphere. The efficiency of this process depends on the nature of the particles, and recent work has shown that organic-rich particles may exhibit a suppressed surface tension that promotes the formation of cloud droplets. In this technical note, we discuss the mechanism for this and highlight the evolution of surface tension as the key factor in the extent of surface effects.
Ting Lei, Andreas Zuend, Yafang Cheng, Hang Su, Weigang Wang, and Maofa Ge
Atmos. Chem. Phys., 18, 1045–1064, https://doi.org/10.5194/acp-18-1045-2018, https://doi.org/10.5194/acp-18-1045-2018, 2018
Short summary
Short summary
Measurements and thermodynamic equilibrium predictions for organic–inorganic aerosols related to components from biomass burning emissions demonstrate a diversity of hygroscopic growth and shrinking behavior, which we observed using a hygroscopicity tandem differential mobility analyzer (HTDMA). Controlled laboratory experiments with single solutes and/or with mixed organic–inorganic systems of known phase state will be useful to constrain model parameters of thermodynamic equilibrium models.
Havala O. T. Pye, Andreas Zuend, Juliane L. Fry, Gabriel Isaacman-VanWertz, Shannon L. Capps, K. Wyat Appel, Hosein Foroutan, Lu Xu, Nga L. Ng, and Allen H. Goldstein
Atmos. Chem. Phys., 18, 357–370, https://doi.org/10.5194/acp-18-357-2018, https://doi.org/10.5194/acp-18-357-2018, 2018
Short summary
Short summary
Thermodynamic modeling revealed that some but not all measurements of ammonium-to-sulfate ratios are consistent with theory. The measurement diversity likely explains the previously reported range of results regarding the suitability of thermodynamic modeling. Despite particles being predominantly phase separated, organic–inorganic interactions resulted in increased aerosol pH and partitioning towards the particle phase for highly oxygenated organic compounds compared to traditional methods.
Man Mei Chim, Chiu Tung Cheng, James F. Davies, Thomas Berkemeier, Manabu Shiraiwa, Andreas Zuend, and Man Nin Chan
Atmos. Chem. Phys., 17, 14415–14431, https://doi.org/10.5194/acp-17-14415-2017, https://doi.org/10.5194/acp-17-14415-2017, 2017
Short summary
Short summary
In this work, we report that methyl-substituted succinic acid present at or near the surface of aqueous organic droplets can be efficiently oxidized by gas-phase OH radicals. The alkoxy radical chemistry appears to be an important reaction pathway. In addition, our model simulations reveal the relative importance of functionalization and fragmentation processes, alongside volatilization, in the evolution of the particle-phase reaction, which is largely dependent on the extent of oxidation.
Natasha Hodas, Andreas Zuend, Katherine Schilling, Thomas Berkemeier, Manabu Shiraiwa, Richard C. Flagan, and John H. Seinfeld
Atmos. Chem. Phys., 16, 12767–12792, https://doi.org/10.5194/acp-16-12767-2016, https://doi.org/10.5194/acp-16-12767-2016, 2016
Short summary
Short summary
Discontinuities in apparent hygroscopicity below and above water saturation have been observed for organic and mixed organic-inorganic aerosol particles in both laboratory studies and in the ambient atmosphere. This work explores the extent to which such discontinuities are influenced by organic component molecular mass and viscosity, non-ideal thermodynamic interactions between aerosol components, and the combination of these factors.
N. Hodas, A. Zuend, W. Mui, R. C. Flagan, and J. H. Seinfeld
Atmos. Chem. Phys., 15, 5027–5045, https://doi.org/10.5194/acp-15-5027-2015, https://doi.org/10.5194/acp-15-5027-2015, 2015
G. Ganbavale, A. Zuend, C. Marcolli, and T. Peter
Atmos. Chem. Phys., 15, 447–493, https://doi.org/10.5194/acp-15-447-2015, https://doi.org/10.5194/acp-15-447-2015, 2015
Short summary
Short summary
This study presents a new, improved parameterisation of the temperature dependence of activity coefficients implemented in the AIOMFAC group-contribution model. The AIOMFAC model with the improved parameterisation is applicable for a large variety of aqueous organic as well as water-free organic solutions of relevance for atmospheric aerosols. The new model parameters were determined based on published and new thermodynamic equilibrium data covering a temperature range from ~190 to 440 K.
T. Lei, A. Zuend, W. G. Wang, Y. H. Zhang, and M. F. Ge
Atmos. Chem. Phys., 14, 11165–11183, https://doi.org/10.5194/acp-14-11165-2014, https://doi.org/10.5194/acp-14-11165-2014, 2014
G. Ganbavale, C. Marcolli, U. K. Krieger, A. Zuend, G. Stratmann, and T. Peter
Atmos. Chem. Phys., 14, 9993–10012, https://doi.org/10.5194/acp-14-9993-2014, https://doi.org/10.5194/acp-14-9993-2014, 2014
A. J. Huisman, U. K. Krieger, A. Zuend, C. Marcolli, and T. Peter
Atmos. Chem. Phys., 13, 6647–6662, https://doi.org/10.5194/acp-13-6647-2013, https://doi.org/10.5194/acp-13-6647-2013, 2013
Related subject area
Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Retrieval of refractive index and water content for the coating materials of aged black carbon aerosol based on optical properties: a theoretical analysis
Predicting hygroscopic growth of organosulfur aerosol particles using COSMOtherm
Dust aerosol from the Aralkum Desert influences the radiation budget and atmospheric dynamics of Central Asia
Global modeling of aerosol nucleation with a semi-explicit chemical mechanism for highly oxygenated organic molecules (HOMs)
Synergistic effects of the winter North Atlantic Oscillation (NAO) and El Niño–Southern Oscillation (ENSO) on dust activities in North China during the following spring
Aerosol composition, air quality, and boundary layer dynamics in the urban background of Stuttgart in winter
Measurement report: Source attribution and estimation of black carbon levels in an urban hotspot of the central Po Valley – an integrated approach combining high-resolution dispersion modelling and micro-aethalometers
Microphysical modelling of aerosol scavenging by different types of clouds: description and validation of the approach
Insights into the sources of ultrafine particle numbers at six European urban sites obtained by investigating COVID-19 lockdowns
In-plume and out-of-plume analysis of aerosol–cloud interactions derived from the 2014–2015 Holuhraun volcanic eruption
Impacts of atmospheric circulation patterns and cloud inhibition on aerosol radiative effect and boundary layer structure during winter air pollution in Sichuan Basin, China
Investigating the sign of stratocumulus adjustments to aerosols in the ICON global storm-resolving model
A model study investigating the sensitivity of aerosol forcing to the volatilities of semi-volatile organic compounds
Decomposing the effective radiative forcing of anthropogenic aerosols based on CMIP6 Earth system models
The role of interfacial tension in the size-dependent phase separation of atmospheric aerosol particles
Modeling impacts of dust mineralogy on fast climate response
Representation of iron aerosol size distributions is critical in evaluating atmospheric soluble iron input to the ocean
Uncertainties in laboratory-measured shortwave refractive indices of mineral dust aerosols and derived optical properties: a theoretical assessment
Diagnosing uncertainties in global biomass burning emission inventories and their impact on modeled air pollutants
Role of atmospheric aerosols in severe winter fog over the Indo-Gangetic Plain of India: a case study
Long-term variability in black carbon emissions constrained by gap-filled absorption aerosol optical depth and associated premature mortality in China
Intercomparison of aerosol optical depths from four reanalyses and their multi-reanalysis consensus
Global aviation contrail climate effects from 2019 to 2021
Multi-model effective radiative forcing of the 2020 sulphur cap for shipping
Rapid iodine oxoacid nucleation enhanced by dimethylamine in broad marine regions
Simulations of the impact of cloud condensation nuclei and ice-nucleating particles perturbations on the microphysics and radar reflectivity factor of stratiform mixed-phase clouds
Warming effects of reduced sulfur emissions from shipping
Aerosols in the central Arctic cryosphere: satellite and model integrated insights during Arctic spring and summer
Observationally constrained regional variations of shortwave absorption by iron oxides emphasize the cooling effect of dust
Droplet collection efficiencies inferred from satellite retrievals constrain effective radiative forcing of aerosol–cloud interactions
Global aerosol-type classification using a new hybrid algorithm and Aerosol Robotic Network data
Simulated phase state and viscosity of secondary organic aerosols over China
Comparing the simulated influence of biomass burning plumes on low-level clouds over the southeastern Atlantic under varying smoke conditions
A global dust emission dataset for estimating dust radiative forcings in climate models
Improved simulations of biomass burning aerosol optical properties and lifetimes in the NASA GEOS Model during the ORACLES-I campaign
Revealing dominant patterns of aerosols regimes in the lower troposphere and their evolution from preindustrial times to the future in global climate model simulations
Sharp increase in Saharan dust intrusions over the western Euro-Mediterranean in February–March 2020–2022 and associated atmospheric circulation
Temporal and spatial variations in dust activity in Australia based on remote sensing and reanalysis datasets
Sensitivity of global direct aerosol shortwave radiative forcing to uncertainties in aerosol optical properties
Molecular-level study on the role of methanesulfonic acid in iodine oxoacid nucleation
Improving estimation of a record breaking East Asian dust storm emission with lagged aerosol Ångström Exponent observations
Regional to global distributions, trends, and drivers of biogenic volatile organic compound emission from 2001 to 2020
Impacts of ice-nucleating particles on cirrus clouds and radiation derived from global model simulations with MADE3 in EMAC
Seasonal characteristics of emission, distribution, and radiative effect of marine organic aerosols over the western Pacific Ocean: an investigation with a coupled regional climate aerosol model
Fire–precipitation interactions amplify the quasi-biennial variability in fires over southern Mexico and Central America
Improved estimates of smoke exposure during Australia fire seasons: importance of quantifying plume injection heights
New particle formation induced by anthropogenic–biogenic interactions on the southeastern Tibetan Plateau
Investigation of observed dust trends over the Middle East region in NASA Goddard Earth Observing System (GEOS) model simulations
Impact of Biomass Burning Aerosols (BBA) on the tropical African climate in an ocean-atmosphere-aerosols coupled climate model
A new process-based and scale-aware desert dust emission scheme for global climate models – Part II: Evaluation in the Community Earth System Model version 2 (CESM2)
Jia Liu, Cancan Zhu, Donghui Zhou, and Jinbao Han
Atmos. Chem. Phys., 24, 12341–12354, https://doi.org/10.5194/acp-24-12341-2024, https://doi.org/10.5194/acp-24-12341-2024, 2024
Short summary
Short summary
The hydrophilic coatings of aged black carbon (BC) particles absorb moisture during the hygroscopic growth process, but it is difficult to characterize how much water is absorbed under different relative humidities (RHs). In this study, we propose a method to obtain the water content in the coatings based on the equivalent complex refractive index retrieved from optical properties. This method is verified from a theoretical perspective, and it performs well for thickly coated BC at high RHs.
