Articles | Volume 23, issue 10
https://doi.org/10.5194/acp-23-5851-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-5851-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
On the importance of multiphase photolysis of organic nitrates on their global atmospheric removal
Juan Miguel González-Sánchez
CORRESPONDING AUTHOR
Aix Marseille
Univ, CNRS, LCE, Marseille, France
Aix Marseille
Univ, CNRS, ICR, Marseille, France
Nicolas Brun
Aix Marseille
Univ, CNRS, LCE, Marseille, France
Aix Marseille
Univ, CNRS, ICR, Marseille, France
Junteng Wu
Aix Marseille
Univ, CNRS, LCE, Marseille, France
Sylvain Ravier
Aix Marseille
Univ, CNRS, LCE, Marseille, France
Jean-Louis Clément
Aix Marseille
Univ, CNRS, ICR, Marseille, France
Anne Monod
CORRESPONDING AUTHOR
Aix Marseille
Univ, CNRS, LCE, Marseille, France
Related authors
Juan Miguel González-Sánchez, Miquel Huix-Rotllant, Nicolas Brun, Julien Morin, Carine Demelas, Amandine Durand, Sylvain Ravier, Jean-Louis Clément, and Anne Monod
Atmos. Chem. Phys., 23, 15135–15147, https://doi.org/10.5194/acp-23-15135-2023, https://doi.org/10.5194/acp-23-15135-2023, 2023
Short summary
Short summary
Organic nitrates play a crucial role in air pollution, as they are nitrogen oxide (NOx) reservoirs. This work investigated the reaction products and mechanisms of their reactivity with light in the aqueous phase (cloud and fog conditions and wet aerosol). Our findings reveal that this chemistry leads to the formation of atmospheric nitrous acid (HONO).
Junteng Wu, Nicolas Brun, Juan Miguel González-Sánchez, Badr R'Mili, Brice Temime Roussel, Sylvain Ravier, Jean-Louis Clément, and Anne Monod
Atmos. Meas. Tech., 15, 3859–3874, https://doi.org/10.5194/amt-15-3859-2022, https://doi.org/10.5194/amt-15-3859-2022, 2022
Short summary
Short summary
This work quantified and tentatively identified the organic impurities on ammonium sulfate aerosols generated in the laboratory. They are likely low volatile and high mass molecules containing oxygen, nitrogen, and/or sulfur. Our results show that these organic impurities likely originate from the commercial AS crystals. It is recommended to use AS seeds with caution, especially when small particles are used, in terms of AS purity and water purity when aqueous solutions are used for atomization.
Juan Miguel González-Sánchez, Nicolas Brun, Junteng Wu, Julien Morin, Brice Temime-Roussel, Sylvain Ravier, Camille Mouchel-Vallon, Jean-Louis Clément, and Anne Monod
Atmos. Chem. Phys., 21, 4915–4937, https://doi.org/10.5194/acp-21-4915-2021, https://doi.org/10.5194/acp-21-4915-2021, 2021
Short summary
Short summary
Organic nitrates play a crucial role in air pollution as they are considered NOx reservoirs. This work lights up the importance of their reactions with OH radicals in the aqueous phase (cloud/fog, wet aerosol), which is slower than in the gas phase. For compounds that significantly partition in water such as polyfunctional biogenic nitrates, these aqueous-phase reactions should drive their atmospheric removal, leading to a broader spatial distribution of NOx than previously accounted for.
Chiara Giorio, Anne Monod, Valerio Di Marco, Pierre Herckes, Denise Napolitano, Amy Sullivan, Gautier Landrot, Daniel Warnes, Marika Nasti, Sara D'Aronco, Agathe Gérardin, Nicolas Brun, Karine Desboeufs, Sylvain Triquet, Servanne Chevaillier, Claudia Di Biagio, Francesco Battaglia, Frédéric Burnet, Stuart J. Piketh, Andreas Namwoonde, Jean-François Doussin, and Paola Formenti
Atmos. Chem. Phys., 25, 16107–16125, https://doi.org/10.5194/acp-25-16107-2025, https://doi.org/10.5194/acp-25-16107-2025, 2025
Short summary
Short summary
We present a comparison between concentrations of dissolved trace metals in pairs of total suspended particulate (TSP) and fog samples collected in Henties Bay, Namibia, during the AErosols, Radiation and CLOuds in southern Africa (AEROCLO-sA) field campaign. We found enhanced concentrations of dissolved metals in fog samples, which we attributed to metal–ligand complex formation in the early stages of particle activation into droplets that can then remain in a kinetically stable form in fog or lead to the formation of colloidal nanoparticles.
