Articles | Volume 23, issue 13
https://doi.org/10.5194/acp-23-7741-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-7741-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A thermodynamic framework for bulk–surface partitioning in finite-volume mixed organic–inorganic aerosol particles and cloud droplets
Ryan Schmedding
Department of Atmospheric and Oceanic Sciences, McGill University, Montréal, Quebec, Canada
Department of Atmospheric and Oceanic Sciences, McGill University, Montréal, Quebec, Canada
Related authors
Sara L. Farrell, Quazi Z. Rasool, Havala O. T. Pye, Yue Zhang, Ying Li, Yuzhi Chen, Chi-Tsan Wang, Haofei Zhang, Ryan Schmedding, Manabu Shiraiwa, Jaime Greene, Sri H. Budisulistiorini, Jose L. Jimenez, Weiwei Hu, Jason D. Surratt, and William Vizuete
EGUsphere, https://doi.org/10.5194/egusphere-2025-2253, https://doi.org/10.5194/egusphere-2025-2253, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Fine particulate matter (PM2.5) has become increasingly important to regulate and model. In this study, we parameterize non-ideal aerosol mixing and phase state into the Community Multiscale Air Quality (CMAQ) model and analyze its impact on the formation of a globally important source of PM2.5, isoprene epoxydiol (IEPOX)-derived PM2.5. Incorporating these features furthers model bias in IEPOX-derived PM2.5, however, this work provides potential phase state bounds for future PM2.5 modeling work.
Ryan Schmedding and Andreas Zuend
Atmos. Chem. Phys., 25, 327–346, https://doi.org/10.5194/acp-25-327-2025, https://doi.org/10.5194/acp-25-327-2025, 2025
Short summary
Short summary
Four different approaches for computing the interfacial tension between liquid phases in aerosol particles were tested for particles with diameters from 10 nm to more than 5 μm. Antonov's rule led to the strongest reductions in the onset relative humidity of liquid–liquid phase separation and reproduced measured interfacial tensions for highly immiscible systems. A modified form of the Butler equation was able to best reproduce measured interfacial tensions in more miscible systems.
Sara L. Farrell, Quazi Z. Rasool, Havala O. T. Pye, Yue Zhang, Ying Li, Yuzhi Chen, Chi-Tsan Wang, Haofei Zhang, Ryan Schmedding, Manabu Shiraiwa, Jaime Greene, Sri H. Budisulistiorini, Jose L. Jimenez, Weiwei Hu, Jason D. Surratt, and William Vizuete
EGUsphere, https://doi.org/10.5194/egusphere-2025-2253, https://doi.org/10.5194/egusphere-2025-2253, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Fine particulate matter (PM2.5) has become increasingly important to regulate and model. In this study, we parameterize non-ideal aerosol mixing and phase state into the Community Multiscale Air Quality (CMAQ) model and analyze its impact on the formation of a globally important source of PM2.5, isoprene epoxydiol (IEPOX)-derived PM2.5. Incorporating these features furthers model bias in IEPOX-derived PM2.5, however, this work provides potential phase state bounds for future PM2.5 modeling work.
Camilo Serrano Damha, Kyle Gorkowski, and Andreas Zuend
Atmos. Chem. Phys., 25, 5773–5792, https://doi.org/10.5194/acp-25-5773-2025, https://doi.org/10.5194/acp-25-5773-2025, 2025
Short summary
Short summary
We implemented the BAT-VBS (Binary Activity Thermodynamics volatility basis set) aerosol thermodynamics model in the GEOS-Chem chemical transport model to efficiently account for organic aerosol water uptake, nonideal mixing, and impacts on the gas–particle partitioning of semi-volatile organics. Compared to GEOS-Chem's complex (dry) scheme, we show that the BAT-VBS model can predict substantial enhancements in organic aerosol mass concentration at moderate-to-high relative humidity.
Ryan Schmedding and Andreas Zuend
Atmos. Chem. Phys., 25, 327–346, https://doi.org/10.5194/acp-25-327-2025, https://doi.org/10.5194/acp-25-327-2025, 2025
Short summary
Short summary
Four different approaches for computing the interfacial tension between liquid phases in aerosol particles were tested for particles with diameters from 10 nm to more than 5 μm. Antonov's rule led to the strongest reductions in the onset relative humidity of liquid–liquid phase separation and reproduced measured interfacial tensions for highly immiscible systems. A modified form of the Butler equation was able to best reproduce measured interfacial tensions in more miscible systems.
Liviana K. Klein, Allan K. Bertram, Andreas Zuend, Florence Gregson, and Ulrich K. Krieger
Atmos. Chem. Phys., 24, 13341–13359, https://doi.org/10.5194/acp-24-13341-2024, https://doi.org/10.5194/acp-24-13341-2024, 2024
Short summary
Short summary
The viscosity of ammonium nitrate–sucrose–H2O was quantified with three methods ranging from liquid to solid state depending on the relative humidity. Moreover, the corresponding estimated internal aerosol mixing times remained below 1 h for most tropospheric conditions, making equilibrium partitioning a reasonable assumption.
Rani Jeong, Joseph Lilek, Andreas Zuend, Rongshuang Xu, Man Nin Chan, Dohyun Kim, Hi Gyu Moon, and Mijung Song
Atmos. Chem. Phys., 22, 8805–8817, https://doi.org/10.5194/acp-22-8805-2022, https://doi.org/10.5194/acp-22-8805-2022, 2022
Short summary
Short summary
In this study, the viscosities of particles of sucrose–H2O, AS–H2O, and sucrose–AS–H2O for OIRs of 4:1, 1:1, and 1:4 for decreasing RH, were quantified by poke-and-flow and bead-mobility techniques at 293 ± 1 K. Based on the viscosity results, the particles of binary and ternary systems ranged from liquid to semisolid, and even the solid state depending on the RH. Moreover, we compared the measured viscosities of ternary systems to the predicted viscosities with excellent agreement.
