Articles | Volume 23, issue 7
https://doi.org/10.5194/acp-23-4149-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-4149-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Foreign emissions exacerbate PM2.5 pollution in China through nitrate chemistry
Jun-Wei Xu
Laboratory for Climate and Ocean–Atmosphere Studies, Department of
Atmospheric and Oceanic Sciences, School of Physics, Peking University,
Beijing, China
Laboratory for Climate and Ocean–Atmosphere Studies, Department of
Atmospheric and Oceanic Sciences, School of Physics, Peking University,
Beijing, China
Atmospheric Sciences Research Center, University at Albany, Albany,
NY, USA
Jamiu Adeniran
Laboratory for Climate and Ocean–Atmosphere Studies, Department of
Atmospheric and Oceanic Sciences, School of Physics, Peking University,
Beijing, China
Hao Kong
Laboratory for Climate and Ocean–Atmosphere Studies, Department of
Atmospheric and Oceanic Sciences, School of Physics, Peking University,
Beijing, China
Related authors
Jun-Wei Xu, Jintai Lin, Dan Tong, and Lulu Chen
Atmos. Chem. Phys., 23, 10075–10089, https://doi.org/10.5194/acp-23-10075-2023, https://doi.org/10.5194/acp-23-10075-2023, 2023
Short summary
Short summary
This study highlights the necessity of a low-carbon pathway in foreign countries for China to achieve air quality goals and to protect public health. We find that adopting the low-carbon instead of the fossil-fuel-intensive pathway in foreign countries would prevent 63 000–270 000 transboundary PM2.5-associated mortalities in China in 2060. Our study provides direct evidence of the necessity of inter-regional cooperation for air quality improvement.
Chenghao Xu, Jintai Lin, Hao Kong, Junli Jin, Lulu Chen, and Xiaobin Xu
Atmos. Chem. Phys., 25, 9545–9560, https://doi.org/10.5194/acp-25-9545-2025, https://doi.org/10.5194/acp-25-9545-2025, 2025
Short summary
Short summary
We observed a strong increase in deseasonalized ozone at urban stations in the Tibetan Plateau from 2015 to 2019, far exceeding the trend at the baseline station Waliguan and the Tibetan Plateau average trend of four tropospheric ozone products. By combining multiple datasets and modeling approaches, we identified the main contributing factors as more frequent transport passing through the lower layers of high-emission regions and the increase in local and non-local anthropogenic emissions.
Yuhang Zhang, Huan Yu, Isabelle De Smedt, Jintai Lin, Nicolas Theys, Michel Van Roozendael, Gaia Pinardi, Steven Compernolle, Ruijing Ni, Fangxuan Ren, Sijie Wang, Lulu Chen, Jos Van Geffen, Mengyao Liu, Alexander M. Cede, Martin Tiefengraber, Alexis Merlaud, Martina M. Friedrich, Andreas Richter, Ankie Piters, Vinod Kumar, Vinayak Sinha, Thomas Wagner, Yongjoo Choi, Hisahiro Takashima, Yugo Kanaya, Hitoshi Irie, Robert Spurr, Wenfu Sun, and Lorenzo Fabris
Atmos. Meas. Tech., 18, 1561–1589, https://doi.org/10.5194/amt-18-1561-2025, https://doi.org/10.5194/amt-18-1561-2025, 2025
Short summary
Short summary
We developed an advanced algorithm for global retrieval of TROPOspheric Monitoring Instrument (TROPOMI) HCHO and NO2 vertical column densities with much improved consistency. Sensitivity tests demonstrate the complexity and nonlinear interactions of auxiliary parameters in the air mass factor calculation. An improved agreement is found with measurements from a global ground-based instrument network. The scientific retrieval provides a useful source of information for studies combining HCHO and NO2.
Hongyu Liu, Bo Zhang, Richard H. Moore, Luke D. Ziemba, Richard A. Ferrare, Hyundeok Choi, Armin Sorooshian, David Painemal, Hailong Wang, Michael A. Shook, Amy Jo Scarino, Johnathan W. Hair, Ewan C. Crosbie, Marta A. Fenn, Taylor J. Shingler, Chris A. Hostetler, Gao Chen, Mary M. Kleb, Gan Luo, Fangqun Yu, Mark A. Vaughan, Yongxiang Hu, Glenn S. Diskin, John B. Nowak, Joshua P. DiGangi, Yonghoon Choi, Christoph A. Keller, and Matthew S. Johnson
Atmos. Chem. Phys., 25, 2087–2121, https://doi.org/10.5194/acp-25-2087-2025, https://doi.org/10.5194/acp-25-2087-2025, 2025
Short summary
Short summary
We use the GEOS-Chem model to simulate aerosol distributions and properties over the western North Atlantic Ocean (WNAO) during the winter and summer deployments in 2020 of the NASA ACTIVATE mission. Model results are evaluated against aircraft, ground-based, and satellite observations. The improved understanding of life cycle, composition, transport pathways, and distribution of aerosols has important implications for characterizing aerosol–cloud–meteorology interactions over WNAO.