Anil Kumar Mandariya, Junteng Wu, Anne Monod, Paola Formenti, Bénédicte Picquet-Varrault, Mathieu Cazaunau, Stephan Mertes, Laurent Poulain, Antonin Berge, Edouard Pangui, Andreas Tilgner, Thomas Schaefer, Liang Wen, Hartmut Herrmann, and Jean-François Doussin
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-206, https://doi.org/10.5194/amt-2023-206, 2024
Publication in AMT not foreseen
Short summary
Short summary
An optimized and controlled protocol for generating quasi-adiabatic expansion clouds under simulated dark and light conditions was presented. The irradiated clouds clearly showed a gradual activation of seed particles into droplets. In contrast, non-irradiated clouds faced a flash activation. This paper will lay the foundation for multiphase photochemical studies implying water-soluble volatile organic compounds and particulate matter formation during cloud formation-evaporation cycles.
Juan Miguel González-Sánchez, Miquel Huix-Rotllant, Nicolas Brun, Julien Morin, Carine Demelas, Amandine Durand, Sylvain Ravier, Jean-Louis Clément, and Anne Monod
Atmos. Chem. Phys., 23, 15135–15147, https://doi.org/10.5194/acp-23-15135-2023, https://doi.org/10.5194/acp-23-15135-2023, 2023
Short summary
Short summary
Organic nitrates play a crucial role in air pollution, as they are nitrogen oxide (NOx) reservoirs. This work investigated the reaction products and mechanisms of their reactivity with light in the aqueous phase (cloud and fog conditions and wet aerosol). Our findings reveal that this chemistry leads to the formation of atmospheric nitrous acid (HONO).
Junteng Wu, Nicolas Brun, Juan Miguel González-Sánchez, Badr R'Mili, Brice Temime Roussel, Sylvain Ravier, Jean-Louis Clément, and Anne Monod
Atmos. Meas. Tech., 15, 3859–3874, https://doi.org/10.5194/amt-15-3859-2022, https://doi.org/10.5194/amt-15-3859-2022, 2022
Short summary
Short summary
This work quantified and tentatively identified the organic impurities on ammonium sulfate aerosols generated in the laboratory. They are likely low volatile and high mass molecules containing oxygen, nitrogen, and/or sulfur. Our results show that these organic impurities likely originate from the commercial AS crystals. It is recommended to use AS seeds with caution, especially when small particles are used, in terms of AS purity and water purity when aqueous solutions are used for atomization.
Patrick Chazette, Cyrille Flamant, Harald Sodemann, Julien Totems, Anne Monod, Elsa Dieudonné, Alexandre Baron, Andrew Seidl, Hans Christian Steen-Larsen, Pascal Doira, Amandine Durand, and Sylvain Ravier
Atmos. Chem. Phys., 21, 10911–10937, https://doi.org/10.5194/acp-21-10911-2021, https://doi.org/10.5194/acp-21-10911-2021, 2021
Short summary
Short summary
To gain understanding on the vertical structure of atmospheric water vapour above mountain lakes and to assess its link to the isotopic composition of the lake water and small-scale dynamics, the L-WAIVE field campaign was conducted in the Annecy valley in the French Alps in June 2019. Based on a synergy between ground-based, boat-borne, and airborne measuring platforms, significant gradients of isotopic content have been revealed at the transitions to the lake and to the free troposphere.
Juan Miguel González-Sánchez, Nicolas Brun, Junteng Wu, Julien Morin, Brice Temime-Roussel, Sylvain Ravier, Camille Mouchel-Vallon, Jean-Louis Clément, and Anne Monod
Atmos. Chem. Phys., 21, 4915–4937, https://doi.org/10.5194/acp-21-4915-2021, https://doi.org/10.5194/acp-21-4915-2021, 2021
Short summary
Short summary
Organic nitrates play a crucial role in air pollution as they are considered NOx reservoirs. This work lights up the importance of their reactions with OH radicals in the aqueous phase (cloud/fog, wet aerosol), which is slower than in the gas phase. For compounds that significantly partition in water such as polyfunctional biogenic nitrates, these aqueous-phase reactions should drive their atmospheric removal, leading to a broader spatial distribution of NOx than previously accounted for.