Zijun Li, Angela Buchholz, and Noora Hyttinen
Atmos. Chem. Phys., 24, 11717–11725, https://doi.org/10.5194/acp-24-11717-2024, https://doi.org/10.5194/acp-24-11717-2024, 2024
Short summary
Short summary
Evaluating organosulfur (OS) hygroscopicity is important for assessing aerosol–cloud climate interactions in the post-fossil-fuel future, when SO2 emissions decrease and OS compounds become increasingly important. Here a state-of-the-art quantum-chemistry-based method was used to predict the hygroscopic growth factors (HGFs) of a group of atmospherically relevant OS compounds and their mixtures with (NH4)2SO4. A good agreement was observed between their model-estimated and experimental HGFs.
Jamie R. Banks, Bernd Heinold, and Kerstin Schepanski
Atmos. Chem. Phys., 24, 11451–11475, https://doi.org/10.5194/acp-24-11451-2024, https://doi.org/10.5194/acp-24-11451-2024, 2024
Short summary
Short summary
The Aralkum is a new desert in Central Asia formed by the desiccation of the Aral Sea. This has created a source of atmospheric dust, with implications for the balance of solar and thermal radiation. Simulating these effects using a dust transport model, we find that Aralkum dust adds radiative cooling effects to the surface and atmosphere on average but also adds heating events. Increases in surface pressure due to Aralkum dust strengthen the Siberian High and weaken the summer Asian heat low.
Xinyue Shao, Minghuai Wang, Xinyi Dong, Yaman Liu, Wenxiang Shen, Stephen R. Arnold, Leighton A. Regayre, Meinrat O. Andreae, Mira L. Pöhlker, Duseong S. Jo, Man Yue, and Ken S. Carslaw
Atmos. Chem. Phys., 24, 11365–11389, https://doi.org/10.5194/acp-24-11365-2024, https://doi.org/10.5194/acp-24-11365-2024, 2024
Short summary
Short summary
Highly oxygenated organic molecules (HOMs) play an important role in atmospheric new particle formation (NPF). By semi-explicitly coupling the chemical mechanism of HOMs and a comprehensive nucleation scheme in a global climate model, the updated model shows better agreement with measurements of nucleation rate, growth rate, and NPF event frequency. Our results reveal that HOM-driven NPF leads to a considerable increase in particle and cloud condensation nuclei burden globally.
Falei Xu, Shuang Wang, Yan Li, and Juan Feng
Atmos. Chem. Phys., 24, 10689–10705, https://doi.org/10.5194/acp-24-10689-2024, https://doi.org/10.5194/acp-24-10689-2024, 2024
Short summary
Short summary
This study examines how the winter North Atlantic Oscillation (NAO) and El Niño–Southern Oscillation (ENSO) affect dust activities in North China during the following spring. The results show that the NAO and ENSO, particularly in their negative phases, greatly influence dust activities. When both are negative, their combined effect on dust activities is even greater. This research highlights the importance of these climate patterns in predicting spring dust activities in North China.
Hengheng Zhang, Wei Huang, Xiaoli Shen, Ramakrishna Ramisetty, Junwei Song, Olga Kiseleva, Christopher Claus Holst, Basit Khan, Thomas Leisner, and Harald Saathoff
Atmos. Chem. Phys., 24, 10617–10637, https://doi.org/10.5194/acp-24-10617-2024, https://doi.org/10.5194/acp-24-10617-2024, 2024
Short summary
Short summary
Our study unravels how stagnant winter conditions elevate aerosol levels in Stuttgart. Cloud cover at night plays a pivotal role, impacting morning air quality. Validating a key model, our findings aid accurate air quality predictions, crucial for effective pollution mitigation in urban areas.
Giorgio Veratti, Alessandro Bigi, Michele Stortini, Sergio Teggi, and Grazia Ghermandi
Atmos. Chem. Phys., 24, 10475–10512, https://doi.org/10.5194/acp-24-10475-2024, https://doi.org/10.5194/acp-24-10475-2024, 2024
Short summary
Short summary
In a study of two consecutive winter seasons, we used measurements and modelling tools to identify the levels and sources of black carbon pollution in a medium-sized urban area of the Po Valley, Italy. Our findings show that biomass burning and traffic-related emissions (especially from Euro 4 diesel cars) significantly contribute to BC concentrations. This research offers crucial insights for policymakers and urban planners aiming to improve air quality in cities.
Pascal Lemaitre, Arnaud Quérel, Alexis Dépée, Alice Guerra Devigne, Marie Monier, Thibault Hiron, Chloé Soto Minguez, Daniel Hardy, and Andrea Flossmann
Atmos. Chem. Phys., 24, 9713–9732, https://doi.org/10.5194/acp-24-9713-2024, https://doi.org/10.5194/acp-24-9713-2024, 2024
Short summary
Short summary
A new in-cloud scavenging scheme is proposed. It is based on a microphysical model of cloud formation and may be applied to long-distance atmospheric transport models (> 100 km) and climatic models. This model is applied to the two most extreme precipitating cloud types in terms of both relative humidity and vertical extension: cumulonimbus and stratus.
Alex Rowell, James Brean, David C. S. Beddows, Tuukka Petäjä, Máté Vörösmarty, Imre Salma, Jarkko V. Niemi, Hanna E. Manninen, Dominik van Pinxteren, Thomas Tuch, Kay Weinhold, Zongbo Shi, and Roy M. Harrison
Atmos. Chem. Phys., 24, 9515–9531, https://doi.org/10.5194/acp-24-9515-2024, https://doi.org/10.5194/acp-24-9515-2024, 2024
Short summary
Short summary
Different sources of airborne particles in the atmospheres of four European cities were distinguished by recognising their particle size distributions using a statistical procedure, positive matrix factorisation. The various sources responded differently to the changes in emissions associated with COVID-19 lockdowns, and the reasons are investigated. While traffic emissions generally decreased, particles formed from reactions of atmospheric gases decreased in some cities but increased in others.
Amy H. Peace, Ying Chen, George Jordan, Daniel G. Partridge, Florent Malavelle, Eliza Duncan, and Jim M. Haywood
Atmos. Chem. Phys., 24, 9533–9553, https://doi.org/10.5194/acp-24-9533-2024, https://doi.org/10.5194/acp-24-9533-2024, 2024
Short summary
Short summary
Natural aerosols from volcanic eruptions can help us understand how anthropogenic aerosols modify climate. We use observations and model simulations of the 2014–2015 Holuhraun eruption plume to examine aerosol–cloud interactions in September 2014. We find a shift to clouds with smaller, more numerous cloud droplets in the first 2 weeks of the eruption. In the third week, the background meteorology and previous conditions experienced by air masses modulate the aerosol perturbation to clouds.
Hua Lu, Min Xie, Bingliang Zhuang, Danyang Ma, Bojun Liu, Yangzhihao Zhan, Tijian Wang, Shu Li, Mengmeng Li, and Kuanguang Zhu
Atmos. Chem. Phys., 24, 8963–8982, https://doi.org/10.5194/acp-24-8963-2024, https://doi.org/10.5194/acp-24-8963-2024, 2024
Short summary
Short summary
To identify cloud, aerosol, and planetary boundary layer (PBL) interactions from an air quality perspective, we summarized two pollution patterns characterized by denser liquid cloud and by obvious cloud radiation interaction (CRI). Numerical simulation experiments showed CRI could cause a 50 % reduction in aerosol radiation interaction (ARI) under a low-trough system. The results emphasized the nonnegligible role of CRI and its inhibition of ARI under wet and cloudy pollution synoptic patterns.
Emilie Fons, Ann Kristin Naumann, David Neubauer, Theresa Lang, and Ulrike Lohmann
Atmos. Chem. Phys., 24, 8653–8675, https://doi.org/10.5194/acp-24-8653-2024, https://doi.org/10.5194/acp-24-8653-2024, 2024
Short summary
Short summary
Aerosols can modify the liquid water path (LWP) of stratocumulus and, thus, their radiative effect. We compare storm-resolving model and satellite data that disagree on the sign of LWP adjustments and diagnose this discrepancy with causal inference. We find that strong precipitation, the absence of wet scavenging, and cloud deepening under a weak inversion contribute to positive LWP adjustments to aerosols in the model, despite weak negative effects from cloud-top entrainment enhancement.
Muhammed Irfan, Thomas Kühn, Taina Yli-Juuti, Anton Laakso, Eemeli Holopainen, Douglas R. Worsnop, Annele Virtanen, and Harri Kokkola
Atmos. Chem. Phys., 24, 8489–8506, https://doi.org/10.5194/acp-24-8489-2024, https://doi.org/10.5194/acp-24-8489-2024, 2024
Short summary
Short summary
The study examines how the volatility of semi-volatile organic compounds affects secondary organic aerosol (SOA) formation and climate. Our simulations show that uncertainties in these volatilities influence aerosol mass and climate impacts. Accurate representation of these compounds in climate models is crucial for predicting global climate patterns.