Fangxuan Ren, Jintai Lin, Chenghao Xu, Jamiu A. Adeniran, Jingxu Wang, Randall V. Martin, Aaron van Donkelaar, Melanie S. Hammer, Larry W. Horowitz, Steven T. Turnock, Naga Oshima, Jie Zhang, Susanne Bauer, Kostas Tsigaridis, Øyvind Seland, Pierre Nabat, David Neubauer, Gary Strand, Twan van Noije, Philippe Le Sager, and Toshihiko Takemura
Geosci. Model Dev., 17, 4821–4836, https://doi.org/10.5194/gmd-17-4821-2024, https://doi.org/10.5194/gmd-17-4821-2024, 2024
Short summary
Short summary
We evaluate the performance of 14 CMIP6 ESMs in simulating total PM2.5 and its 5 components over China during 2000–2014. PM2.5 and its components are underestimated in almost all models, except that black carbon (BC) and sulfate are overestimated in two models, respectively. The underestimation is the largest for organic carbon (OC) and the smallest for BC. Models reproduce the observed spatial pattern for OC, sulfate, nitrate and ammonium well, yet the agreement is poorer for BC.
Yuhang Zhang, Jintai Lin, Jhoon Kim, Hanlim Lee, Junsung Park, Hyunkee Hong, Michel Van Roozendael, Francois Hendrick, Ting Wang, Pucai Wang, Qin He, Kai Qin, Yongjoo Choi, Yugo Kanaya, Jin Xu, Pinhua Xie, Xin Tian, Sanbao Zhang, Shanshan Wang, Siyang Cheng, Xinghong Cheng, Jianzhong Ma, Thomas Wagner, Robert Spurr, Lulu Chen, Hao Kong, and Mengyao Liu
Atmos. Meas. Tech., 16, 4643–4665, https://doi.org/10.5194/amt-16-4643-2023, https://doi.org/10.5194/amt-16-4643-2023, 2023
Short summary
Short summary
Our tropospheric NO2 vertical column density product with high spatiotemporal resolution is based on the Geostationary Environment Monitoring Spectrometer (GEMS) and named POMINO–GEMS. Strong hotspot signals and NO2 diurnal variations are clearly seen. Validations with multiple satellite products and ground-based, mobile car and surface measurements exhibit the overall great performance of the POMINO–GEMS product, indicating its capability for application in environmental studies.
Jun-Wei Xu, Jintai Lin, Dan Tong, and Lulu Chen
Atmos. Chem. Phys., 23, 10075–10089, https://doi.org/10.5194/acp-23-10075-2023, https://doi.org/10.5194/acp-23-10075-2023, 2023
Short summary
Short summary
This study highlights the necessity of a low-carbon pathway in foreign countries for China to achieve air quality goals and to protect public health. We find that adopting the low-carbon instead of the fossil-fuel-intensive pathway in foreign countries would prevent 63 000–270 000 transboundary PM2.5-associated mortalities in China in 2060. Our study provides direct evidence of the necessity of inter-regional cooperation for air quality improvement.
Shixian Zhai, Daniel J. Jacob, Drew C. Pendergrass, Nadia K. Colombi, Viral Shah, Laura Hyesung Yang, Qiang Zhang, Shuxiao Wang, Hwajin Kim, Yele Sun, Jin-Soo Choi, Jin-Soo Park, Gan Luo, Fangqun Yu, Jung-Hun Woo, Younha Kim, Jack E. Dibb, Taehyoung Lee, Jin-Seok Han, Bruce E. Anderson, Ke Li, and Hong Liao
Atmos. Chem. Phys., 23, 4271–4281, https://doi.org/10.5194/acp-23-4271-2023, https://doi.org/10.5194/acp-23-4271-2023, 2023
Short summary
Short summary
Anthropogenic fugitive dust in East Asia not only causes severe coarse particulate matter air pollution problems, but also affects fine particulate nitrate. Due to emission control efforts, coarse PM decreased steadily. We find that the decrease of coarse PM is a major driver for a lack of decrease of fine particulate nitrate, as it allows more nitric acid to form fine particulate nitrate. The continuing decrease of coarse PM requires more stringent ammonia and nitrogen oxides emission controls.