Joseph Lilek and Andreas Zuend
Atmos. Chem. Phys., 22, 3203–3233, https://doi.org/10.5194/acp-22-3203-2022, https://doi.org/10.5194/acp-22-3203-2022, 2022
Short summary
Short summary
Depending on temperature and chemical makeup, certain aerosols can be highly viscous or glassy, with atmospheric implications. We have therefore implemented two major upgrades to the predictive viscosity model AIOMFAC-VISC. First, we created a new viscosity model for aqueous electrolyte solutions containing an arbitrary number of ion species. Second, we integrated the electrolyte model within the existing AIOMFAC-VISC framework to enable viscosity predictions for organic–inorganic mixtures.
Hang Yin, Jing Dou, Liviana Klein, Ulrich K. Krieger, Alison Bain, Brandon J. Wallace, Thomas C. Preston, and Andreas Zuend
Atmos. Chem. Phys., 22, 973–1013, https://doi.org/10.5194/acp-22-973-2022, https://doi.org/10.5194/acp-22-973-2022, 2022
Short summary
Short summary
Iodine and carbonate species are important components in marine and dust aerosols, respectively. We introduce an extended version of the AIOMFAC thermodynamic mixing model, which includes the ions I−, IO3−, HCO3−, CO32−, OH−, and CO2(aq) as new species, and we discuss two methods for solving the carbonate dissociation equilibria numerically. We also present new experimental water activity data for aqueous iodide and iodate systems.
Dalrin Ampritta Amaladhasan, Claudia Heyn, Christopher R. Hoyle, Imad El Haddad, Miriam Elser, Simone M. Pieber, Jay G. Slowik, Antonio Amorim, Jonathan Duplissy, Sebastian Ehrhart, Vladimir Makhmutov, Ugo Molteni, Matti Rissanen, Yuri Stozhkov, Robert Wagner, Armin Hansel, Jasper Kirkby, Neil M. Donahue, Rainer Volkamer, Urs Baltensperger, Martin Gysel-Beer, and Andreas Zuend
Atmos. Chem. Phys., 22, 215–244, https://doi.org/10.5194/acp-22-215-2022, https://doi.org/10.5194/acp-22-215-2022, 2022
Short summary
Short summary
We use a combination of models for gas-phase chemical reactions and equilibrium gas–particle partitioning of isoprene-derived secondary organic aerosols (SOAs) informed by dark ozonolysis experiments conducted in the CLOUD chamber. Our predictions cover high to low relative humidities (RHs) and quantify how SOA mass yields are enhanced at high RH as well as the impact of inorganic seeds of distinct hygroscopicities and acidities on the coupled partitioning of water and semi-volatile organics.
Young-Chul Song, Joseph Lilek, Jae Bong Lee, Man Nin Chan, Zhijun Wu, Andreas Zuend, and Mijung Song
Atmos. Chem. Phys., 21, 10215–10228, https://doi.org/10.5194/acp-21-10215-2021, https://doi.org/10.5194/acp-21-10215-2021, 2021
Short summary
Short summary
We report viscosity of binary mixtures of organic material / H2O and inorganic salts / H2O, as well as ternary mixtures of organic material / inorganic salts/ H2O, over the atmospheric relative humidity (RH) range. The viscosity measurements indicate that the studied mixed organic–inorganic particles range in phase state from liquid to semi-solid or even solid across the atmospheric RH range at a temperature of 293 K.
Weigang Wang, Ting Lei, Andreas Zuend, Hang Su, Yafang Cheng, Yajun Shi, Maofa Ge, and Mingyuan Liu
Atmos. Chem. Phys., 21, 2179–2190, https://doi.org/10.5194/acp-21-2179-2021, https://doi.org/10.5194/acp-21-2179-2021, 2021
Short summary
Short summary
Aerosol mixing state regulates the interactions between water molecules and particles and thus controls aerosol activation and hygroscopic growth, which thereby influences visibility degradation, cloud formation, and its radiative forcing. However, there are few studies attempting to investigate their interactions with water molecules. Here, we investigated the effect of organic coatings on the hygroscopic behavior of the inorganic core.
Hoi Ki Lam, Rongshuang Xu, Jack Choczynski, James F. Davies, Dongwan Ham, Mijung Song, Andreas Zuend, Wentao Li, Ying-Lung Steve Tse, and Man Nin Chan
Atmos. Chem. Phys., 21, 2053–2066, https://doi.org/10.5194/acp-21-2053-2021, https://doi.org/10.5194/acp-21-2053-2021, 2021
Short summary
Short summary
This work demonstrates that organic compounds present at or near the surface of aerosols can be subjected to oxidation initiated by gas-phase oxidants, such as hydroxyl radicals (OH). The heterogeneous reactivity is sensitive to their surface concentrations, which are determined by the phase separation behavior. This results of this work emphasize the effects of phase separation and potentially distinct aerosol morphologies on the chemical transformation of atmospheric aerosols.