Cited articles
Atkinson, R. and Aschmann, S. M.: Rate constants for the reactions of the OH
radical with the propyl and butyl nitrates and 1-nitrobutane at
298 ± 2 K, Int. J. Chem. Kinet., 21, 1123–1129,
https://doi.org/10.1002/kin.550211205, 1989.
Barnes, I., Becker, K. H., and Zhu, T.: Near UV absorption spectra and
photolysis products of difunctional organic nitrates: Possible importance as
NOx reservoirs, J. Atmos. Chem., 17, 353–373,
https://doi.org/10.1007/BF00696854, 1993.
Bedjanian, Y., Morin, J., and Romanias, M. N.: Reactions of OH radicals with
2-methyl-1-butyl, neopentyl and 1-hexyl nitrates. Structure-activity
relationship for gas-phase reactions of OH with alkyl nitrates: An update,
Atmos. Environ., 180, 167–172,
https://doi.org/10.1016/j.atmosenv.2018.03.002, 2018.
Bianco, A., Passananti, M., Brigante, M., and Mailhot, G.: Photochemistry of
the cloud aqueous phase: A review, Molecules, 25, 423,
https://doi.org/10.3390/molecules25020423, 2020.
Browne, E. C., Min, K.-E., Wooldridge, P. J., Apel, E., Blake, D. R., Brune,
W. H., Cantrell, C. A., Cubison, M. J., Diskin, G. S., Jimenez, J. L.,
Weinheimer, A. J., Wennberg, P. O., Wisthaler, A., and Cohen, R. C.:
Observations of total RONO2 over the boreal forest: NOx sinks and
HNO3 sources, Atmos. Chem. Phys., 13, 4543–4562,
https://doi.org/10.5194/acp-13-4543-2013, 2013.
Carbajo, P. G. and Orr-Ewing, A. J.: NO2 quantum yields from ultraviolet
photodissociation of methyl and isopropyl nitrate, Phys. Chem.
Chem. Phys., 12, 6084–6091, https://doi.org/10.1039/c001425g, 2010.
Clemitshaw, K. C., Williams, J., Rattigan, O. v., Shallcross, D. E., Law, K.
S., and Anthony Cox, R.: Gas-phase ultraviolet absorption cross-sections and
atmospheric lifetimes of several C2–C5 alkyl nitrates, J. Photochem.
Photobiol.
A, 102, 117–126, https://doi.org/10.1016/S1010-6030(96)04458-9, 1997.
Darer, A. I., Cole-Filipiak, N. C., O'Connor, A. E., and Elrod, M. J.:
Formation and stability of atmospherically relevant isoprene-derived
organosulfates and organonitrates, Environ. Sci. Technol., 45, 1895–1902,
https://doi.org/10.1021/es103797z, 2011.
Fisher, J. A., Jacob, D. J., Travis, K. R., Kim, P. S., Marais, E. A.,
Miller, C. C., Yu, K., Zhu, L., Yantosca, R. M., Sulprizio, M. P., Mao, J.,
Wennberg, P. O., Crounse, J. D., Teng, A. P., Nguyen, T. B., Clair, J. M.
S., Cohen, R. C., Romer, P., Nault, B. A., Wooldridge, P. J., Jimenez, J.
L., Campuzano-Jost, P., Day, D. A., Hu, W., Shepson, P. B., Xiong, F.,
Blake, D. R., Goldstein, A. H., Misztal, P. K., Hanisco, T. F., Wolfe, G.
M., Ryerson, T. B., Wisthaler, A., and Mikoviny, T.: Organic nitrate
chemistry and its implications for nitrogen budgets in an isoprene- and
monoterpene-rich atmosphere: Constraints from aircraft (SEAC4RS) and
ground-based (SOAS) observations in the Southeast US, Atmos. Chem. Phys., 16,
5969–5991, https://doi.org/10.5194/acp-16-5969-2016, 2016.
González-Sánchez, J. M.: Replication Data for: On the importance of multiphase
photolysis of organic nitrates on their global atmospheric removal, Harvard
Dataverse [data set], https://doi.org/10.7910/DVN/O7HKJQ, 2023.
González-Sánchez, J. M., Brun, N., Wu, J., Morin, J., Temime-Roussel, B.,
Ravier, S., Mouchel-Vallon, C., Clément, J.-L., and Monod, A.: On the
importance of atmospheric loss of organic nitrates by aqueous-phase
⚫OH oxidation, Atmos. Chem. Phys., 21, 4915–4937,
https://doi.org/10.5194/acp-21-4915-2021, 2021.