Chi Li, Randall V. Martin, Ronald C. Cohen, Liam Bindle, Dandan Zhang, Deepangsu Chatterjee, Hongjian Weng, and Jintai Lin
Atmos. Chem. Phys., 23, 3031–3049, https://doi.org/10.5194/acp-23-3031-2023, https://doi.org/10.5194/acp-23-3031-2023, 2023
Short summary
Short summary
Models are essential to diagnose the significant effects of nitrogen oxides (NOx) on air pollution. We use an air quality model to illustrate the variability of NOx resolution-dependent simulation biases; how these biases depend on specific chemical environments, driving mechanisms, and vertical variabilities; and how these biases affect the interpretation of satellite observations. High-resolution simulations are thus critical to accurately interpret NOx and its relevance to air quality.
Fangqun Yu, Gan Luo, Arshad Arjunan Nair, Sebastian Eastham, Christina J. Williamson, Agnieszka Kupc, and Charles A. Brock
Atmos. Chem. Phys., 23, 1863–1877, https://doi.org/10.5194/acp-23-1863-2023, https://doi.org/10.5194/acp-23-1863-2023, 2023
Short summary
Short summary
Particle number concentrations and size distributions in the stratosphere are studied through model simulations and comparisons with measurements. The nucleation scheme used in most of the solar geoengineering modeling studies overpredicts the nucleation rates and particle number concentrations in the stratosphere. The model based on updated nucleation schemes captures reasonably well some aspects of particle size distributions but misses some features. The possible reasons are discussed.
Katherine R. Travis, James H. Crawford, Gao Chen, Carolyn E. Jordan, Benjamin A. Nault, Hwajin Kim, Jose L. Jimenez, Pedro Campuzano-Jost, Jack E. Dibb, Jung-Hun Woo, Younha Kim, Shixian Zhai, Xuan Wang, Erin E. McDuffie, Gan Luo, Fangqun Yu, Saewung Kim, Isobel J. Simpson, Donald R. Blake, Limseok Chang, and Michelle J. Kim
Atmos. Chem. Phys., 22, 7933–7958, https://doi.org/10.5194/acp-22-7933-2022, https://doi.org/10.5194/acp-22-7933-2022, 2022
Short summary
Short summary
The 2016 Korea–United States Air Quality (KORUS-AQ) field campaign provided a unique set of observations to improve our understanding of PM2.5 pollution in South Korea. Models typically have errors in simulating PM2.5 in this region, which is of concern for the development of control measures. We use KORUS-AQ observations to improve our understanding of the mechanisms driving PM2.5 and the implications of model errors for determining PM2.5 that is attributable to local or foreign sources.
Kelvin H. Bates, Daniel J. Jacob, Ke Li, Peter D. Ivatt, Mat J. Evans, Yingying Yan, and Jintai Lin
Atmos. Chem. Phys., 21, 18351–18374, https://doi.org/10.5194/acp-21-18351-2021, https://doi.org/10.5194/acp-21-18351-2021, 2021
Short summary
Short summary
Simple aromatic compounds (benzene, toluene, xylene) have complex gas-phase chemistry that is inconsistently represented in atmospheric models. We compile recent experimental and theoretical insights to develop a new mechanism for gas-phase aromatic oxidation that is sufficiently compact for use in multiscale models. We compare our new mechanism to chamber experiments and other mechanisms, and implement it in a global model to quantify the impacts of aromatic oxidation on tropospheric chemistry.
Yanda Zhang, Fangqun Yu, Gan Luo, Jiwen Fan, and Shuai Liu
Atmos. Chem. Phys., 21, 17433–17451, https://doi.org/10.5194/acp-21-17433-2021, https://doi.org/10.5194/acp-21-17433-2021, 2021
Short summary
Short summary
This paper explores the impacts of dust on summertime convective cloud and precipitation through a numerical experiment. The result indicates that the long-range-transported dust can notably affect the properties of convective cloud and precipitation by enhancing immersion freezing and invigorating convection. We also analyze the different dust effects predicted by the Morrison and SBM schemes, which are partially attributed to the saturation adjustment approach utilized in the bulk schemes.
Shixian Zhai, Daniel J. Jacob, Jared F. Brewer, Ke Li, Jonathan M. Moch, Jhoon Kim, Seoyoung Lee, Hyunkwang Lim, Hyun Chul Lee, Su Keun Kuk, Rokjin J. Park, Jaein I. Jeong, Xuan Wang, Pengfei Liu, Gan Luo, Fangqun Yu, Jun Meng, Randall V. Martin, Katherine R. Travis, Johnathan W. Hair, Bruce E. Anderson, Jack E. Dibb, Jose L. Jimenez, Pedro Campuzano-Jost, Benjamin A. Nault, Jung-Hun Woo, Younha Kim, Qiang Zhang, and Hong Liao
Atmos. Chem. Phys., 21, 16775–16791, https://doi.org/10.5194/acp-21-16775-2021, https://doi.org/10.5194/acp-21-16775-2021, 2021
Short summary
Short summary
Geostationary satellite aerosol optical depth (AOD) has tremendous potential for monitoring surface fine particulate matter (PM2.5). Our study explored the physical relationship between AOD and PM2.5 by integrating data from surface networks, aircraft, and satellites with the GEOS-Chem chemical transport model. We quantitatively showed that accurate simulation of aerosol size distributions, boundary layer depths, relative humidity, coarse particles, and diurnal variations in PM2.5 are essential.