Cited articles
Abrams, D. S. and Prausnitz, J. M.: Statistical thermodynamics of liquid
mixtures: A new expression for the excess Gibbs energy of partly or
completely miscible systems, AIChE Journal, 21, 116–128,
https://doi.org/10.1002/aic.690210115, 1975. a
Bellouin, N., Quaas, J., Gryspeerdt, E., Kinne, S., Stier, P., Watson-Parris,
D., Boucher, O., Carslaw, K. S., Christensen, M., Daniau, A.-L., Dufresne,
J.-L., Feingold, G., Fiedler, S., Forster, P., Gettelman, A., Haywood, J. M.,
Lohmann, U., Malavelle, F., Mauritsen, T., McCoy, D. T., Myhre, G.,
Mülmenstädt, J., Neubauer, D., Possner, A., Rugenstein, M., Sato, Y.,
Schulz, M., Schwartz, S. E., Sourdeval, O., Storelvmo, T., Toll, V., Winker,
D., and Stevens, B.: Bounding Global Aerosol Radiative Forcing of Climate
Change, Rev. Geophys., 58, e2019RG000660,
https://doi.org/10.1029/2019RG000660, 2020. a
Binyaminov, H., Abdullah, F., Zargarzadeh, L., and Elliott, J. A. W.:
Thermodynamic Investigation of Droplet–Droplet and Bubble–Droplet
Equilibrium in an Immiscible Medium, J. Phys. Chem. B,
125, 8636–8651, https://doi.org/10.1021/acs.jpcb.1c02877, 2021. a
Booth, A. M., Topping, D. O., McFiggans, G., and Percival, C. J.: Surface
tension of mixed inorganic and dicarboxylic acid aqueous solutions at 298.15 K and their importance for cloud activation predictions, Phys. Chem. Chem.
Phys., 11, 8021–8028, https://doi.org/10.1039/B906849J, 2009. a, b, c
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster,
P., Kerminen, V. M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh,
S. K., Sherwood, S., Stevens, B., and Zhang, X. Y.: Clouds and aerosols,
Climate Change 2013: The Physical Science Basis, Contribution of Working
Group I to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change, 571–657, https://doi.org/10.1017/CBO9781107415324.016, 2013. a
Burnett, R., Chen, H., Szyszkowicz, M., Fann, N., Hubbell, B., Pope, C. A.,
Apte, J. S., Brauer, M., Cohen, A., Weichenthal, S., Coggins, J., Di, Q.,
Brunekreef, B., Frostad, J., Lim, S. S., Kan, H., Walker, K. D., Thurston,
G. D., Hayes, R. B., Lim, C. C., Turner, M. C., Jerrett, M., Krewski, D.,
Gapstur, S. M., Diver, W. R., Ostro, B., Goldberg, D., Crouse, D. L., Martin,
R. V., Peters, P., Pinault, L., Tjepkema, M., van Donkelaar, A., Villeneuve,
P. J., Miller, A. B., Yin, P., Zhou, M., Wang, L., Janssen, N. A. H., Marra,
M., Atkinson, R. W., Tsang, H., Quoc Thach, T., Cannon, J. B., Allen, R. T.,
Hart, J. E., Laden, F., Cesaroni, G., Forastiere, F., Weinmayr, G., Jaensch,
A., Nagel, G., Concin, H., and Spadaro, J. V.: Global estimates of mortality
associated with long-term exposure to outdoor fine particulate matter,
P. Natl. Acad. Sci. USA, 115, 9592–9597,
https://doi.org/10.1073/pnas.1803222115, 2018. a
Butler, J. A. V. and Kendall, J. P.: The thermodynamics of the surfaces of
solutions, P. Roy. Soc. Lond. A, 135, 348–375,
https://doi.org/10.1098/rspa.1932.0040, 1932. a
Bzdek, B. R., Power, R. M., Simpson, S. H., Reid, J. P., and Royall, C. P.:
Precise, contactless measurements of the surface tension of picolitre
aerosol droplets, Chem. Sci., 7, 274–285, https://doi.org/10.1039/C5SC03184B, 2016. a, b, c
Bzdek, B. R., Reid, J. P., Malila, J., and Prisle, N. L.: The surface tension
of surfactant-containing, finite volume droplets, P. Natl.
Acad. Sci. USA, 117, 8335–8343, https://doi.org/10.1073/pnas.1915660117, 2020. a, b
Cai, X. and Griffin, R. J.: Theoretical Modeling of the Size-Dependent
Influence of Surface Tension on the Absorptive Partitioning of Semi-Volatile
Organic Compounds, J. Atmos. Chem., 50, 139–158,
https://doi.org/10.1007/s10874-005-2364-2, 2005. a
Chan, A. W. H., Kautzman, K. E., Chhabra, P. S., Surratt, J. D., Chan, M. N., Crounse, J. D., Kürten, A., Wennberg, P. O., Flagan, R. C., and Seinfeld, J. H.: Secondary organic aerosol formation from photooxidation of naphthalene and alkylnaphthalenes: implications for oxidation of intermediate volatility organic compounds (IVOCs), Atmos. Chem. Phys., 9, 3049–3060, https://doi.org/10.5194/acp-9-3049-2009, 2009. a
Ciobanu, V. G., Marcolli, C., Krieger, U. K., Weers, U., and Peter, T.:
Liquid–Liquid Phase Separation in Mixed Organic/Inorganic Aerosol
Particles, J. Phys. Chem. A, 113, 10966–10978,
https://doi.org/10.1021/jp905054d, 2009. a
Cohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., Estep, K.,
Balakrishnan, K., Brunekreef, B., Dandona, L., Dandona, R., Feigin, V.,
Freedman, G., Hubbell, B., Jobling, A., Kan, H., Knibbs, L., Liu, Y., Martin,
R., Morawska, L., Pope, C. A., Shin, H., Straif, K., Shaddick, G., Thomas,
M., van Dingenen, R., van Donkelaar, A., Vos, T., Murray, C. J. L., and
Forouzanfar, M. H.: Estimates and 25-year trends of the global burden of
disease attributable to ambient air pollution: an analysis of data from the
Global Burden of Diseases Study 2015, The Lancet, 389, 1907–1918,
https://doi.org/10.1016/S0140-6736(17)30505-6, 2017. a
Defay, R., Prigogine, I., and Bellemans, A.: Surface tension and adsorption, Longmans, London, ark:/13960/s2ffcbbxv31, 1966. a
Dutcher, C. S., Wexler, A. S., and Clegg, S. L.: Surface Tensions of Inorganic
Multicomponent Aqueous Electrolyte Solutions and Melts, J.