Herrmann, H.: On the photolysis of simple anions and neutral molecules as
sources of O− OH, SO and Cl in aqueous
solution, Phys. Chem. Chem. Phys., 9, 3935–3964,
https://doi.org/10.1039/b618565g, 2007.
Hu, K. S., Darer, A. I., and Elrod, M. J.: Thermodynamics and kinetics of
the hydrolysis of atmospherically relevant organonitrates and
organosulfates, Atmos. Chem. Phys., 11, 8307–8320,
https://doi.org/10.5194/acp-11-8307-2011, 2011.
Jacobs, M. I., Burke, W. J., and Elrod, M. J.: Kinetics of the reactions of
isoprene-derived hydroxynitrates: Gas phase epoxide formation and solution
phase hydrolysis, Atmos. Chem. Phys., 14, 8933–8946,
https://doi.org/10.5194/acp-14-8933-2014, 2014.
Jenkin, M. E., Valorso, R., Aumont, B., Rickard, A. R., and Wallington, T.
J.: Estimation of rate coefficients and branching ratios for gas-phase
reactions of OH with aliphatic organic compounds for use in automated
mechanism construction, Atmos. Chem. Phys., 18, 9297–9328,
https://doi.org/10.5194/acp-18-9297-2018, 2018.
Kiendler-Scharr, A., Mensah, A. A., Friese, E., Topping, D., Nemitz, E.,
Prevot, A. S. H., Äijälä, M., Allan, J., Canonaco, F.,
Canagaratna, M., Carbone, S., Crippa, M., Dall Osto, M., Day, D. A., de
Carlo, P., di Marco, C. F., Elbern, H., Eriksson, A., Freney, E., Hao, L.,
Herrmann, H., Hildebrandt, L., Hillamo, R., Jimenez, J. L., Laaksonen, A.,
McFiggans, G., Mohr, C., O'Dowd, C., Otjes, R., Ovadnevaite, J., Pandis, S.
N., Poulain, L., Schlag, P., Sellegri, K., Swietlicki, E., Tiitta, P.,
Vermeulen, A., Wahner, A., Worsnop, D., and Wu, H. C.: Ubiquity of organic
nitrates from nighttime chemistry in the European submicron aerosol, Geophys.
Res. Lett., 43, 7735–7744, https://doi.org/10.1002/2016GL069239, 2016.
Madronich, S.: Photodissociation in the atmosphere: 1. Actinic flux and the
effects of ground reflections and clouds, J. Geophys. Res., 92, 9740–9752,
https://doi.org/10.1029/jd092id08p09740, 1987.
Madronich, S. and Flocke, S.: The Role of Solar Radiation in Atmospheric
Chemistry, Springer, Berlin, Heidelberg, 1–26,
https://doi.org/10.1007/978-3-540-69044-3_1, 1999.
Morin, J., Bedjanian, Y., and Romanias, M. N.: Kinetics and Products of the
Reactions of Ethyl and n-Propyl Nitrates with OH Radicals, Int. J. Chem.
Kinet.,
48, 822–829, https://doi.org/10.1002/kin.21037, 2016.
Müller, J. F., Peeters, J., and Stavrakou, T.: Fast photolysis of
carbonyl nitrates from isoprene, Atmos. Chem. Phys., 14, 2497–2508,
https://doi.org/10.5194/acp-14-2497-2014, 2014.
Ng, N. L., Brown, S. S., Archibald, A. T., Atlas, E., Cohen, R. C., Crowley,
J. N., Day, D. A., Donahue, N. M., Fry, J. L., Fuchs, H., Griffin, R. J.,
Guzman, M. I., Herrmann, H., Hodzic, A., Iinuma, Y., Kiendler-Scharr, A.,
Lee, B. H., Luecken, D. J., Mao, J., McLaren, R., Mutzel, A., Osthoff, H.
D., Ouyang, B., Picquet-Varrault, B., Platt, U., Pye, H. O. T., Rudich, Y.,
Schwantes, R. H., Shiraiwa, M., Stutz, J., Thornton, J. A., Tilgner, A.,
Williams, B. J., and Zaveri, R. A.: Nitrate radicals and biogenic volatile
organic compounds: Oxidation, mechanisms, and organic aerosol, Atmos. Chem.
Phys., 17, 2103–2162, https://doi.org/10.5194/acp-17-2103-2017, 2017.