Liam Bindle, Randall V. Martin, Matthew J. Cooper, Elizabeth W. Lundgren, Sebastian D. Eastham, Benjamin M. Auer, Thomas L. Clune, Hongjian Weng, Jintai Lin, Lee T. Murray, Jun Meng, Christoph A. Keller, William M. Putman, Steven Pawson, and Daniel J. Jacob
Geosci. Model Dev., 14, 5977–5997, https://doi.org/10.5194/gmd-14-5977-2021, https://doi.org/10.5194/gmd-14-5977-2021, 2021
Short summary
Short summary
Atmospheric chemistry models like GEOS-Chem are versatile tools widely used in air pollution and climate studies. The simulations used in such studies can be very computationally demanding, and thus it is useful if the model can simulate a specific geographic region at a higher resolution than the rest of the globe. Here, we implement, test, and demonstrate a new variable-resolution capability in GEOS-Chem that is suitable for simulations conducted on supercomputers.
Gongda Lu, Eloise A. Marais, Tuan V. Vu, Jingsha Xu, Zongbo Shi, James D. Lee, Qiang Zhang, Lu Shen, Gan Luo, and Fangqun Yu
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-428, https://doi.org/10.5194/acp-2021-428, 2021
Revised manuscript not accepted
Short summary
Short summary
Emission controls were imposed in Beijing-Tianjin-Hebei in northern China in autumn-winter 2017. We find that regional PM2.5 targets (15 % decrease relative to previous year) were exceeded. Our analysis shows that decline in precursor emissions only leads to less than half (43 %) the improved air quality. Most of the change (57 %) is due to interannual variability in meteorology. Stricter emission controls may be necessary in years with unfavourable meteorology.
Yingying Yan, Yue Zhou, Shaofei Kong, Jintai Lin, Jian Wu, Huang Zheng, Zexuan Zhang, Aili Song, Yongqing Bai, Zhang Ling, Dantong Liu, and Tianliang Zhao
Atmos. Chem. Phys., 21, 3143–3162, https://doi.org/10.5194/acp-21-3143-2021, https://doi.org/10.5194/acp-21-3143-2021, 2021
Short summary
Short summary
We analyze the effectiveness of emission reduction for local and upwind regions during winter haze episodes controlled by the main potential synoptic patterns over central China, a regional pollutant transport hub with sub-basin topography. Our results provide an opportunity to effectively mitigate haze pollution via local emission control actions in coordination with regional collaborative actions according to different synoptic patterns.
Cited articles
An, Z., Huang, R. J., Zhang, R., Tie, X., Li, G., Cao, J., Zhou, W., Shi,
Z., Han, Y., Gu, Z., and Ji, Y.: Severe haze in northern China: A synergy of
anthropogenic emissions and atmospheric processes, P. Natl. Acad. Sci. USA, 116, 8657–8666, https://doi.org/10.1073/pnas.1900125116, 2019.
Bai, Z., Winiwarter, W., Klimont, Z., Velthof, G., Misselbrook, T., Zhao,
Z., Jin, X., Oenema, O., Hu, C., and Ma, L.: Further Improvement of Air
Quality in China Needs Clear Ammonia Mitigation Target, Environ. Sci.
Technol., 53, 10542–10544, https://doi.org/10.1021/acs.est.9b04725, 2019.
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T.,
DeAngelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne,
S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M.,
Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K.,
Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U.,
Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C.
S.: Bounding the role of black carbon in the climate system: A scientific
assessment, J. Geophys. Res.-Atmos., 118, 5380–5552,
https://doi.org/10.1002/jgrd.50171, 2013.
Brauer, M., Freedman, G., Frostad, J., van Donkelaar, A., Martin, R. V,
Dentener, F., Dingenen, R. van, Estep, K., Amini, H., Apte, J. S.,
Balakrishnan, K., Barregard, L., Broday, D., Feigin, V., Ghosh, S., Hopke,
P. K., Knibbs, L. D., Kokubo, Y., Liu, Y., Ma, S., Morawska, L., Sangrador,
J. L. T., Shaddick, G., Anderson, H. R., Vos, T., Forouzanfar, M. H.,
Burnett, R. T., and Cohen, A.: Ambient Air Pollution Exposure Estimation for
the Global Burden of Disease 2013, Environ. Sci. Technol., 50, 79–88,
https://doi.org/10.1021/acs.est.5b03709, 2016.