Alkiviadis Kalisoras, Aristeidis K. Georgoulias, Dimitris Akritidis, Robert J. Allen, Vaishali Naik, Chaincy Kuo, Sophie Szopa, Pierre Nabat, Dirk Olivié, Twan van Noije, Philippe Le Sager, David Neubauer, Naga Oshima, Jane Mulcahy, Larry W. Horowitz, and Prodromos Zanis
Atmos. Chem. Phys., 24, 7837–7872, https://doi.org/10.5194/acp-24-7837-2024, https://doi.org/10.5194/acp-24-7837-2024, 2024
Short summary
Short summary
Effective radiative forcing (ERF) is a metric for estimating how human activities and natural agents change the energy flow into and out of the Earth’s climate system. We investigate the anthropogenic aerosol ERF, and we estimate the contribution of individual processes to the total ERF using simulations from Earth system models within the Coupled Model Intercomparison Project Phase 6 (CMIP6). Our findings highlight that aerosol–cloud interactions drive ERF variability during the last 150 years.
Ryan Schmedding and Andreas Zuend
EGUsphere, https://doi.org/10.5194/egusphere-2024-1690, https://doi.org/10.5194/egusphere-2024-1690, 2024
Short summary
Short summary
Four different approaches for computing the interfacial tension between liquid phases in aerosol particles were tested for particles with diameters from 10 nm to more than 5 μm. Antonov's rule led to the strongest reductions in the onset relative humidity of liquid–liquid phase separation and reproduced measured interfacial tensions for highly immiscible systems. A modified form of the Butler equation was able to best reproduce measured interfacial tensions in more miscible systems.
Qianqian Song, Paul Ginoux, María Gonçalves Ageitos, Ron L. Miller, Vincenzo Obiso, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 24, 7421–7446, https://doi.org/10.5194/acp-24-7421-2024, https://doi.org/10.5194/acp-24-7421-2024, 2024
Short summary
Short summary
We implement and simulate the distribution of eight dust minerals in the GFDL AM4.0 model. We found that resolving the eight minerals reduces dust absorption compared to the homogeneous dust used in the standard GFDL AM4.0 model that assumes a globally uniform hematite content of 2.7 % by volume. Resolving dust mineralogy results in significant impacts on radiation, land surface temperature, surface winds, and precipitation over North Africa in summer.
Mingxu Liu, Hitoshi Matsui, Douglas Hamilton, Sagar Rathod, Kara Lamb, and Natalie Mahowald
EGUsphere, https://doi.org/10.5194/egusphere-2024-1454, https://doi.org/10.5194/egusphere-2024-1454, 2024
Short summary
Short summary
Atmospheric aerosol deposition provides iron to promote marine primary production, yet its amount remains highly uncertain. This study demonstrates that iron-containing particle size at emission is a critical factor in regulating their input to open oceans by performing global aerosol simulations. Further observational constraints on this are needed to reduce modelling uncertainties.
Senyi Kong, Zheng Wang, and Lei Bi
Atmos. Chem. Phys., 24, 6911–6935, https://doi.org/10.5194/acp-24-6911-2024, https://doi.org/10.5194/acp-24-6911-2024, 2024
Short summary
Short summary
The retrieval of refractive indices of dust aerosols from laboratory optical measurements is commonly done assuming spherical particles. This paper aims to investigate the uncertainties in the shortwave refractive indices and corresponding optical properties by considering non-spherical and inhomogeneous models for dust samples. The study emphasizes the significance of using non-spherical models for simulating dust aerosols.
Wenxuan Hua, Sijia Lou, Xin Huang, Lian Xue, Ke Ding, Zilin Wang, and Aijun Ding
Atmos. Chem. Phys., 24, 6787–6807, https://doi.org/10.5194/acp-24-6787-2024, https://doi.org/10.5194/acp-24-6787-2024, 2024
Short summary
Short summary
In this study, we diagnose uncertainties in carbon monoxide and organic carbon emissions from four inventories for seven major wildfire-prone regions. Uncertainties in vegetation classification methods, fire detection products, and cloud obscuration effects lead to bias in these biomass burning (BB) emission inventories. By comparing simulations with measurements, we provide certain inventory recommendations. Our study has implications for reducing uncertainties in emissions in further studies.
Chandrakala Bharali, Mary Barth, Rajesh Kumar, Sachin D. Ghude, Vinayak Sinha, and Baerbel Sinha
Atmos. Chem. Phys., 24, 6635–6662, https://doi.org/10.5194/acp-24-6635-2024, https://doi.org/10.5194/acp-24-6635-2024, 2024
Short summary
Short summary
This study examines the role of atmospheric aerosols in winter fog over the Indo-Gangetic Plains of India using WRF-Chem. The increase in RH with aerosol–radiation feedback (ARF) is found to be important for fog formation as it promotes the growth of aerosols in the polluted environment. Aqueous-phase chemistry in the fog increases PM2.5 concentration, further affecting ARF. ARF and aqueous-phase chemistry affect the fog intensity and the timing of fog formation by ~1–2 h.
Wenxin Zhao, Yu Zhao, Yu Zheng, Dong Chen, Jinyuan Xin, Kaitao Li, Huizheng Che, Zhengqiang Li, Mingrui Ma, and Yun Hang
Atmos. Chem. Phys., 24, 6593–6612, https://doi.org/10.5194/acp-24-6593-2024, https://doi.org/10.5194/acp-24-6593-2024, 2024
Short summary
Short summary
We evaluate the long-term (2000–2020) variabilities of aerosol absorption optical depth, black carbon emissions, and associated health risks in China with an integrated framework that combines multiple observations and modeling techniques. We demonstrate the remarkable emission abatement resulting from the implementation of national pollution controls and show how human activities affected the emissions with a spatiotemporal heterogeneity, thus supporting differentiated policy-making by region.
Peng Xian, Jeffrey S. Reid, Melanie Ades, Angela Benedetti, Peter R. Colarco, Arlindo da Silva, Tom F. Eck, Johannes Flemming, Edward J. Hyer, Zak Kipling, Samuel Rémy, Tsuyoshi Thomas Sekiyama, Taichu Tanaka, Keiya Yumimoto, and Jianglong Zhang
Atmos. Chem. Phys., 24, 6385–6411, https://doi.org/10.5194/acp-24-6385-2024, https://doi.org/10.5194/acp-24-6385-2024, 2024
Short summary
Short summary
The study compares and evaluates monthly AOD of four reanalyses (RA) and their consensus (i.e., ensemble mean). The basic verification characteristics of these RA versus both AERONET and MODIS retrievals are presented. The study discusses the strength of each RA and identifies regions where divergence and challenges are prominent. The RA consensus usually performs very well on a global scale in terms of how well it matches the observational data, making it a good choice for various applications.
Roger Teoh, Zebediah Engberg, Ulrich Schumann, Christiane Voigt, Marc Shapiro, Susanne Rohs, and Marc E. J. Stettler
Atmos. Chem. Phys., 24, 6071–6093, https://doi.org/10.5194/acp-24-6071-2024, https://doi.org/10.5194/acp-24-6071-2024, 2024
Short summary
Short summary
The radiative forcing (RF) due to aviation contrails is comparable to that caused by CO2. We estimate that global contrail net RF in 2019 was 62.1 mW m−2. This is ~1/2 the previous best estimate for 2018. Contrail RF varies regionally due to differences in conditions required for persistent contrails. COVID-19 reduced contrail RF by 54% in 2020 relative to 2019. Globally, 2 % of all flights account for 80 % of the annual contrail energy forcing, suggesting a opportunity to mitigate contrail RF.
Ragnhild Bieltvedt Skeie, Rachael Byrom, Øivind Hodnebrog, Caroline Jouan, and Gunnar Myhre
EGUsphere, https://doi.org/10.5194/egusphere-2024-1394, https://doi.org/10.5194/egusphere-2024-1394, 2024
Short summary
Short summary
In 2020 new regulations by the International Maritime Organization of sulphur emissions came into force that reduced emissions of SO2 from the shipping sector by approximately 80 %. In this study, we use multiple models to calculate by how much the Earth energy balance changed due to the emission reduction, the so called effective radiative forcing. The calculated effective radiative forcing is weak, comparable to the effect of the increase in CO2 over the last two to three years.
Haotian Zu, Biwu Chu, Yiqun Lu, Ling Liu, and Xiuhui Zhang
Atmos. Chem. Phys., 24, 5823–5835, https://doi.org/10.5194/acp-24-5823-2024, https://doi.org/10.5194/acp-24-5823-2024, 2024
Short summary
Short summary
The nucleation of iodic acid (HIO3) and iodous acid (HIO2) was proven to be critical in marine areas. However, HIO3–HIO2 nucleation cannot effectively derive the rapid nucleation in some polluted coasts. We find a significant enhancement of dimethylamine (DMA) on the HIO3–HIO2 nucleation in marine and polar regions with abundant DMA sources, which may establish reasonable connections between the HIO3–HIO2 nucleation and the rapid formation of new particles in polluted marine and polar regions.
Junghwa Lee, Patric Seifert, Tempei Hashino, Maximilian Maahn, Fabian Senf, and Oswald Knoth
Atmos. Chem. Phys., 24, 5737–5756, https://doi.org/10.5194/acp-24-5737-2024, https://doi.org/10.5194/acp-24-5737-2024, 2024
Short summary
Short summary
Spectral bin model simulations of an idealized supercooled stratiform cloud were performed with the AMPS model for variable CCN and INP concentrations. We performed radar forward simulations with PAMTRA to transfer the simulations into radar observational space. The derived radar reflectivity factors were compared to observational studies of stratiform mixed-phase clouds. These studies report a similar response of the radar reflectivity factor to aerosol perturbations as we found in our study.
Masaru Yoshioka, Daniel P. Grosvenor, Ben B. B. Booth, Colin P. Morice, and Kenneth S. Carslaw
EGUsphere, https://doi.org/10.5194/egusphere-2024-1428, https://doi.org/10.5194/egusphere-2024-1428, 2024
Short summary
Short summary
Sulfur emissions from shipping has been reduced by about 80 % as a result of the new regulation introduced in 2020. This has reduced aerosol in the atmosphere and its cooling effect through interactions with clouds. As a result, our coupled climate model simulations predict a global warming of 0.04 K averaged over three decades, potentially surpassing the Paris target of 1.5 K or contributing to recent temperature spikes, particularly notable in the Arctic with a mean warming of 0.15 K.