Phys. Chem. A, 114, 12216–12230, https://doi.org/10.1021/jp105191z, 2010. a
Ernst, R. C., Watkins, C. H., and Ruwe, H.: The Physical Properties of the
Ternary System Ethyl Alcohol–Glycerin–Water, J. Phys.
Chem., 40, 627–635, 1935. a
Ervens, B., Turpin, B. J., and Weber, R. J.: Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies, Atmos. Chem. Phys., 11, 11069–11102, https://doi.org/10.5194/acp-11-11069-2011, 2011. a
Facchini, M. C., Mircea, M., Fuzzi, S., and Charlson, R. J.: Cloud albedo
enhancement by surface-active organic solutes in growing droplets, Nature,
401, 257–259, https://doi.org/10.1038/45758, 1999. a
Facchini, M. C., Decesari, S., Mircea, M., Fuzzi, S., and Loglio, G.: Surface
tension of atmospheric wet aerosol and cloud/fog droplets in relation to
their organic carbon content and chemical composition, Atmos.
Environ., 34, 4853–4857,
https://doi.org/10.1016/S1352-2310(00)00237-5, 2000. a
Forestieri, S. D., Staudt, S. M., Kuborn, T. M., Faber, K., Ruehl, C. R., Bertram, T. H., and Cappa, C. D.: Establishing the impact of model surfactants on cloud condensation nuclei activity of sea spray aerosol mimics, Atmos. Chem. Phys., 18, 10985–11005, https://doi.org/10.5194/acp-18-10985-2018, 2018. a, b
Fredenslund, A., Jones, R. L., and Prausnitz, J. M.: Group-contribution
estimation of activity coefficients in nonideal liquid mixtures, AIChE
Journal, 21, 1086–1099, https://doi.org/10.1002/aic.690210607, 1975. a
Gérard, V., Nozière, B., Baduel, C., Fine, L., Frossard, A. A., and Cohen,
R. C.: Anionic, Cationic, and Nonionic Surfactants in Atmospheric Aerosols
from the Baltic Coast at Askö, Sweden: Implications for Cloud Droplet
Activation, Environ. Sci. Technol., 50, 2974–2982,
https://doi.org/10.1021/acs.est.5b05809, 2016. a
Gérard, V., Noziere, B., Fine, L., Ferronato, C., Singh, D. K., Frossard,
A. A., Cohen, R. C., Asmi, E., Lihavainen, H., Kivekäs, N., Aurela, M.,
Brus, D., Frka, S., and Cvitešić Kušan, A.: Concentrations and Adsorption
Isotherms for Amphiphilic Surfactants in PM1 Aerosols from Different Regions
of Europe, Environ. Sci. Technol., 53, 12379–12388,
https://doi.org/10.1021/acs.est.9b03386, 2019. a
Gervasi, N. R., Topping, D. O., and Zuend, A.: A predictive group-contribution model for the viscosity of aqueous organic aerosol, Atmos. Chem. Phys., 20, 2987–3008, https://doi.org/10.5194/acp-20-2987-2020, 2020. a, b
Gibbs, J. W.: On the Equilibrium of Heterogeneous Substances, Am. J. Sci., s3-16, 441–458, https://doi.org/10.2475/ajs.s3-16.96.441, 1874. a, b
Goldsack, D. E. and White, B. R.: An iterative technique for calculating
surface tensions of -on-electrolyte solutions, Can. J. Chem.,
61, 1725–1729, https://doi.org/10.1139/v83-295, 1983. a, b, c
Guggenheim, E. A.: The thermodynamics of interfaces in systems of several
components, T. Faraday Soc., 35, 397–412,
https://doi.org/10.1039/TF9403500397, 1940. a
Guggenheim, E. A.: Mixtures; the theory of the equilibrium properties of some simple classes of mixtures, solutions and alloys, The International series of monographs on physics, Clarendon Press, Oxford, ark:/13960/s20q1n7jcr8, 1952. a
Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., Donahue, N. M., George, C., Goldstein, A. H., Hamilton, J. F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M. E., Jimenez, J. L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel, Th. F., Monod, A., Prévôt, A. S. H., Seinfeld, J. H., Surratt, J. D., Szmigielski, R., and Wildt, J.: The formation, properties and impact of secondary organic aerosol: current and emerging issues, Atmos. Chem. Phys., 9, 5155–5236, https://doi.org/10.5194/acp-9-5155-2009, 2009. a
Hansen, A. M. K., Hong, J., Raatikainen, T., Kristensen, K., Ylisirniö, A., Virtanen, A., Petäjä, T., Glasius, M., and Prisle, N. L.: Hygroscopic properties and cloud condensation nuclei activation of limonene-derived organosulfates and their mixtures with ammonium sulfate, Atmos. Chem. Phys., 15, 14071–14089, https://doi.org/10.5194/acp-15-14071-2015, 2015. a
Hyvärinen, A.-P., Lihavainen, H., Gaman, A., Vairila, L., Ojala, H., Kulmala, M., and Viisanen, Y.: Surface Tensions and Densities