Nguyen, T. B., Crounse, J. D., Teng, A. P., Clair, J. M. S., Paulot, F.,
Wolfe, G. M., and Wennberg, P. O.: Rapid deposition of oxidized biogenic
compounds to a temperate forest, P. Natl. Acad. Sci. USA, 112,
E392–E401,
https://doi.org/10.1073/pnas.1418702112, 2015.
Nissenson, P., Dabdub, D., Das, R., Maurino, V., Minero, C., and Vione, D.:
Evidence of the water-cage effect on the photolysis of NO and
FeOH ,
Implications of this effect and of H2O2 surface accumulation on
photochemistry at the air-water interface of atmospheric droplets, Atmos.
Environ., 44, 4859–4866, https://doi.org/10.1016/j.atmosenv.2010.08.035,
2010.
Perring, A. E., Pusede, S. E., and Cohen, R. C.: An observational
perspective on the atmospheric impacts of alkyl and multifunctional nitrates
on ozone and secondary organic aerosol, Chem. Rev., 113, 5848–5870,
https://doi.org/10.1021/cr300520x, 2013.
Picquet-Varrault, B., Suarez-Bertoa, R., Duncianu, M., Cazaunau, M., Pangui,
E., David, M., and Doussin, J. F.: Photolysis and oxidation by OH radicals
of two carbonyl nitrates: 4-nitrooxy-2-butanone and 5-nitrooxy-2-pentanone,
Atmos. Chem. Phys., 20, 487–498, https://doi.org/10.5194/acp-20-487-2020,
2020.
Renard, P., Siekmann, F., Gandolfo, A., Socorro, J., Salque, G., Ravier, S.,
Quivet, E., Clément, J.-L. L., Traikia, M., Delort, A.-M. M., Voisin,
D., Vuitton, V., Thissen, R., and Monod, A.: Radical mechanisms of methyl
vinyl ketone oligomerization through aqueous phase OH-oxidation: On the
paradoxical role of dissolved molecular oxygen, Atmos. Chem. Phys., 13,
6473–6491, https://doi.org/10.5194/acp-13-6473-2013, 2013.
Rindelaub, J. D., McAvey, K. M., and Shepson, P. B.: The photochemical
production of organic nitrates from α-pinene and loss via
acid-dependent particle phase hydrolysis, Atmos. Environ., 100, 193–201,
https://doi.org/10.1016/j.atmosenv.2014.11.010, 2015.
Rindelaub, J. D., Borca, C. H., Hostetler, M. A., Slade, J. H., Lipton, M.
A., Slipchenko, L. V., and Shepson, P. B.: The acid-catalyzed hydrolysis of
an α-pinene-derived organic nitrate: Kinetics, products, reaction
mechanisms, and atmospheric impact, Atmos. Chem. Phys., 16, 15425–15432,
https://doi.org/10.5194/acp-16-15425-2016, 2016.
Roberts, J. M. and Fajer, R. W.: UV Absorption Cross Sections of Organic
Nitrates of Potential Atmospheric Importance and Estimation of Atmospheric
Lifetimes, Environ. Sci. Technol., 23, 945–951,
https://doi.org/10.1021/es00066a003, 1989.
Romer, P. S., Wooldridge, P. J., Crounse, J. D., Kim, M. J., Wennberg, P.
O., Dibb, J. E., Scheuer, E., Blake, D. R., Meinardi, S., Brosius, A. L.,
Thames, A. B., Miller, D. O., Brune, W. H., Hall, S. R., Ryerson, T. B., and
Cohen, R. C.: Constraints on Aerosol Nitrate Photolysis as a Potential
Source of HONO and NOx, Environ. Sci. Technol., 52, 13738–13746,
https://doi.org/10.1021/acs.est.8b03861, 2018.
Romer Present, P. S., Zare, A., and Cohen, R. C.: The changing role of
organic nitrates in the removal and transport of NOx, Atmos. Chem. Phys.,
20,
267–279, https://doi.org/10.5194/acp-20-267-2020, 2020.
Romonosky, D. E., Nguyen, L. Q., Shemesh, D., Nguyen, T. B., Epstein, S. A.,
Martin, D. B. C., Vanderwal, C. D., Gerber, R. B., and Nizkorodov, S. A.:
Absorption spectra and aqueous photochemistry of β-hydroxyalkyl
nitrates of atmospheric interest, Mol. Phys., 113, 2179–2190,
https://doi.org/10.1080/00268976.2015.1017020, 2015.