Basudev Swain, Marco Vountas, Aishwarya Singh, Nidhi L. Anchan, Adrien Deroubaix, Luca Lelli, Yanick Ziegler, Sachin S. Gunthe, Hartmut Bösch, and John P. Burrows
Atmos. Chem. Phys., 24, 5671–5693, https://doi.org/10.5194/acp-24-5671-2024, https://doi.org/10.5194/acp-24-5671-2024, 2024
Short summary
Short summary
Arctic amplification (AA) accelerates the warming of the central Arctic cryosphere and affects aerosol dynamics. Limited observations hinder a comprehensive analysis. This study uses AEROSNOW aerosol optical density (AOD) data and GEOS-Chem simulations to assess AOD variability. Discrepancies highlight the need for improved observational integration into models to refine our understanding of aerosol effects on cloud microphysics, ice nucleation, and radiative forcing under evolving AA.
Vincenzo Obiso, María Gonçalves Ageitos, Carlos Pérez García-Pando, Jan P. Perlwitz, Gregory L. Schuster, Susanne E. Bauer, Claudia Di Biagio, Paola Formenti, Kostas Tsigaridis, and Ron L. Miller
Atmos. Chem. Phys., 24, 5337–5367, https://doi.org/10.5194/acp-24-5337-2024, https://doi.org/10.5194/acp-24-5337-2024, 2024
Short summary
Short summary
We calculate the dust direct radiative effect (DRE) in an Earth system model accounting for regionally varying soil mineralogy through a new observationally constrained method. Linking dust absorption at solar wavelengths to the varying amount of specific minerals (i.e., iron oxides) improves the modeled range of dust single scattering albedo compared to observations and increases the global cooling by dust. Our results may contribute to improved estimates of the dust DRE and its climate impact.
Charlotte M. Beall, Po-Lun Ma, Matthew W. Christensen, Johannes Mülmenstädt, Adam Varble, Kentaroh Suzuki, and Takuro Michibata
Atmos. Chem. Phys., 24, 5287–5302, https://doi.org/10.5194/acp-24-5287-2024, https://doi.org/10.5194/acp-24-5287-2024, 2024
Short summary
Short summary
Single-layer warm liquid clouds cover nearly one-third of the Earth's surface, and uncertainties regarding the impact of aerosols on their radiative properties pose a significant challenge to climate prediction. Here, we demonstrate how satellite observations can be used to constrain Earth system model estimates of the radiative forcing from the interactions of aerosols with clouds due to warm rain processes.
Xiaoli Wei, Qian Cui, Leiming Ma, Feng Zhang, Wenwen Li, and Peng Liu
Atmos. Chem. Phys., 24, 5025–5045, https://doi.org/10.5194/acp-24-5025-2024, https://doi.org/10.5194/acp-24-5025-2024, 2024
Short summary
Short summary
A new aerosol-type classification algorithm has been proposed. It includes an optical database built by Mie scattering and a complex refractive index working as a baseline to identify different aerosol types. The new algorithm shows high accuracy and efficiency. Hence, a global map of aerosol types was generated to characterize aerosol types across the five continents. It will help improve the accuracy of aerosol inversion and determine the sources of aerosol pollution.
Zhiqiang Zhang, Ying Li, Haiyan Ran, Junling An, Yu Qu, Wei Zhou, Weiqi Xu, Weiwei Hu, Hongbin Xie, Zifa Wang, Yele Sun, and Manabu Shiraiwa
Atmos. Chem. Phys., 24, 4809–4826, https://doi.org/10.5194/acp-24-4809-2024, https://doi.org/10.5194/acp-24-4809-2024, 2024
Short summary
Short summary
Secondary organic aerosols (SOAs) can exist in liquid, semi-solid, or amorphous solid states, which are rarely accounted for in current chemical transport models. We predict the phase state of SOA particles over China and find that in northwestern China SOA particles are mostly highly viscous or glassy solid. Our results indicate that the particle phase state should be considered in SOA formation in chemical transport models for more accurate prediction of SOA mass concentrations.
Alejandro Baró Pérez, Michael S. Diamond, Frida A.-M. Bender, Abhay Devasthale, Matthias Schwarz, Julien Savre, Juha Tonttila, Harri Kokkola, Hyunho Lee, David Painemal, and Annica M. L. Ekman
Atmos. Chem. Phys., 24, 4591–4610, https://doi.org/10.5194/acp-24-4591-2024, https://doi.org/10.5194/acp-24-4591-2024, 2024
Short summary
Short summary
We use a numerical model to study interactions between humid light-absorbing aerosol plumes, clouds, and radiation over the southeast Atlantic. We find that the warming produced by the aerosols reduces cloud cover, especially in highly polluted situations. Aerosol impacts on drizzle play a minor role. However, aerosol effects on cloud reflectivity and moisture-induced changes in cloud cover dominate the climatic response and lead to an overall cooling by the biomass burning plumes.
Danny M. Leung, Jasper F. Kok, Longlei Li, David M. Lawrence, Natalie M. Mahowald, Simone Tilmes, and Erik Kluzek
EGUsphere, https://doi.org/10.5194/egusphere-2024-1124, https://doi.org/10.5194/egusphere-2024-1124, 2024
Short summary
Short summary
This study derives a desert dust emission dataset for 1841–2000, by employing a combination of observed dust records from sedimentary cores as well as reanalyzed global dust cycle constraints. We evaluate the ability of global models to replicate the observed historical dust variability by using the emission dataset to force a historical simulation in an Earth system model. We show that prescribing our emissions forces the model to match better against observations than other mechanistic models.
Sampa Das, Peter R. Colarco, Huisheng Bian, and Santiago Gassó
Atmos. Chem. Phys., 24, 4421–4449, https://doi.org/10.5194/acp-24-4421-2024, https://doi.org/10.5194/acp-24-4421-2024, 2024
Short summary
Short summary
The smoke aerosols emitted from vegetation burning can alter the regional energy budget via multiple pathways. We utilized detailed observations from the NASA ORACLES airborne campaign based in Namibia during September 2016 to improve the representation of smoke aerosol properties and lifetimes in our GEOS Earth system model. The improved model simulations are for the first time able to capture the observed changes in the smoke absorption during long-range plume transport.
Jingmin Li, Mattia Righi, Johannes Hendricks, Christof G. Beer, Ulrike Burkhardt, and Anja Schmidt
EGUsphere, https://doi.org/10.5194/egusphere-2024-1024, https://doi.org/10.5194/egusphere-2024-1024, 2024
Short summary
Short summary
Aiming to understand underlying patterns and trends in aerosols, we characterize the spatial patterns and long-term evolution of lower tropospheric aerosols by clustering multiple aerosol properties from preindustrial times to the year 2050 under three SSP scenarios. The results provide a clear and condensed picture of the spatial extent and distribution of aerosols for different time periods and emission scenarios.
Emilio Cuevas-Agulló, David Barriopedro, Rosa Delia García, Silvia Alonso-Pérez, Juan Jesús González-Alemán, Ernest Werner, David Suárez, Juan José Bustos, Gerardo García-Castrillo, Omaira García, África Barreto, and Sara Basart
Atmos. Chem. Phys., 24, 4083–4104, https://doi.org/10.5194/acp-24-4083-2024, https://doi.org/10.5194/acp-24-4083-2024, 2024
Short summary
Short summary
During February–March (FM) 2020–2022, unusually intense dust storms from northern Africa hit the western Euro-Mediterranean (WEM). Using dust products from satellites and atmospheric reanalysis for 2003–2022, results show that cut-off lows and European blocking are key drivers of FM dust intrusions over the WEM. A higher frequency of cut-off lows associated with subtropical ridges is observed in the late 2020–2022 period.
Yahui Che, Bofu Yu, and Katherine Bracco
Atmos. Chem. Phys., 24, 4105–4128, https://doi.org/10.5194/acp-24-4105-2024, https://doi.org/10.5194/acp-24-4105-2024, 2024
Short summary
Short summary
Dust events occur more frequently during the Austral spring and summer in dust regions, including central Australia, the southwest of Western Australia, and the northern and southern regions of eastern Australia using remote sensing and reanalysis datasets. High-concentration dust is distributed around central Australia and in the downwind northern and southern Australia. Typically, around 50 % of the dust lifted settles on Australian land, with the remaining half being deposited in the ocean.
Jonathan Elsey, Nicolas Bellouin, and Claire Ryder
Atmos. Chem. Phys., 24, 4065–4081, https://doi.org/10.5194/acp-24-4065-2024, https://doi.org/10.5194/acp-24-4065-2024, 2024
Short summary
Short summary
Aerosols influence the Earth's energy balance. The uncertainty in this radiative forcing is large depending partly on uncertainty in measurements of aerosol optical properties. We have developed a freely available new framework of millions of radiative transfer simulations spanning aerosol uncertainty and assess the impact on radiative forcing uncertainty. We find that reducing these uncertainties would reduce radiative forcing uncertainty, but non-aerosol uncertainties must also be considered.
Jing Li, Nan Wu, Biwu Chu, An Ning, and Xiuhui Zhang
Atmos. Chem. Phys., 24, 3989–4000, https://doi.org/10.5194/acp-24-3989-2024, https://doi.org/10.5194/acp-24-3989-2024, 2024
Short summary
Short summary
Iodic acid (HIO3) nucleates with iodous acid (HIO2) efficiently in marine areas; however, whether methanesulfonic acid (MSA) can synergistically participate in the HIO3–HIO2-based nucleation is unclear. We provide molecular-level evidence that MSA can efficiently promote the formation of HIO3–HIO2-based clusters using a theoretical approach. The proposed MSA-enhanced iodine nucleation mechanism may help us to deeply understand marine new particle formation events with bursts of iodine particles.
Yueming Cheng, Tie Dai, Junji Cao, Daisuke Goto, Jianbing Jin, Teruyuki Nakajima, and Guangyu Shi
EGUsphere, https://doi.org/10.5194/egusphere-2024-840, https://doi.org/10.5194/egusphere-2024-840, 2024
Short summary
Short summary
In March 2021, East Asia experienced an outbreak of severe dust storms after an absence of one and a half decades. Here, we innovative used the time-lagged ground-based aerosol size information with the fixed-lag ensemble Kalman smoother to optimize the dust emission and reproduce the dust storm. This work is valuable for the quantification of health damage, aviation risks, and profound impacts on the Earth system, but also to reveal the climatic driving force and the process of desertification.