Breider, T. J., Mickley, L. J., Jacob, D. J., Ge, C., Wang, J., Payer
Sulprizio, M., Croft, B., Ridley, D. A., McConnell, J. R., Sharma, S.,
Husain, L., Dutkiewicz, V. A., Eleftheriadis, K., Skov, H., and Hopke, P. K.:
Multidecadal trends in aerosol radiative forcing over the Arctic:
Contribution of changes in anthropogenic aerosol to Arctic warming since
1980, J. Geophys. Res.-Atmos., 122, 3573–3594, https://doi.org/10.1002/2016JD025321,
2017.
Chen, Y., Xie, S., Luo, B., and Zhai, C.: Characteristics and origins of
carbonaceous aerosol in the Sichuan Basin, China, Atmos. Environ., 94,
215–223, https://doi.org/10.1016/j.atmosenv.2014.05.037, 2014.
Cheng, J., Tong, D., Liu, Y., Yu, S., Yan, L., Zheng, B., Geng, G., He, K., and Zhang, Q.: Comparison of Current and Future PM2.5 Air Quality in China
Under CMIP6 and DPEC Emission Scenarios, Geophys. Res. Lett., 48, 1–11,
https://doi.org/10.1029/2021GL093197, 2021a.
Cheng, J., Tong, D., Zhang, Q., Liu, Y., Lei, Y., Yan, G., Yan, L., Yu, S.,
Cui, R. Y., Clarke, L., Geng, G., Zheng, B., Zhang, X., Davis, S. J., and He,
K.: Pathways of China's PM2.5 air quality 2015–2060 in the context of
carbon neutrality, Natl. Sci. Rev., 0, nwab078,
https://doi.org/10.1093/nsr/nwab078, 2021b.
Choi, J., Park, R. J., Lee, H.-M., Lee, S., Jo, D. S., Jeong, J. I., Henze,
D. K., Woo, J.-H., Ban, S.-J., Lee, M.-D., Lim, C.-S., Park, M.-K., Shin, H.
J., Cho, S., Peterson, D., and Song, C.-K.: Impacts of local vs.
trans-boundary emissions from different sectors on PM2.5 exposure in South
Korea during the KORUS-AQ campaign, Atmos. Environ., 203, 196–205,
https://doi.org/10.1016/j.atmosenv.2019.02.008, 2019.
Cohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., Estep,
K., Balakrishnan, K., Brunekreef, B., Dandona, L., Dandona, R., Feigin, V.,
Freedman, G., Hubbell, B., Jobling, A., Kan, H., Knibbs, L., Liu, Y.,
Martin, R., Morawska, L., Pope, C. A., Shin, H., Straif, K., Shaddick, G.,
Thomas, M., van Dingenen, R., van Donkelaar, A., Vos, T., Murray, C. J. L., and Forouzanfar, M. H.: Estimates and 25-year trends of the global burden of
disease attributable to ambient air pollution: an analysis of data from the
Global Burden of Diseases Study 2015, Lancet, 389, 1907–1918,
https://doi.org/10.1016/S0140-6736(17)30505-6, 2017.
Ding, A., Huang, X., Nie, W., Chi, X., Xu, Z., Zheng, L., Xu, Z., Xie, Y.,
Qi, X., Shen, Y., Sun, P., Wang, J., Wang, L., Sun, J., Yang, X. Q., Qin,
W., Zhang, X., Cheng, W., Liu, W., Pan, L., and Fu, C.: Significant reduction
of PM2.5 in eastern China due to regional-scale emission control: Evidence
from SORPES in 2011–2018, Atmos. Chem. Phys., 19, 11791–11801,
https://doi.org/10.5194/acp-19-11791-2019, 2019.
Duncan Fairlie, T., Jacob, D. J., and Park, R. J.: The impact of transpacific
transport of mineral dust in the United States, Atmos. Environ., 41,
1251–1266, https://doi.org/10.1016/j.atmosenv.2006.09.048, 2007.
Fisher, J. A., Jacob, D. J., Wang, Q., Bahreini, R., Carouge, C. C.,
Cubison, M. J., Dibb, J. E., Diehl, T., Jimenez, J. L., Leibensperger, E.
M., Lu, Z., Meinders, M. B. J., Pye, H. O. T., Quinn, P. K., Sharma, S.,
Streets, D. G., van Donkelaar, A., and Yantosca, R. M.: Sources,
distribution, and acidity of sulfate-ammonium aerosol in the Arctic in
winter-spring, Atmos. Environ., 45, 7301–7318,
https://doi.org/10.1016/j.atmosenv.2011.08.030, 2011.