Shen, H., Zhao, D., Pullinen, I., Kang, S., Vereecken, L., Fuchs, H., Acir,
I. H., Tillmann, R., Rohrer, F., Wildt, J., Kiendler-Scharr, A., Wahner, A.,
and Mentel, T. F.: Highly Oxygenated Organic Nitrates Formed from NO3
Radical-Initiated Oxidation of β-Pinene, Environ. Sci. Technol., 55,
15658–15671, https://doi.org/10.1021/acs.est.1c03978, 2021.
Shepson, P. B.: Organic nitrates, Blackwell Publishing Ltd., Oxford, UK,
58–63, https://doi.org/10.1358/dnp.1999.12.1.863615, 1999.
Suarez-Bertoa, R., Picquet-Varrault, B., Tamas, W., Pangui, E., and Doussin,
J. F.: Atmospheric fate of a series of carbonyl nitrates: Photolysis
frequencies and OH-oxidation rate constants, Environ. Sci. Technol., 46,
12502–12509, https://doi.org/10.1021/es302613x, 2012.
Svoboda, O., Kubelová, L., and Slavíček, P.: Enabling forbidden
processes: Quantum and solvation enhancement of nitrate anion UV absorption,
J. Phys. Chem. A, 117, 12868–12877,
https://doi.org/10.1021/jp4098777, 2013.
Takeuchi, M. and Ng, N. L.: Chemical composition and hydrolysis of organic
nitrate aerosol formed from hydroxyl and nitrate radical oxidation of
α-pinene and β-pinene, Atmos. Chem. Phys, 19, 12749–12766,
https://doi.org/10.5194/acp-19-12749-2019, 2019.
Talukdar, R. K., Herndon, S. C., Burkholder, J. B., Roberts, J. M., and
Ravishankara, A. R.: Atmospheric fate of several alkyl nitrates: Part 1.
Rate coefficients of the reactions of alkyl nitrates with isotopically
labelled hydroxyl radicals, J. Chem. Soc. Faraday
T., 93, 2787–2796, https://doi.org/10.1039/a701780d, 1997a.
Talukdar, R. K., Burkholder, J. B., Hunter, M., Gilles, M. K., Roberts, J.
M., and Ravishankara, A. R.: Atmospheric fate of several alkyl nitrates:
Part 2. UV absorption cross-sections and photodissociation quantum yields,
J. Chem. Soc. Faraday T., 93, 2797–2805,
https://doi.org/10.1039/a701781b, 1997b.
Tilgner, A., Bräuer, P., Wolke, R., and Herrmann, H.: Modelling
multiphase chemistry in deliquescent aerosols and clouds using CAPRAM3.0i, J.
Atmos. Chem., 70, 221–256, https://doi.org/10.1007/s10874-013-9267-4, 2013.
Wang, Y., Piletic, I. R., Takeuchi, M., Xu, T., France, S., and Ng, N. L.:
Synthesis and Hydrolysis of Atmospherically Relevant Monoterpene-Derived
Organic Nitrates, Environ. Sci. Technol., 55, 14595–14606,
https://doi.org/10.1021/acs.est.1c05310, 2021.
Wängberg, I., Barnes, I., and Becker, K. H.: Atmospheric chemistry of
bifunctional cycloalkyl nitrates, Chem. Phys. Lett., 261, 138–144,
https://doi.org/10.1016/0009-2614(96)00857-3, 1996.
Warneck, P. and Wurzinger, C.: Product quantum yields for the 305-nm
photodecomposition of nitrate in aqueous solution, J. Phys. Chem, 92,
6278–6283, 1988.
Zare, A., Fahey, K. M., Sarwar, G., Cohen, R. C., and Pye, H. O. T.:
Vapor-Pressure Pathways Initiate but Hydrolysis Products Dominate the
Aerosol Estimated from Organic Nitrates, ACS Earth Space Chem., 3,
1426–1437, https://doi.org/10.1021/acsearthspacechem.9b00067, 2019.
Short summary
Organic nitrates play a crucial role in air pollution, as they are NOx reservoirs. This work investigated for the first time their reactivity with light in the aqueous phase (cloud and fog and wet aerosol), proving it slower than in the gas phase. Therefore, our findings reveal that partitioning of organic nitrates in the aqueous phase leads to longer atmospheric lifetimes of these compounds and thus a broader spatial distribution of their related pollution.
Organic nitrates play a crucial role in air pollution, as they are NOx reservoirs. This work...
Altmetrics
Final-revised paper
Preprint