Hao Wang, Xiaohong Liu, Chenglai Wu, and Guangxing Lin
Atmos. Chem. Phys., 24, 3309–3328, https://doi.org/10.5194/acp-24-3309-2024, https://doi.org/10.5194/acp-24-3309-2024, 2024
Short summary
Short summary
We quantified different global- and regional-scale drivers of biogenic volatile organic compound (BVOC) emission trends over the past 20 years. The results show that global greening trends significantly boost BVOC emissions and deforestation reduces BVOC emissions in South America and Southeast Asia. Elevated temperature in Europe and increased soil moisture in East and South Asia enhance BVOC emissions. The results deepen our understanding of long-term BVOC emission trends in hotspots.
Christof G. Beer, Johannes Hendricks, and Mattia Righi
Atmos. Chem. Phys., 24, 3217–3240, https://doi.org/10.5194/acp-24-3217-2024, https://doi.org/10.5194/acp-24-3217-2024, 2024
Short summary
Short summary
Ice-nucleating particles (INPs) have important influences on cirrus clouds and the climate system; however, the understanding of their global impacts is still uncertain. We perform numerical simulations with a global aerosol–climate model to analyse INP-induced cirrus changes and the resulting climate impacts. We evaluate various sources of uncertainties, e.g. the ice-nucleating ability of INPs and the role of model dynamics, and provide a new estimate for the global INP–cirrus effect.
Jiawei Li, Zhiwei Han, Pingqing Fu, Xiaohong Yao, and Mingjie Liang
Atmos. Chem. Phys., 24, 3129–3161, https://doi.org/10.5194/acp-24-3129-2024, https://doi.org/10.5194/acp-24-3129-2024, 2024
Short summary
Short summary
Organic aerosols of marine origin are important for aerosol climatic effects but are poorly understood. For the first time, an online coupled regional chemistry–climate model is applied to explore the characteristics of emission, distribution, and direct and indirect radiative effects of marine organic aerosols over the western Pacific, which reveals an important role of marine organic aerosols in perturbing cloud and radiation and promotes understanding of global aerosol climatic impact.
Yawen Liu, Yun Qian, Philip J. Rasch, Kai Zhang, Lai-yung Ruby Leung, Yuhang Wang, Minghuai Wang, Hailong Wang, Xin Huang, and Xiu-Qun Yang
Atmos. Chem. Phys., 24, 3115–3128, https://doi.org/10.5194/acp-24-3115-2024, https://doi.org/10.5194/acp-24-3115-2024, 2024
Short summary
Short summary
Fire management has long been a challenge. Here we report that spring-peak fire activity over southern Mexico and Central America (SMCA) has a distinct quasi-biennial signal by measuring multiple fire metrics. This signal is initially driven by quasi-biennial variability in precipitation and is further amplified by positive feedback of fire–precipitation interaction at short timescales. This work highlights the importance of fire–climate interactions in shaping fires on an interannual scale.
Xu Feng, Loretta J. Mickley, Michelle L. Bell, Tianjia Liu, Jenny A. Fisher, and Maria Val Martin
Atmos. Chem. Phys., 24, 2985–3007, https://doi.org/10.5194/acp-24-2985-2024, https://doi.org/10.5194/acp-24-2985-2024, 2024
Short summary
Short summary
During severe wildfire seasons, smoke can have a significant impact on air quality in Australia. Our study demonstrates that characterization of the smoke plume injection fractions greatly affects estimates of surface smoke PM2.5. Using the plume behavior predicted by the machine learning method leads to the best model agreement with observed surface PM2.5 in key cities across Australia, with smoke PM2.5 accounting for 5 %–52 % of total PM2.5 on average during fire seasons from 2009 to 2020.
Shiyi Lai, Ximeng Qi, Xin Huang, Sijia Lou, Xuguang Chi, Liangduo Chen, Chong Liu, Yuliang Liu, Chao Yan, Mengmeng Li, Tengyu Liu, Wei Nie, Veli-Matti Kerminen, Tuukka Petäjä, Markku Kulmala, and Aijun Ding
Atmos. Chem. Phys., 24, 2535–2553, https://doi.org/10.5194/acp-24-2535-2024, https://doi.org/10.5194/acp-24-2535-2024, 2024
Short summary
Short summary
By combining in situ measurements and chemical transport modeling, this study investigates new particle formation (NPF) on the southeastern Tibetan Plateau. We found that the NPF was driven by the presence of biogenic gases and the transport of anthropogenic precursors. The NPF was vertically heterogeneous and shaped by the vertical mixing. This study highlights the importance of anthropogenic–biogenic interactions and meteorological dynamics in NPF in this climate-sensitive region.
Adriana Rocha-Lima, Peter R. Colarco, Anton S. Darmenov, Edward P. Nowottnick, Arlindo M. da Silva, and Luke D. Oman
Atmos. Chem. Phys., 24, 2443–2464, https://doi.org/10.5194/acp-24-2443-2024, https://doi.org/10.5194/acp-24-2443-2024, 2024
Short summary
Short summary
Observations show an increasing aerosol optical depth trend in the Middle East between 2003–2012. We evaluate the NASA Goddard Earth Observing System (GEOS) model's ability to capture these trends and examine the meteorological and surface parameters driving dust emissions. Our results highlight the importance of data assimilation for long-term trends of atmospheric aerosols and support the hypothesis that vegetation cover loss may have contributed to increasing dust emissions in the period.
Marc Mallet, Aurore Voldoire, Fabien Solmon, Pierre Nabat, Thomas Drugé, and Romain Roehrig
EGUsphere, https://doi.org/10.5194/egusphere-2024-496, https://doi.org/10.5194/egusphere-2024-496, 2024
Short summary
Short summary
This study investigates the interactions between smoke aerosols and climate in tropical Africa using a coupled ocean-atmosphere-aerosol climate model. The work shows that smoke plumes have a significant impact by increasing the low cloud fraction, decreasing the ocean and continental surface temperature and by reducing the precipitation of the coastal Western Africa. It also highlights the key role of the ocean temperature response and its feedbacks for the September to November season.
Danny M. Leung, Jasper F. Kok, Longlei Li, Natalie M. Mahowald, David M. Lawrence, Simone Tilmes, Erik Kluzek, Martina Klose, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 24, 2287–2318, https://doi.org/10.5194/acp-24-2287-2024, https://doi.org/10.5194/acp-24-2287-2024, 2024
Short summary
Short summary
This study uses a premier Earth system model to evaluate a new desert dust emission scheme proposed in our companion paper. We show that our scheme accounts for more dust emission physics, hence matching better against observations than other existing dust emission schemes do. Our scheme's dust emissions also couple tightly with meteorology, hence likely improving the modeled dust sensitivity to climate change. We believe this work is vital for improving dust representation in climate models.
Cited articles
Abrams, D. S. and Prausnitz, J. M.: Statistical thermodynamics of liquid
mixtures: A new expression for the excess Gibbs energy of partly or
completely miscible systems, AIChE Journal, 21, 116–128,
https://doi.org/10.1002/aic.690210115, 1975. a
Bellouin, N., Quaas, J., Gryspeerdt, E., Kinne, S., Stier, P., Watson-Parris,
D., Boucher, O., Carslaw, K. S., Christensen, M., Daniau, A.-L., Dufresne,
J.-L., Feingold, G., Fiedler, S., Forster, P., Gettelman, A., Haywood, J. M.,
Lohmann, U., Malavelle, F., Mauritsen, T., McCoy, D. T., Myhre, G.,
Mülmenstädt, J., Neubauer, D., Possner, A., Rugenstein, M., Sato, Y.,
Schulz, M., Schwartz, S. E., Sourdeval, O., Storelvmo, T., Toll, V., Winker,
D., and Stevens, B.: Bounding Global Aerosol Radiative Forcing of Climate
Change, Rev. Geophys., 58, e2019RG000660,
https://doi.org/10.1029/2019RG000660, 2020. a
Binyaminov, H., Abdullah, F., Zargarzadeh, L., and Elliott, J. A. W.:
Thermodynamic Investigation of Droplet–Droplet and Bubble–Droplet
Equilibrium in an Immiscible Medium, J. Phys. Chem. B,
125, 8636–8651, https://doi.org/10.1021/acs.jpcb.1c02877, 2021. a
Booth, A. M., Topping, D. O., McFiggans, G., and Percival, C. J.: Surface
tension of mixed inorganic and dicarboxylic acid aqueous solutions at 298.15 K and their importance for cloud activation predictions, Phys. Chem. Chem.
Phys., 11, 8021–8028, https://doi.org/10.1039/B906849J, 2009. a, b, c
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster,
P., Kerminen, V. M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh,
S. K., Sherwood, S., Stevens, B., and Zhang, X. Y.: Clouds and aerosols,
Climate Change 2013: The Physical Science Basis, Contribution of Working
Group I to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change, 571–657, https://doi.org/10.1017/CBO9781107415324.016, 2013. a
Burnett, R., Chen, H., Szyszkowicz, M., Fann, N., Hubbell, B., Pope, C. A.,
Apte, J. S., Brauer, M., Cohen, A., Weichenthal, S., Coggins, J., Di, Q.,
Brunekreef, B., Frostad, J., Lim, S. S., Kan, H., Walker, K. D., Thurston,
G. D., Hayes, R. B., Lim, C. C., Turner, M. C., Jerrett, M., Krewski, D.,
Gapstur, S. M., Diver, W. R., Ostro, B., Goldberg, D., Crouse, D. L., Martin,
R. V., Peters, P., Pinault, L., Tjepkema, M., van Donkelaar, A., Villeneuve,
P. J., Miller, A. B., Yin, P., Zhou, M., Wang, L., Janssen, N. A. H., Marra,
M., Atkinson, R. W., Tsang, H., Quoc Thach, T., Cannon, J. B., Allen, R. T.,
Hart, J. E., Laden, F., Cesaroni, G., Forastiere, F., Weinmayr, G., Jaensch,
A., Nagel, G., Concin, H., and Spadaro, J. V.: Global estimates of mortality
associated with long-term exposure to outdoor fine particulate matter,
P. Natl. Acad. Sci. USA, 115, 9592–9597,
https://doi.org/10.1073/pnas.1803222115, 2018. a
Butler, J. A. V. and Kendall, J. P.: The thermodynamics of the surfaces of
solutions, P. Roy. Soc. Lond. A, 135, 348–375,
https://doi.org/10.1098/rspa.1932.0040, 1932. a
Bzdek, B. R., Power, R. M., Simpson, S. H., Reid, J. P., and Royall, C. P.:
Precise, contactless measurements of the surface tension of picolitre
aerosol droplets, Chem. Sci., 7, 274–285, https://doi.org/10.1039/C5SC03184B, 2016. a, b, c
Bzdek, B. R., Reid, J. P., Malila, J., and Prisle, N. L.: The surface tension
of surfactant-containing, finite volume droplets, P. Natl.