of Oxalic, Malonic, Succinic, Maleic, Malic, and cis-Pinonic Acids, J. Chem. Eng. Data, 51, 255–260,
https://doi.org/10.1021/je050366x, 2006. a
Huang, Y., Mahrt, F., Xu, S., Shiraiwa, M., Zuend, A., and Bertram, A. K.:
Coexistence of three liquid phases in individual atmospheric aerosol
particles, P. Natl. Acad. Sci. USA, 118,
e2102512118, https://doi.org/10.1073/pnas.2102512118, 2021. a
Jenkin, M. E., Saunders, S. M., and Pilling, M. J.: The tropospheric
degradation of volatile organic compounds: a protocol for mechanism
development, Atmos. Environ., 31, 81–104,
https://doi.org/10.1016/S1352-2310(96)00105-7, 1997. a
Jenkin, M. E., Wyche, K. P., Evans, C. J., Carr, T., Monks, P. S., Alfarra, M. R., Barley, M. H., McFiggans, G. B., Young, J. C., and Rickard, A. R.: Development and chamber evaluation of the MCM v3.2 degradation scheme for β-caryophyllene, Atmos. Chem. Phys., 12, 5275–5308, https://doi.org/10.5194/acp-12-5275-2012, 2012. a
Jenkin, M. E., Young, J. C., and Rickard, A. R.: The MCM v3.3.1 degradation scheme for isoprene, Atmos. Chem. Phys., 15, 11433–11459, https://doi.org/10.5194/acp-15-11433-2015, 2015. a
Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang,
Q., Kroll, J. H., DeCarlo, P. F., Allan, J. D., Coe, H., Ng, N. L., Aiken,
A. C., Docherty, K. S., Ulbrich, I. M., Grieshop, A. P., Robinson, A. L.,
Duplissy, J., Smith, J. D., Wilson, K. R., Lanz, V. A., Hueglin, C., Sun,
Y. L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara,
P., Ehn, M., Kulmala, M., Tomlinson, J. M., Collins, D. R., Cubison, M. J.,
null null, Dunlea, J., Huffman, J. A., Onasch, T. B., Alfarra, M. R.,
Williams, P. I., Bower, K., Kondo, Y., Schneider, J., Drewnick, F., Borrmann,
S., Weimer, S., Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R.,
Takami, A., Miyoshi, T., Hatakeyama, S., Shimono, A., Sun, J. Y., Zhang,
Y. M., Dzepina, K., Kimmel, J. R., Sueper, D., Jayne, J. T., Herndon, S. C.,
Trimborn, A. M., Williams, L. R., Wood, E. C., Middlebrook, A. M., Kolb,
C. E., Baltensperger, U., and Worsnop, D. R.: Evolution of Organic Aerosols
in the Atmosphere, Science, 326, 1525–1529, https://doi.org/10.1126/science.1180353,
2009. a
Jura, G. and Harkins, W. D.: Surfaces of Solids. XIV. A Unitary Thermodynamic
Theory of the Adsorption of Vapors on Solids and of Insoluble Films on Liquid
Subphases, J. Am. Chem. Soc., 68, 1941–1952,
https://doi.org/10.1021/ja01214a022, 1946. a, b, c
Kleinheins, J., Shardt, N., El Haber, M., Ferronato, C., Nozière, B., Peter,
T., and Marcolli, C.: Surface tension models for binary aqueous solutions: a
review and intercomparison, Phys. Chem. Chem. Phys., 25, 11055–11074,
https://doi.org/10.1039/D3CP00322A, 2023. a
Köhler, H.: The nucleus in and the growth of hygroscopic droplets,
T. Faraday Soc., 32, 1152–1161,
https://doi.org/10.1039/TF9363201152, 1936. a
Kroflič, A., Frka, S., Simmel, M., Wex, H., and Grgić, I.: Size-Resolved
Surface-Active Substances of Atmospheric Aerosol: Reconsideration of the
Impact on Cloud Droplet Formation, Environ. Sci. Technol., 52,
9179–9187, https://doi.org/10.1021/acs.est.8b02381, 2018. a
Kuwata, M. and Martin, S. T.: Phase of atmospheric secondary organic material
affects its reactivity, P. Natl. Acad. Sci. USA, 109,
17354–17359, https://doi.org/10.1073/pnas.1209071109, 2012. a
Kwamena, N. O. A., Buajarern, J., and Reid, J. P.: Equilibrium Morphology of
Mixed Organic/Inorganic/Aqueous Aerosol Droplets: Investigating the Effect of
Relative Humidity and Surfactants, J. Phys. Chem. A, 114,
5787–5795, https://doi.org/10.1021/jp1003648, 2010. a
Laaksonen, A. and Kulmala, M.: An explicit cluster model for binary nuclei in
water–alcohol systems, J. Chem. Phys., 95, 6745–6748,
https://doi.org/10.1063/1.461513, 1991. a
Lane, J.: Surface Activity Coefficients, Adsorption from Solution, Academic Press, London, 115, 51–64, https://doi.org/10.1016/B978-0-12-530980-6.50008-5, 1983. a, b
Lang-Yona, N., Abo-Riziq, A., Erlick, C., Segre, E., Trainic, M., and Rudich,
Y.: Interaction of internally mixed aerosols with light, Phys. Chem.