Fountoukis, C. and Nenes, A.: ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K+–Ca2+–Mg2+–NH –Na+–SO –NO –Cl−–H2O aerosols, Atmos. Chem. Phys., 7, 4639–4659, https://doi.org/10.5194/acp-7-4639-2007, 2007.
Gao, M., Han, Z., Liu, Z., Li, M., Xin, J., Tao, Z., Li, J., Kang, J.-E.,
Huang, K., Dong, X., Zhuang, B., Li, S., Ge, B., Wu, Q., Cheng, Y., Wang,
Y., Lee, H.-J., Kim, C.-H., Fu, J. S., Wang, T., Chin, M., Woo, J.-H.,
Zhang, Q., Wang, Z., and Carmichael, G. R.: Air quality and climate change,
Topic 3 of the Model Inter-Comparison Study for Asia Phase III (MICS-Asia
III) – Part 1: Overview and model evaluation, Atmos. Chem. Phys., 18,
4859–4884, https://doi.org/10.5194/acp-18-4859-2018, 2018.
Geng, G., Zheng, Y., Zhang, Q., Xue, T., Zhao, H., Tong, D., Zheng, B., Li,
M., Liu, F., Hong, C., He, K., and Davis, S. J.: Drivers of PM2.5 air
pollution deaths in China 2002–2017, Nat. Geosci., 14, 645–650,
https://doi.org/10.1038/s41561-021-00792-3, 2021.
Gu, B., Zhang, L., Van Dingenen, R., Vieno, M., Van Grinsven, H. J. M.,
Zhang, X., Zhang, S., Chen, Y., Wang, S., Ren, C., Rao, S., Holland, M.,
Winiwarter, W., Chen, D., Xu, J., and Sutton, M. A.: Abating ammonia is more
cost-effective than nitrogen oxides for mitigating PM2.5 air pollution,
Science, 374, 758–762, https://doi.org/10.1126/science.abf8623, 2021.
Heald, C. L., J. L. Collett Jr., Lee, T., Benedict, K. B., Schwandner, F.
M., Li, Y., Clarisse, L., Hurtmans, D. R., Van Damme, M., Clerbaux, C.,
Coheur, P.-F., Philip, S., Martin, R. V., and Pye, H. O. T.: Atmospheric
ammonia and particulate inorganic nitrogen over the United States, Atmos.
Chem. Phys., 12, 10295–10312, https://doi.org/10.5194/acp-12-10295-2012, 2012.
Huang, X., Ding, A., Gao, J., Zheng, B., Zhou, D., Qi, X., Tang, R., Wang,
J., Ren, C., Nie, W., Chi, X., Xu, Z., Chen, L., Li, Y., Che, F., Pang, N.,
Wang, H., Tong, D., Qin, W., Cheng, W., Liu, W., Fu, Q., Liu, B., Chai, F.,
Davis, S. J., Zhang, Q., and He, K.: Enhanced secondary pollution offset
reduction of primary emissions during COVID-19 lockdown in China, Natl. Sci.
Rev., 8, nwaa137, https://doi.org/10.1093/nsr/nwaa137, 2021.
IEA: World Energy Outlook, International Energy Agency, IEA/OECD, France, https://www.iea.org/reports/world-energy-outlook-2021 (last access: 4 Apr 2023), 2021.
Jaeglé, L., Quinn, P. K., Bates, T. S., Alexander, B., and Lin, J.-T.:
Global distribution of sea salt aerosols: new constraints from in situ and
remote sensing observations, Atmos. Chem. Phys., 11, 3137–3157,
https://doi.org/10.5194/acp-11-3137-2011, 2011.
Jaeglé, L., Shah, V., Thornton, J. A., Lopez-Hilfiker, F. D., Lee, B.
H., McDuffie, E. E., Fibiger, D., Brown, S. S., Veres, P., Sparks, T. L.,
Ebben, C. J., Wooldridge, P. J., Kenagy, H. S., Cohen, R. C., Weinheimer, A.
J., Campos, T. L., Montzka, D. D., Digangi, J. P., Wolfe, G. M., Hanisco,
T., Schroder, J. C., Campuzano-Jost, P., Day, D. A., Jimenez, J. L.,
Sullivan, A. P., Guo, H., and Weber, R. J.: Nitrogen Oxides Emissions,
Chemistry, Deposition, and Export Over the Northeast United States During
the WINTER Aircraft Campaign, J. Geophys. Res.-Atmos., 123,
12368–12393, https://doi.org/10.1029/2018JD029133, 2018.