Acad. Sci. USA, 117, 8335–8343, https://doi.org/10.1073/pnas.1915660117, 2020. a, b
Cai, X. and Griffin, R. J.: Theoretical Modeling of the Size-Dependent
Influence of Surface Tension on the Absorptive Partitioning of Semi-Volatile
Organic Compounds, J. Atmos. Chem., 50, 139–158,
https://doi.org/10.1007/s10874-005-2364-2, 2005. a
Chan, A. W. H., Kautzman, K. E., Chhabra, P. S., Surratt, J. D., Chan, M. N., Crounse, J. D., Kürten, A., Wennberg, P. O., Flagan, R. C., and Seinfeld, J. H.: Secondary organic aerosol formation from photooxidation of naphthalene and alkylnaphthalenes: implications for oxidation of intermediate volatility organic compounds (IVOCs), Atmos. Chem. Phys., 9, 3049–3060, https://doi.org/10.5194/acp-9-3049-2009, 2009. a
Ciobanu, V. G., Marcolli, C., Krieger, U. K., Weers, U., and Peter, T.:
Liquid–Liquid Phase Separation in Mixed Organic/Inorganic Aerosol
Particles, J. Phys. Chem. A, 113, 10966–10978,
https://doi.org/10.1021/jp905054d, 2009. a
Cohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., Estep, K.,
Balakrishnan, K., Brunekreef, B., Dandona, L., Dandona, R., Feigin, V.,
Freedman, G., Hubbell, B., Jobling, A., Kan, H., Knibbs, L., Liu, Y., Martin,
R., Morawska, L., Pope, C. A., Shin, H., Straif, K., Shaddick, G., Thomas,
M., van Dingenen, R., van Donkelaar, A., Vos, T., Murray, C. J. L., and
Forouzanfar, M. H.: Estimates and 25-year trends of the global burden of
disease attributable to ambient air pollution: an analysis of data from the
Global Burden of Diseases Study 2015, The Lancet, 389, 1907–1918,
https://doi.org/10.1016/S0140-6736(17)30505-6, 2017. a
Defay, R., Prigogine, I., and Bellemans, A.: Surface tension and adsorption, Longmans, London, ark:/13960/s2ffcbbxv31, 1966. a
Dutcher, C. S., Wexler, A. S., and Clegg, S. L.: Surface Tensions of Inorganic
Multicomponent Aqueous Electrolyte Solutions and Melts, J.
Phys. Chem. A, 114, 12216–12230, https://doi.org/10.1021/jp105191z, 2010. a
Ernst, R. C., Watkins, C. H., and Ruwe, H.: The Physical Properties of the
Ternary System Ethyl Alcohol–Glycerin–Water, J. Phys.
Chem., 40, 627–635, 1935. a
Ervens, B., Turpin, B. J., and Weber, R. J.: Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies, Atmos. Chem. Phys., 11, 11069–11102, https://doi.org/10.5194/acp-11-11069-2011, 2011. a
Facchini, M. C., Mircea, M., Fuzzi, S., and Charlson, R. J.: Cloud albedo
enhancement by surface-active organic solutes in growing droplets, Nature,
401, 257–259, https://doi.org/10.1038/45758, 1999. a
Facchini, M. C., Decesari, S., Mircea, M., Fuzzi, S., and Loglio, G.: Surface
tension of atmospheric wet aerosol and cloud/fog droplets in relation to
their organic carbon content and chemical composition, Atmos.
Environ., 34, 4853–4857,
https://doi.org/10.1016/S1352-2310(00)00237-5, 2000. a
Forestieri, S. D., Staudt, S. M., Kuborn, T. M., Faber, K., Ruehl, C. R., Bertram, T. H., and Cappa, C. D.: Establishing the impact of model surfactants on cloud condensation nuclei activity of sea spray aerosol mimics, Atmos. Chem. Phys., 18, 10985–11005, https://doi.org/10.5194/acp-18-10985-2018, 2018. a, b
Fredenslund, A., Jones, R. L., and Prausnitz, J. M.: Group-contribution
estimation of activity coefficients in nonideal liquid mixtures, AIChE
Journal, 21, 1086–1099, https://doi.org/10.1002/aic.690210607, 1975. a
Gérard, V., Nozière, B., Baduel, C., Fine, L., Frossard, A. A., and Cohen,
R. C.: Anionic, Cationic, and Nonionic Surfactants in Atmospheric Aerosols
from the Baltic Coast at Askö, Sweden: Implications for Cloud Droplet
Activation, Environ. Sci. Technol., 50, 2974–2982,
https://doi.org/10.1021/acs.est.5b05809, 2016. a
Gérard, V., Noziere, B., Fine, L., Ferronato, C., Singh, D. K., Frossard,
A. A., Cohen, R. C., Asmi, E., Lihavainen, H., Kivekäs, N., Aurela, M.,
Brus, D., Frka, S., and Cvitešić Kušan, A.: Concentrations and Adsorption
Isotherms for Amphiphilic Surfactants in PM1 Aerosols from Different Regions
of Europe, Environ. Sci. Technol., 53, 12379–12388,
https://doi.org/10.1021/acs.est.9b03386, 2019. a
Gervasi, N. R., Topping, D. O., and Zuend, A.: A predictive group-contribution model for the viscosity of aqueous organic aerosol, Atmos. Chem. Phys., 20, 2987–3008, https://doi.org/10.5194/acp-20-2987-2020, 2020. a, b
Gibbs, J. W.: On the Equilibrium of Heterogeneous Substances, Am. J. Sci., s3-16, 441–458, https://doi.org/10.2475/ajs.s3-16.96.441, 1874. a, b
Goldsack, D. E. and White, B. R.: An iterative technique for calculating
surface tensions of -on-electrolyte solutions, Can. J. Chem.,
61, 1725–1729, https://doi.org/10.1139/v83-295, 1983. a, b, c
Guggenheim, E. A.: The thermodynamics of interfaces in systems of several
components, T. Faraday Soc., 35, 397–412,
https://doi.org/10.1039/TF9403500397, 1940. a
Guggenheim, E. A.: Mixtures; the theory of the equilibrium properties of some simple classes of mixtures, solutions and alloys, The International series of monographs on physics, Clarendon Press, Oxford, ark:/13960/s20q1n7jcr8, 1952. a
Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., Donahue, N. M., George, C., Goldstein, A. H., Hamilton, J. F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M. E., Jimenez, J. L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel, Th. F., Monod, A., Prévôt, A. S. H., Seinfeld, J. H., Surratt, J. D., Szmigielski, R., and Wildt, J.: The formation, properties and impact of secondary organic aerosol: current and emerging issues, Atmos. Chem. Phys., 9, 5155–5236, https://doi.org/10.5194/acp-9-5155-2009, 2009. a
Hansen, A. M. K., Hong, J., Raatikainen, T., Kristensen, K., Ylisirniö, A., Virtanen, A., Petäjä, T., Glasius, M., and Prisle, N. L.: Hygroscopic properties and cloud condensation nuclei activation of limonene-derived organosulfates and their mixtures with ammonium sulfate, Atmos. Chem. Phys., 15, 14071–14089, https://doi.org/10.5194/acp-15-14071-2015, 2015. a
Hyvärinen, A.-P., Lihavainen, H., Gaman, A., Vairila, L., Ojala, H., Kulmala, M., and Viisanen, Y.: Surface Tensions and Densities
of Oxalic, Malonic, Succinic, Maleic, Malic, and cis-Pinonic Acids, J. Chem. Eng. Data, 51, 255–260,
https://doi.org/10.1021/je050366x, 2006. a
Huang, Y., Mahrt, F., Xu, S., Shiraiwa, M., Zuend, A., and Bertram, A. K.:
Coexistence of three liquid phases in individual atmospheric aerosol
particles, P. Natl. Acad. Sci. USA, 118,
e2102512118, https://doi.org/10.1073/pnas.2102512118, 2021. a
Jenkin, M. E., Saunders, S. M., and Pilling, M. J.: The tropospheric
degradation of volatile organic compounds: a protocol for mechanism
development, Atmos. Environ., 31, 81–104,
https://doi.org/10.1016/S1352-2310(96)00105-7, 1997. a
Jenkin, M. E., Wyche, K. P., Evans, C. J., Carr, T., Monks, P. S., Alfarra, M. R., Barley, M. H., McFiggans, G. B., Young, J. C., and Rickard, A. R.: Development and chamber evaluation of the MCM v3.2 degradation scheme for β-caryophyllene, Atmos. Chem. Phys., 12, 5275–5308, https://doi.org/10.5194/acp-12-5275-2012, 2012. a
Jenkin, M. E., Young, J. C., and Rickard, A. R.: The MCM v3.3.1 degradation scheme for isoprene, Atmos. Chem. Phys., 15, 11433–11459, https://doi.org/10.5194/acp-15-11433-2015, 2015. a
Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang,
Q., Kroll, J. H., DeCarlo, P. F., Allan, J. D., Coe, H., Ng, N. L., Aiken,
A. C., Docherty, K. S., Ulbrich, I. M., Grieshop, A. P., Robinson, A. L.,
Duplissy, J., Smith, J. D., Wilson, K. R., Lanz, V. A., Hueglin, C., Sun,
Y. L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara,
P., Ehn, M., Kulmala, M., Tomlinson, J. M., Collins, D. R., Cubison, M. J.,