Chem. Phys., 12, 21–31, https://doi.org/10.1039/B913176K, 2010. a
Lee, H. D., Estillore, A. D., Morris, H. S., Ray, K. K., Alejandro, A.,
Grassian, V. H., and Tivanski, A. V.: Direct Surface Tension Measurements of
Individual Sub-Micrometer Particles Using Atomic Force Microscopy,
J. Phys. Chem. A, 121, 8296–8305,
https://doi.org/10.1021/acs.jpca.7b04041, 2017. a
Lin, J. J., Kristensen, T. B., Calderón, S. M., Malila, J., and Prisle, N. L.:
Effects of surface tension time-evolution for CCN activation of a complex
organic surfactant, Environ. Sci.-Processes and Impacts, 22,
271–284, https://doi.org/10.1039/C9EM00426B, 2020. a
Malila, J. and Prisle, N. L.: A Monolayer Partitioning Scheme for Droplets of
Surfactant Solutions, J. Adv. Model. Earth Sy., 10,
3233–3251, https://doi.org/10.1029/2018MS001456, 2018. a, b, c
McGraw, R. and Wang, J.: Surfactants and cloud droplet activation: A systematic
extension of Köhler theory based on analysis of droplet stability,
J. Chem. Phys., 154, 024707, https://doi.org/10.1063/5.0031436, 2021. a
Moré, J. J., Garbow, B. S., and Hillstrom, K. E.: User Guide for MINPACK-1,
Argonne National Laboratory Report ANL-80-74,
http://www.netlib.org/minpack/ (last access: 16 May 2028), 1980. a
Moré, J. J., Sorensen, D. C., Hillstrom, K. E., and Garbow, B. S.: The MINPACK Project, in: Sources and Development of Mathematical Software, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, United States, ark:/13960/t07x3kd4r, 1984. a
Ng, N. L., Kroll, J. H., Chan, A. W. H., Chhabra, P. S., Flagan, R. C., and Seinfeld, J. H.: Secondary organic aerosol formation from m-xylene, toluene, and benzene, Atmos. Chem. Phys., 7, 3909–3922, https://doi.org/10.5194/acp-7-3909-2007, 2007. a
Nozière, B., Baduel, C., and Jaffrezo, J.-L.: The dynamic surface tension of
atmospheric aerosol surfactants reveals new aspects of cloud activation,
Nat. Commun., 5, 3335, https://doi.org/10.1038/ncomms4335, 2014. a
Ovadnevaite, J., Zuend, A., Laaksonen, A., Sanchez, K. J., Roberts, G.,
Ceburnis, D., Decesari, S., Rinaldi, M., Hodas, N., Facchini, M. C.,
Seinfeld, J. H., and O’ Dowd, C.: Surface tension prevails over solute
effect in organic-influenced cloud droplet activation, Nature, 546, 637–641,
https://doi.org/10.1038/nature22806, 2017. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q
Ozdemir, O., Karakashev, S. I., Nguyen, A. V., and Miller, J. D.: Adsorption
and surface tension analysis of concentrated alkali halide brine solutions,
Miner. Eng., 22, 263–271,
https://doi.org/10.1016/j.mineng.2008.08.001, 2009. a
Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem. Phys., 7, 1961–1971, https://doi.org/10.5194/acp-7-1961-2007, 2007. a, b
Petters, S. S. and Petters, M. D.: Surfactant effect on cloud condensation
nuclei for two-component internally mixed aerosols, J. Geophys.
Res.-Atmos., 121, 1878–1895,
https://doi.org/10.1002/2015JD024090, 2016. a
Pinsky, M., Mazin, I. P., Korolev, A., and Khain, A.: Supersaturation and
diffusional droplet growth in liquid clouds: Polydisperse spectra, J.
Geophys. Res.-Atmos., 119, 12872–12887,
https://doi.org/10.1002/2014JD021885, 2014. a, b
Pokhrel, R. P., Gordon, J., Fiddler, M. N., and Bililign, S.: Impact of
combustion conditions on physical and morphological properties of biomass
burning aerosol, Aerosol Sci. Technol., 55, 80–91,
https://doi.org/10.1080/02786826.2020.1822512, 2021. a
Prisle, N. L., Raatikainen, T., Sorjamaa, R., Svenningsson, B., Laaksonen, A.,
and Bilde, M.: Surfactant partitioning in cloud droplet activation: a study
of C8, C10, C12 and C14 normal fatty acid sodium salts, Tellus B, 60,
416–431, https://doi.org/10.1111/j.1600-0889.2008.00352.x, 2008. a, b
Prisle, N. L., Raatikainen, T., Laaksonen, A., and Bilde, M.: Surfactants in cloud droplet activation: mixed organic-inorganic particles, Atmos. Chem. Phys., 10, 5663–5683, https://doi.org/10.5194/acp-10-5663-2010, 2010. a, b
Prisle, N. L., Dal Maso, M., and Kokkola, H.: A simple representation of surface active organic aerosol in cloud droplet formation, Atmos. Chem. Phys., 11, 4073–4083, https://doi.org/10.5194/acp-11-4073-2011, 2011. a, b
Rastak, N., Pajunoja, A., Acosta Navarro, J. C., Ma, J., Song, M., Partridge,
D. G., Kirkevåg, A., Leong, Y., Hu, W. W., Taylor, N. F., Lambe, A.,
Cerully, K., Bougiatioti, A., Liu, P., Krejci, R., Petäjä, T., Percival,
C., Davidovits, P., Worsnop, D. R., Ekman, A. M. L., Nenes, A., Martin, S.,
Jimenez, J. L., Collins, D. R., Topping, D., Bertram, A. K., Zuend, A.,
Virtanen, A., and Riipinen, I.: Microphysical explanation of the RH-dependent
water affinity of biogenic organic aerosol and its importance for climate,
Geophys. Res. Lett., 44, 5167–5177,
https://doi.org/10.1002/2017GL073056, 2017. a, b, c, d
Reid, J. P., Dennis-Smither, B. J., Kwamena, N.-O. A., Miles, R. E. H.,
Hanford, K. L., and Homer, C. J.: The morphology of aerosol particles
consisting of hydrophobic and hydrophilic phases: hydrocarbons, alcohols and
fatty acids as the hydrophobic component, Phys. Chem. Chem.