Jiang, H., Liao, H., Pye, H. O. T., Wu, S., Mickley, L. J., Seinfeld, J. H., and Zhang, X. Y.: Projected effect of 2000–2050 changes in climate and
emissions on aerosol levels in China and associated transboundary transport,
Atmos. Chem. Phys., 13, 7937–7960, https://doi.org/10.5194/acp-13-7937-2013, 2013.
Jin, X. and Holloway, T.: Spatial and temporal variability of ozone
sensitivity over China observed from the Ozone Monitoring Instrument, J.
Geophys. Res.-Atmos., 120, 7229–7246,
https://doi.org/10.1002/2015JD023250, 2015.
Koplitz, S. N., Jacob, D. J., Sulprizio, M. P., Myllyvirta, L., and Reid, C.:
Burden of Disease from Rising Coal-Fired Power Plant Emissions in Southeast
Asia, Environ. Sci. Technol., 51, 1467–1476,
https://doi.org/10.1021/acs.est.6b03731, 2017.
Kurokawa, J. and Ohara, T.: Long-term historical trends in air pollutant
emissions in Asia: Regional Emission inventory in ASia (REAS) version 3,
Atmos. Chem. Phys., 20, 12761–12793, https://doi.org/10.5194/acp-20-12761-2020,
2020.
Le, T., Wang, Y., Liu, L., Yang, J., Yung, Y. L., Li, G., and Seinfeld, J.
H.: Unexpected air pollution with marked emission reductions during the
COVID-19 outbreak in China, Science, 369, 702–706,
https://doi.org/10.1126/science.abb7431, 2020.
Leibensperger, E. M., Mickley, L. J., Jacob, D. J., and Barrett, S. R. H.:
Intercontinental influence of NOx and CO emissions on particulate matter air
quality, Atmos. Environ., 45, 3318–3324,
https://doi.org/10.1016/j.atmosenv.2011.02.023, 2011.
Li, H., Cheng, J., Zhang, Q., Zheng, B., Zhang, Y., Zheng, G., and He, K.:
Rapid transition in winter aerosol composition in Beijing from 2014 to 2017:
response to clean air actions, Atmos. Chem. Phys., 19, 11485–11499,
https://doi.org/10.5194/acp-19-11485-2019, 2019.
Li, P., Yan, R., Yu, S., Wang, S., Liu, W., and Bao, H.: Reinstate regional
transport of PM2.5 as a major cause of severe haze in Beijing, P. Natl.
Acad. Sci. USA, 112, E2739–E2740, https://doi.org/10.1073/pnas.1502596112, 2015.
Li, Q., Zhang, L., Wang, T., Wang, Z., Fu, X., and Zhang, Q.: “New”
Reactive Nitrogen Chemistry Reshapes the Relationship of Ozone to Its
Precursors, Environ. Sci. Technol., 52, 2810–2818,
https://doi.org/10.1021/acs.est.7b05771, 2018.
Liao, T., Wang, S., Ai, J., Gui, K., Duan, B., Zhao, Q., Zhang, X., Jiang,
W., and Sun, Y.: Heavy pollution episodes, transport pathways and potential
sources of PM2.5 during the winter of 2013 in Chengdu (China), Sci. Total
Environ., 584/585, 1056–1065,
https://doi.org/10.1016/j.scitotenv.2017.01.160, 2017.
Lin, J.-T. and McElroy, M. B.: Impacts of boundary layer mixing on pollutant
vertical profiles in the lower troposphere: Implications to satellite remote
sensing, Atmos. Environ., 44, 1726–1739,
https://doi.org/10.1016/j.atmosenv.2010.02.009, 2010.
Liu, H., Jacob, D. J., Bey, I., and Yantosca, R. M.: Constraints from 210 Pb
and 7 Be on wet deposition and transport in a global three-dimensional
chemical tracer model driven by assimilated meteorological fields, J.
Geophys. Res.-Atmos., 106, 12109–12128, https://doi.org/10.1029/2000JD900839,
2001.
Liu, M., Huang, X., Song, Y., Xu, T., Wang, S., Wu, Z., Hu, M., Zhang, L.,
Zhang, Q., Pan, Y., Liu, X., and Zhu, T.: Rapid SO2 emission reductions
significantly increase tropospheric ammonia concentrations over the North
China Plain, Atmos. Chem. Phys., 18, 17933–17943,
https://doi.org/10.5194/acp-18-17933-2018, 2018.
Liu, M., Huang, X., Song, Y., Tang, J., Cao, J., Zhang, X., Zhang, Q., Wang,
S., Xu, T., Kang, L., Cai, X., Zhang, H., Yang, F., Wang, H., Yu, J. Z.,
Lau, A. K. H., He, L., Huang, X., Duan, L., Ding, A., Xue, L., Gao, J., Liu,
B., and Zhu, T.: Ammonia emission control in China would mitigate haze
pollution and nitrogen deposition, but worsen acid rain, P. Natl. Acad.