null null, Dunlea, J., Huffman, J. A., Onasch, T. B., Alfarra, M. R.,
Williams, P. I., Bower, K., Kondo, Y., Schneider, J., Drewnick, F., Borrmann,
S., Weimer, S., Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R.,
Takami, A., Miyoshi, T., Hatakeyama, S., Shimono, A., Sun, J. Y., Zhang,
Y. M., Dzepina, K., Kimmel, J. R., Sueper, D., Jayne, J. T., Herndon, S. C.,
Trimborn, A. M., Williams, L. R., Wood, E. C., Middlebrook, A. M., Kolb,
C. E., Baltensperger, U., and Worsnop, D. R.: Evolution of Organic Aerosols
in the Atmosphere, Science, 326, 1525–1529, https://doi.org/10.1126/science.1180353,
2009. a
Jura, G. and Harkins, W. D.: Surfaces of Solids. XIV. A Unitary Thermodynamic
Theory of the Adsorption of Vapors on Solids and of Insoluble Films on Liquid
Subphases, J. Am. Chem. Soc., 68, 1941–1952,
https://doi.org/10.1021/ja01214a022, 1946. a, b, c
Kleinheins, J., Shardt, N., El Haber, M., Ferronato, C., Nozière, B., Peter,
T., and Marcolli, C.: Surface tension models for binary aqueous solutions: a
review and intercomparison, Phys. Chem. Chem. Phys., 25, 11055–11074,
https://doi.org/10.1039/D3CP00322A, 2023. a
Köhler, H.: The nucleus in and the growth of hygroscopic droplets,
T. Faraday Soc., 32, 1152–1161,
https://doi.org/10.1039/TF9363201152, 1936. a
Kroflič, A., Frka, S., Simmel, M., Wex, H., and Grgić, I.: Size-Resolved
Surface-Active Substances of Atmospheric Aerosol: Reconsideration of the
Impact on Cloud Droplet Formation, Environ. Sci. Technol., 52,
9179–9187, https://doi.org/10.1021/acs.est.8b02381, 2018. a
Kuwata, M. and Martin, S. T.: Phase of atmospheric secondary organic material
affects its reactivity, P. Natl. Acad. Sci. USA, 109,
17354–17359, https://doi.org/10.1073/pnas.1209071109, 2012. a
Kwamena, N. O. A., Buajarern, J., and Reid, J. P.: Equilibrium Morphology of
Mixed Organic/Inorganic/Aqueous Aerosol Droplets: Investigating the Effect of
Relative Humidity and Surfactants, J. Phys. Chem. A, 114,
5787–5795, https://doi.org/10.1021/jp1003648, 2010. a
Laaksonen, A. and Kulmala, M.: An explicit cluster model for binary nuclei in
water–alcohol systems, J. Chem. Phys., 95, 6745–6748,
https://doi.org/10.1063/1.461513, 1991. a
Lane, J.: Surface Activity Coefficients, Adsorption from Solution, Academic Press, London, 115, 51–64, https://doi.org/10.1016/B978-0-12-530980-6.50008-5, 1983. a, b
Lang-Yona, N., Abo-Riziq, A., Erlick, C., Segre, E., Trainic, M., and Rudich,
Y.: Interaction of internally mixed aerosols with light, Phys. Chem.
Chem. Phys., 12, 21–31, https://doi.org/10.1039/B913176K, 2010. a
Lee, H. D., Estillore, A. D., Morris, H. S., Ray, K. K., Alejandro, A.,
Grassian, V. H., and Tivanski, A. V.: Direct Surface Tension Measurements of
Individual Sub-Micrometer Particles Using Atomic Force Microscopy,
J. Phys. Chem. A, 121, 8296–8305,
https://doi.org/10.1021/acs.jpca.7b04041, 2017. a
Lin, J. J., Kristensen, T. B., Calderón, S. M., Malila, J., and Prisle, N. L.:
Effects of surface tension time-evolution for CCN activation of a complex
organic surfactant, Environ. Sci.-Processes and Impacts, 22,
271–284, https://doi.org/10.1039/C9EM00426B, 2020. a
Malila, J. and Prisle, N. L.: A Monolayer Partitioning Scheme for Droplets of
Surfactant Solutions, J. Adv. Model. Earth Sy., 10,
3233–3251, https://doi.org/10.1029/2018MS001456, 2018. a, b, c
McGraw, R. and Wang, J.: Surfactants and cloud droplet activation: A systematic
extension of Köhler theory based on analysis of droplet stability,
J. Chem. Phys., 154, 024707, https://doi.org/10.1063/5.0031436, 2021. a
Moré, J. J., Garbow, B. S., and Hillstrom, K. E.: User Guide for MINPACK-1,
Argonne National Laboratory Report ANL-80-74,
http://www.netlib.org/minpack/ (last access: 16 May 2028), 1980. a
Moré, J. J., Sorensen, D. C., Hillstrom, K. E., and Garbow, B. S.: The MINPACK Project, in: Sources and Development of Mathematical Software, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, United States, ark:/13960/t07x3kd4r, 1984. a
Ng, N. L., Kroll, J. H., Chan, A. W. H., Chhabra, P. S., Flagan, R. C., and Seinfeld, J. H.: Secondary organic aerosol formation from m-xylene, toluene, and benzene, Atmos. Chem. Phys., 7, 3909–3922, https://doi.org/10.5194/acp-7-3909-2007, 2007. a
Nozière, B., Baduel, C., and Jaffrezo, J.-L.: The dynamic surface tension of
atmospheric aerosol surfactants reveals new aspects of cloud activation,
Nat. Commun., 5, 3335, https://doi.org/10.1038/ncomms4335, 2014. a
Ovadnevaite, J., Zuend, A., Laaksonen, A., Sanchez, K. J., Roberts, G.,
Ceburnis, D., Decesari, S., Rinaldi, M., Hodas, N., Facchini, M. C.,
Seinfeld, J. H., and O’ Dowd, C.: Surface tension prevails over solute
effect in organic-influenced cloud droplet activation, Nature, 546, 637–641,
https://doi.org/10.1038/nature22806, 2017. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q
Ozdemir, O., Karakashev, S. I., Nguyen, A. V., and Miller, J. D.: Adsorption
and surface tension analysis of concentrated alkali halide brine solutions,
Miner. Eng., 22, 263–271,
https://doi.org/10.1016/j.mineng.2008.08.001, 2009. a
Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem. Phys., 7, 1961–1971, https://doi.org/10.5194/acp-7-1961-2007, 2007. a, b
Petters, S. S. and Petters, M. D.: Surfactant effect on cloud condensation
nuclei for two-component internally mixed aerosols, J. Geophys.
Res.-Atmos., 121, 1878–1895,
https://doi.org/10.1002/2015JD024090, 2016. a
Pinsky, M., Mazin, I. P., Korolev, A., and Khain, A.: Supersaturation and
diffusional droplet growth in liquid clouds: Polydisperse spectra, J.
Geophys. Res.-Atmos., 119, 12872–12887,
https://doi.org/10.1002/2014JD021885, 2014. a, b
Pokhrel, R. P., Gordon, J., Fiddler, M. N., and Bililign, S.: Impact of
combustion conditions on physical and morphological properties of biomass
burning aerosol, Aerosol Sci. Technol., 55, 80–91,
https://doi.org/10.1080/02786826.2020.1822512, 2021. a
Prisle, N. L., Raatikainen, T., Sorjamaa, R., Svenningsson, B., Laaksonen, A.,
and Bilde, M.: Surfactant partitioning in cloud droplet activation: a study
of C8, C10, C12 and C14 normal fatty acid sodium salts, Tellus B, 60,
416–431, https://doi.org/10.1111/j.1600-0889.2008.00352.x, 2008. a, b
Prisle, N. L., Raatikainen, T., Laaksonen, A., and Bilde, M.: Surfactants in cloud droplet activation: mixed organic-inorganic particles, Atmos. Chem. Phys., 10, 5663–5683, https://doi.org/10.5194/acp-10-5663-2010, 2010. a, b
Prisle, N. L., Dal Maso, M., and Kokkola, H.: A simple representation of surface active organic aerosol in cloud droplet formation, Atmos. Chem. Phys., 11, 4073–4083, https://doi.org/10.5194/acp-11-4073-2011, 2011. a, b
Rastak, N., Pajunoja, A., Acosta Navarro, J. C., Ma, J., Song, M., Partridge,
D. G., Kirkevåg, A., Leong, Y., Hu, W. W., Taylor, N. F., Lambe, A.,
Cerully, K., Bougiatioti, A., Liu, P., Krejci, R., Petäjä, T., Percival,
C., Davidovits, P., Worsnop, D. R., Ekman, A. M. L., Nenes, A., Martin, S.,
Jimenez, J. L., Collins, D. R., Topping, D., Bertram, A. K., Zuend, A.,
Virtanen, A., and Riipinen, I.: Microphysical explanation of the RH-dependent
water affinity of biogenic organic aerosol and its importance for climate,
Geophys. Res. Lett., 44, 5167–5177,
https://doi.org/10.1002/2017GL073056, 2017. a, b, c, d
Reid, J. P., Dennis-Smither, B. J., Kwamena, N.-O. A., Miles, R. E. H.,
Hanford, K. L., and Homer, C. J.: The morphology of aerosol particles
consisting of hydrophobic and hydrophilic phases: hydrocarbons, alcohols and
fatty acids as the hydrophobic component, Phys. Chem. Chem.