Phys., 13, 15559–15572, https://doi.org/10.1039/C1CP21510H, 2011. a
Riipinen, I., Koponen, I. K., Frank, G. P., Hyvärinen, A.-P., Vanhanen, J.,
Lihavainen, H., Lehtinen, K. E. J., Bilde, M., and Kulmala, M.: Adipic and
Malonic Acid Aqueous Solutions: Surface Tensions and Saturation Vapor
Pressures, J. Phys. Chem. A, 111, 12995–13002,
https://doi.org/10.1021/jp073731v, 2007. a, b
Romakkaniemi, S., Kokkola, H., Smith, J. N., Prisle, N. L., Schwier, A. N., McNeill, V. F., and Laaksonen, A.: Partitioning of semivolatile surface-active compounds between bulk, surface and gas phase, Geophys. Res. Lett., 38, L03807, https://doi.org/10.1029/2010GL046147, 2011. a
Ruehl, C. R. and Wilson, K. R.: Surface Organic Monolayers Control the
Hygroscopic Growth of Submicrometer Particles at High Relative Humidity, J. Phys. Chem. A, 118, 3952–3966, https://doi.org/10.1021/jp502844g,
2014. a
Schmedding, R., Ma, M., Zhang, Y., Farrell, S., Pye, H. O. T., Chen, Y., Wang,
C.-t., Rasool, Q. Z., Budisulistiorini, S. H., Ault, A. P., Surratt, J. D.,
and Vizuete, W.: alpha-Pinene-Derived organic coatings on acidic sulfate
aerosol impacts secondary organic aerosol formation from isoprene in a box
model, Atmos. Environ., 213, 456–462,
https://doi.org/10.1016/j.atmosenv.2019.06.005, 2019. a
Schmedding, R., Rasool, Q. Z., Zhang, Y., Pye, H. O. T., Zhang, H., Chen, Y., Surratt, J. D., Lopez-Hilfiker, F. D., Thornton, J. A., Goldstein, A. H., and Vizuete, W.: Predicting secondary organic aerosol phase state and viscosity and its effect on multiphase chemistry in a regional-scale air quality model, Atmos. Chem. Phys., 20, 8201–8225, https://doi.org/10.5194/acp-20-8201-2020, 2020. a
Seinfeld, J. H., Bretherton, C., Carslaw, K. S., Coe, H., DeMott, P. J.,
Dunlea, E. J., Feingold, G., Ghan, S., Guenther, A. B., Kahn, R., Kraucunas,
I., Kreidenweis, S. M., Molina, M. J., Nenes, A., Penner, J. E., Prather,
K. A., Ramanathan, V., Ramaswamy, V., Rasch, P. J., Ravishankara, A. R.,
Rosenfeld, D., Stephens, G., and Wood, R.: Improving our fundamental
understanding of the role of aerosol−cloud interactions in the climate
system, P. Natl. Acad. Sci. USA, 113, 5781–5790,
https://doi.org/10.1073/pnas.1514043113, 2016. a
Shiraiwa, M., Zuend, A., Bertram, A. K., and Seinfeld, J. H.: Gas-particle
particle partitioning of atmospheric aerosols: interplay of physical state,
non-ideal mixing and morphology, Phys. Chem. Chem. Phys., 15,
11441–11453, https://doi.org/10.1039/C3CP51595H, 2013. a
Song, M., Marcolli, C., Krieger, U. K., Zuend, A., and Peter, T.: Liquid-liquid phase separation and morphology of internally mixed dicarboxylic acids/ammonium sulfate/water particles, Atmos. Chem. Phys., 12, 2691–2712, https://doi.org/10.5194/acp-12-2691-2012, 2012. a
Song, M., Marcolli, C., Krieger, U. K., Lienhard, D. M., and Peter, T.:
Morphologies of mixed organic/inorganic/aqueous aerosol droplets, Faraday
Discuss., 165, 289–316, https://doi.org/10.1039/C3FD00049D, 2013. a
Sorjamaa, R. and Laaksonen, A.: The effect of H2O adsorption on cloud drop activation of insoluble particles: a theoretical framework, Atmos. Chem. Phys., 7, 6175–6180, https://doi.org/10.5194/acp-7-6175-2007, 2007. a
Sorjamaa, R., Svenningsson, B., Raatikainen, T., Henning, S., Bilde, M., and Laaksonen, A.: The role of surfactants in Köhler theory reconsidered, Atmos. Chem. Phys., 4, 2107–2117, https://doi.org/10.5194/acp-4-2107-2004, 2004. a, b, c, d
Sprow, F. B. and Prausnitz, J. M.: Surface tensions of simple liquid mixtures,
T. Faraday Soc., 62, 1105–1111, https://doi.org/10.1039/TF9666201105, 1966. a
Surratt, J. D., Chan, A. W. H., Eddingsaas, N. C., Chan, M., Loza, C. L., Kwan,
A. J., Hersey, S. P., Flagan, R. C., Wennberg, P. O., and Seinfeld, J. H.:
Reactive intermediates revealed in secondary organic aerosol formation from
isoprene, P. Natl. Acad. Sci. USA, 107, 6640–6645,
https://doi.org/10.1073/pnas.0911114107, 2010. a
Szyszkowski, B. V.: Experimentelle Studien über kapillare Eigenschaften der wässerigen Lösungen von Fettsäuren, Zeitschrift für Physikalische Chemie 385–414, https://doi.org/10.1515/zpch-1908-6425, 1908. a, b, c
Topping, D., Barley, M., Bane, M. K., Higham, N., Aumont, B., Dingle, N., and McFiggans, G.: UManSysProp v1.0: an online and open-source facility for molecular property prediction and atmospheric aerosol calculations, Geosci. Model Dev., 9, 899–914, https://doi.org/10.5194/gmd-9-899-2016, 2016. a
Topping, D. O., McFiggans, G. B., Kiss, G., Varga, Z., Facchini, M. C., Decesari, S., and Mircea, M.: Surface tensions of multi-component mixed inorganic/organic aqueous systems of atmospheric significance: measurements, model predictions and importance for cloud activation predictions, Atmos. Chem. Phys., 7, 2371–2398, https://doi.org/10.5194/acp-7-2371-2007, 2007. a, b
Vepsäläinen, S., Calderón, S. M., Malila, J., and Prisle, N. L.: Comparison of six approaches to predicting droplet activation of surface active aerosol – Part 1: moderately surface active organics, Atmos. Chem. Phys., 22, 2669–2687, https://doi.org/10.5194/acp-22-2669-2022, 2022. a, b, c
Vepsäläinen, S., Calderón, S. M., and Prisle, N. L.: Comparison of six approaches to predicting droplet activation of surface active aerosol – Part 2: strong surfactants, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2022-1188, 2023. a, b
Wexler, A. S. and Dutcher, C. S.: Statistical Mechanics of Multilayer Sorption:
Surface Tension, J. Phys. Chem. Lett., 4, 1723–1726,
https://doi.org/10.1021/jz400725p, 2013. a, b
Yin, H., Dou, J., Klein, L., Krieger, U. K., Bain, A., Wallace, B. J., Preston, T. C., and Zuend, A.: Extension of the AIOMFAC model by iodine and carbonate species: applications for aerosol acidity and cloud droplet activation, Atmos. Chem. Phys., 22, 973–1013, https://doi.org/10.5194/acp-22-973-2022, 2022. a
Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Allan, J. D., Coe, H., Ulbrich,
I., Alfarra, M. R., Takami, A., Middlebrook, A. M., Sun, Y. L., Dzepina, K.,
Dunlea, E., Docherty, K., DeCarlo, P. F., Salcedo, D., Onasch, T., Jayne,
J. T., Miyoshi, T., Shimono, A., Hatakeyama, S., Takegawa, N., Kondo, Y.,
Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K.,
Williams, P., Bower, K., Bahreini, R., Cottrell, L., Griffin, R. J.,
Rautiainen, J., Sun, J. Y., Zhang, Y. M., and Worsnop, D. R.: Ubiquity and
dominance of oxygenated species in organic aerosols in
anthropogenically-influenced Northern Hemisphere midlatitudes, Geophys.
Res. Lett., 34, 13, https://doi.org/10.1029/2007GL029979, 2007. a
Zhou, S., Hwang, B. C. H., Lakey, P. S. J., Zuend, A., Abbatt, J. P. D., and
Shiraiwa, M.: Multiphase reactivity of polycyclic aromatic hydrocarbons is
driven by phase separation and diffusion limitations, P. Natl. Acad. Sci. USA, 116, 11658–11663,
https://doi.org/10.1073/pnas.1902517116, 2019. a
Zuend, A. and Seinfeld, J. H.: A practical method for the calculation of
liquid–liquid equilibria in multicomponent organic–water–electrolyte
systems using physicochemical constraints, Fluid Phase Equilibr., 337,
201–213, https://doi.org/10.1016/j.fluid.2012.09.034, 2013. a
Zuend, A., Marcolli, C., Luo, B. P., and Peter, T.: A thermodynamic model of mixed organic-inorganic aerosols to predict activity coefficients, Atmos. Chem. Phys., 8, 4559–4593, https://doi.org/10.5194/acp-8-4559-2008, 2008. a
Zuend, A., Marcolli, C., Peter, T., and Seinfeld, J. H.: Computation of liquid-liquid equilibria and phase stabilities: implications for RH-dependent gas/particle partitioning of organic-inorganic aerosols, Atmos. Chem. Phys., 10, 7795–7820, https://doi.org/10.5194/acp-10-7795-2010, 2010. a, b
Zuend, A., Marcolli, C., Booth, A. M., Lienhard, D. M., Soonsin, V., Krieger, U. K., Topping, D. O., McFiggans, G., Peter, T., and Seinfeld, J. H.: New and extended parameterization of the thermodynamic model AIOMFAC: calculation of activity coefficients for organic-inorganic mixtures containing carboxyl, hydroxyl, carbonyl, ether, ester, alkenyl, alkyl, and aromatic functional groups, Atmos. Chem. Phys., 11, 9155–9206, https://doi.org/10.5194/acp-11-9155-2011, 2011. a
Short summary
Aerosol particles below 100 nm in diameter have high surface-area-to-volume ratios. The enrichment of compounds in the surface of an aerosol particle may lead to depletion of that species in the interior bulk of the particle. We present a framework for modeling the equilibrium bulk–surface partitioning of mixed organic–inorganic particles, including cases of co-condensation of semivolatile organic compounds and species with extremely limited solubility in the bulk or surface of a particle.
Aerosol particles below 100 nm in diameter have high surface-area-to-volume ratios. The...
Altmetrics
Final-revised paper
Preprint