Phys., 13, 15559–15572, https://doi.org/10.1039/C1CP21510H, 2011. a
Riipinen, I., Koponen, I. K., Frank, G. P., Hyvärinen, A.-P., Vanhanen, J.,
Lihavainen, H., Lehtinen, K. E. J., Bilde, M., and Kulmala, M.: Adipic and
Malonic Acid Aqueous Solutions: Surface Tensions and Saturation Vapor
Pressures, J. Phys. Chem. A, 111, 12995–13002,
https://doi.org/10.1021/jp073731v, 2007. a, b
Romakkaniemi, S., Kokkola, H., Smith, J. N., Prisle, N. L., Schwier, A. N., McNeill, V. F., and Laaksonen, A.: Partitioning of semivolatile surface-active compounds between bulk, surface and gas phase, Geophys. Res. Lett., 38, L03807, https://doi.org/10.1029/2010GL046147, 2011. a
Ruehl, C. R. and Wilson, K. R.: Surface Organic Monolayers Control the
Hygroscopic Growth of Submicrometer Particles at High Relative Humidity, J. Phys. Chem. A, 118, 3952–3966, https://doi.org/10.1021/jp502844g,
2014. a
Schmedding, R., Ma, M., Zhang, Y., Farrell, S., Pye, H. O. T., Chen, Y., Wang,
C.-t., Rasool, Q. Z., Budisulistiorini, S. H., Ault, A. P., Surratt, J. D.,
and Vizuete, W.: alpha-Pinene-Derived organic coatings on acidic sulfate
aerosol impacts secondary organic aerosol formation from isoprene in a box
model, Atmos. Environ., 213, 456–462,
https://doi.org/10.1016/j.atmosenv.2019.06.005, 2019. a
Schmedding, R., Rasool, Q. Z., Zhang, Y., Pye, H. O. T., Zhang, H., Chen, Y., Surratt, J. D., Lopez-Hilfiker, F. D., Thornton, J. A., Goldstein, A. H., and Vizuete, W.: Predicting secondary organic aerosol phase state and viscosity and its effect on multiphase chemistry in a regional-scale air quality model, Atmos. Chem. Phys., 20, 8201–8225, https://doi.org/10.5194/acp-20-8201-2020, 2020. a
Seinfeld, J. H., Bretherton, C., Carslaw, K. S., Coe, H., DeMott, P. J.,
Dunlea, E. J., Feingold, G., Ghan, S., Guenther, A. B., Kahn, R., Kraucunas,
I., Kreidenweis, S. M., Molina, M. J., Nenes, A., Penner, J. E., Prather,
K. A., Ramanathan, V., Ramaswamy, V., Rasch, P. J., Ravishankara, A. R.,
Rosenfeld, D., Stephens, G., and Wood, R.: Improving our fundamental
understanding of the role of aerosol−cloud interactions in the climate
system, P. Natl. Acad. Sci. USA, 113, 5781–5790,
https://doi.org/10.1073/pnas.1514043113, 2016. a
Shiraiwa, M., Zuend, A., Bertram, A. K., and Seinfeld, J. H.: Gas-particle
particle partitioning of atmospheric aerosols: interplay of physical state,
non-ideal mixing and morphology, Phys. Chem. Chem. Phys., 15,
11441–11453, https://doi.org/10.1039/C3CP51595H, 2013. a
Song, M., Marcolli, C., Krieger, U. K., Zuend, A., and Peter, T.: Liquid-liquid phase separation and morphology of internally mixed dicarboxylic acids/ammonium sulfate/water particles, Atmos. Chem. Phys., 12, 2691–2712, https://doi.org/10.5194/acp-12-2691-2012, 2012. a
Song, M., Marcolli, C., Krieger, U. K., Lienhard, D. M., and Peter, T.:
Morphologies of mixed organic/inorganic/aqueous aerosol droplets, Faraday
Discuss., 165, 289–316, https://doi.org/10.1039/C3FD00049D, 2013. a
Sorjamaa, R. and Laaksonen, A.: The effect of H2O adsorption on cloud drop activation of insoluble particles: a theoretical framework, Atmos. Chem. Phys., 7, 6175–6180, https://doi.org/10.5194/acp-7-6175-2007, 2007. a
Sorjamaa, R., Svenningsson, B., Raatikainen, T., Henning, S., Bilde, M., and Laaksonen, A.: The role of surfactants in Köhler theory reconsidered, Atmos. Chem. Phys., 4, 2107–2117, https://doi.org/10.5194/acp-4-2107-2004, 2004. a, b, c, d
Sprow, F. B. and Prausnitz, J. M.: Surface tensions of simple liquid mixtures,
T. Faraday Soc., 62, 1105–1111, https://doi.org/10.1039/TF9666201105, 1966. a
Surratt, J. D., Chan, A. W. H., Eddingsaas, N. C., Chan, M., Loza, C. L., Kwan,
A. J., Hersey, S. P., Flagan, R. C., Wennberg, P. O., and Seinfeld, J. H.:
Reactive intermediates revealed in secondary organic aerosol formation from
isoprene, P. Natl. Acad. Sci. USA, 107, 6640–6645,
https://doi.org/10.1073/pnas.0911114107, 2010. a
Szyszkowski, B. V.: Experimentelle Studien über kapillare Eigenschaften der wässerigen Lösungen von Fettsäuren, Zeitschrift für Physikalische Chemie 385–414, https://doi.org/10.1515/zpch-1908-6425, 1908. a, b, c
Topping, D., Barley, M., Bane, M. K., Higham, N., Aumont, B., Dingle, N., and McFiggans, G.: UManSysProp v1.0: an online and open-source facility for molecular property prediction and atmospheric aerosol calculations, Geosci. Model Dev., 9, 899–914, https://doi.org/10.5194/gmd-9-899-2016, 2016. a
Topping, D. O., McFiggans, G. B., Kiss, G., Varga, Z., Facchini, M. C., Decesari, S., and Mircea, M.: Surface tensions of multi-component mixed inorganic/organic aqueous systems of atmospheric significance: measurements, model predictions and importance for cloud activation predictions, Atmos. Chem. Phys., 7, 2371–2398, https://doi.org/10.5194/acp-7-2371-2007, 2007. a, b
Vepsäläinen, S., Calderón, S. M., Malila, J., and Prisle, N. L.: Comparison of six approaches to predicting droplet activation of surface active aerosol – Part 1: moderately surface active organics, Atmos. Chem. Phys., 22, 2669–2687, https://doi.org/10.5194/acp-22-2669-2022, 2022. a, b, c
Vepsäläinen, S., Calderón, S. M., and Prisle, N. L.: Comparison of six approaches to predicting droplet activation of surface active aerosol – Part 2: strong surfactants, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2022-1188, 2023. a, b
Wexler, A. S. and Dutcher, C. S.: Statistical Mechanics of Multilayer Sorption:
Surface Tension, J. Phys. Chem. Lett., 4, 1723–1726,
https://doi.org/10.1021/jz400725p, 2013. a, b
Yin, H., Dou, J., Klein, L., Krieger, U. K., Bain, A., Wallace, B. J., Preston, T. C., and Zuend, A.: Extension of the AIOMFAC model by iodine and carbonate species: applications for aerosol acidity and cloud droplet activation, Atmos. Chem. Phys., 22, 973–1013, https://doi.org/10.5194/acp-22-973-2022, 2022. a
Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Allan, J. D., Coe, H., Ulbrich,
I., Alfarra, M. R., Takami, A., Middlebrook, A. M., Sun, Y. L., Dzepina, K.,
Dunlea, E., Docherty, K., DeCarlo, P. F., Salcedo, D., Onasch, T., Jayne,
J. T., Miyoshi, T., Shimono, A., Hatakeyama, S., Takegawa, N., Kondo, Y.,
Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K.,
Williams, P., Bower, K., Bahreini, R., Cottrell, L., Griffin, R. J.,
Rautiainen, J., Sun, J. Y., Zhang, Y. M., and Worsnop, D. R.: Ubiquity and
dominance of oxygenated species in organic aerosols in
anthropogenically-influenced Northern Hemisphere midlatitudes, Geophys.
Res. Lett., 34, 13, https://doi.org/10.1029/2007GL029979, 2007. a
Zhou, S., Hwang, B. C. H., Lakey, P. S. J., Zuend, A., Abbatt, J. P. D., and
Shiraiwa, M.: Multiphase reactivity of polycyclic aromatic hydrocarbons is
driven by phase separation and diffusion limitations, P. Natl. Acad. Sci. USA, 116, 11658–11663,
https://doi.org/10.1073/pnas.1902517116, 2019. a
Zuend, A. and Seinfeld, J. H.: A practical method for the calculation of
liquid–liquid equilibria in multicomponent organic–water–electrolyte
systems using physicochemical constraints, Fluid Phase Equilibr., 337,
201–213, https://doi.org/10.1016/j.fluid.2012.09.034, 2013. a
Zuend, A., Marcolli, C., Luo, B. P., and Peter, T.: A thermodynamic model of mixed organic-inorganic aerosols to predict activity coefficients, Atmos. Chem. Phys., 8, 4559–4593, https://doi.org/10.5194/acp-8-4559-2008, 2008. a
Zuend, A., Marcolli, C., Peter, T., and Seinfeld, J. H.: Computation of liquid-liquid equilibria and phase stabilities: implications for RH-dependent gas/particle partitioning of organic-inorganic aerosols, Atmos. Chem. Phys., 10, 7795–7820, https://doi.org/10.5194/acp-10-7795-2010, 2010. a, b
Zuend, A., Marcolli, C., Booth, A. M., Lienhard, D. M., Soonsin, V., Krieger, U. K., Topping, D. O., McFiggans, G., Peter, T., and Seinfeld, J. H.: New and extended parameterization of the thermodynamic model AIOMFAC: calculation of activity coefficients for organic-inorganic mixtures containing carboxyl, hydroxyl, carbonyl, ether, ester, alkenyl, alkyl, and aromatic functional groups, Atmos. Chem. Phys., 11, 9155–9206, https://doi.org/10.5194/acp-11-9155-2011, 2011. a
Short summary
Aerosol particles below 100 nm in diameter have high surface-area-to-volume ratios. The enrichment of compounds in the surface of an aerosol particle may lead to depletion of that species in the interior bulk of the particle. We present a framework for modeling the equilibrium bulk–surface partitioning of mixed organic–inorganic particles, including cases of co-condensation of semivolatile organic compounds and species with extremely limited solubility in the bulk or surface of a particle.
Aerosol particles below 100 nm in diameter have high surface-area-to-volume ratios. The...
Altmetrics
Final-revised paper
Preprint