Sci. USA, 116, 7760–7765, https://doi.org/10.1073/pnas.1814880116, 2019.
Luo, G., Yu, F., and Moch, J. M.: Further improvement of wet process
treatments in GEOS-Chem v12.6.0: Impact on global distributions of aerosols
and aerosol precursors, Geosci. Model Dev., 13, 2879–2903,
https://doi.org/10.5194/gmd-13-2879-2020, 2020.
McDuffie, E. E., Smith, S. J., O'Rourke, P., Tibrewal, K., Venkataraman, C.,
Marais, E. A., Zheng, B., Crippa, M., Brauer, M., and Martin, R. V.: A global
anthropogenic emission inventory of atmospheric pollutants from sector- And
fuel-specific sources (1970–2017): An application of the Community Emissions
Data System (CEDS), Earth Syst. Sci. Data, 12, 3413–3442,
https://doi.org/10.5194/essd-12-3413-2020, 2020.
Meng, W., Zhong, Q., Chen, Y., Shen, H., Yun, X., Smith, K. R., Li, B., Liu,
J., Wang, X., Ma, J., Cheng, H., Zeng, E. Y., Guan, D., Russell, A. G., and Tao, S.: Energy and air pollution benefits of household fuel policies in
northern China, P. Natl. Acad. Sci. USA, 116, 16773–16780,
https://doi.org/10.1073/pnas.1904182116, 2019.
Miao, R., Chen, Q., Zheng, Y., Cheng, X., Sun, Y., Palmer, P. I.,
Shrivastava, M., Guo, J., Zhang, Q., Liu, Y., Tan, Z., Ma, X., Chen, S.,
Zeng, L., Lu, K., and Zhang, Y.: Model bias in simulating major chemical
components of PM2.5 in China, Atmos. Chem. Phys., 20, 12265–12284,
https://doi.org/10.5194/acp-20-12265-2020, 2020.
Murray, L. T., Jacob, D. J., Logan, J. A., Hudman, R. C., and Koshak, W. J.:
Optimized regional and interannual variability of lightning in a global
chemical transport model constrained by LIS/OTD satellite data, J. Geophys.
Res.-Atmos., 117, D20307, https://doi.org/10.1029/2012JD017934, 2012.
Park, M. E., Song, C. H., Park, R. S., Lee, J., Kim, J., Lee, S., Woo,
J.-H., Carmichael, G. R., Eck, T. F., Holben, B. N., Lee, S.-S., Song, C. K., and Hong, Y. D.: New approach to monitor transboundary particulate pollution
over Northeast Asia, Atmos. Chem. Phys., 14, 659–674,
https://doi.org/10.5194/acp-14-659-2014, 2014.
Park, R. J., Jacob, D. J., Field, B. D., Yantosca, R. M., and Chin, M.:
Natural and transboundary pollution influences on sulfate-nitrate-ammonium
aerosols in the United States: Implications for policy, J. Geophys. Res.,
109, D15204, https://doi.org/10.1029/2003JD004473, 2004.
Peng, W., Wagner, F., Ramana, M. V., Zhai, H., Small, M. J., Dalin, C.,
Zhang, X., and Mauzerall, D. L.: Managing China's coal power plants to
address multiple environmental objectives, Nat. Sustain., 1, 693–701,
https://doi.org/10.1038/s41893-018-0174-1, 2018.
Pennington, E. A., Seltzer, K. M., Murphy, B. N., Qin, M., Seinfeld, J. H., and Pye, H. O. T.: Modeling secondary organic aerosol formation from
volatile chemical products, Atmos. Chem. Phys., 21, 18247–18261,
https://doi.org/10.5194/acp-21-18247-2021, 2021.
Philip, S., Martin, R. V., Pierce, J. R., Jimenez, J. L., Zhang, Q.,
Canagaratna, M. R., Spracklen, D. V., Nowlan, C. R., Lamsal, L. N., Cooper,
M. J., and Krotkov, N. A.: Spatially and seasonally resolved estimate of the
ratio of organic mass to organic carbon, Atmos. Environ., 87, 34–40,
https://doi.org/10.1016/j.atmosenv.2013.11.065, 2014.
Philip, S., Martin, R. V, Snider, G., Weagle, C. L., van Donkelaar, A.,
Brauer, M., Henze, D. K., Klimont, Z., Venkataraman, C., Guttikunda, S. K., and Zhang, Q.: Anthropogenic fugitive, combustion and industrial dust is a
significant, underrepresented fine particulate matter source in global
atmospheric models, Environ. Res. Lett., 12, 044018,
https://doi.org/10.1088/1748-9326/aa65a4, 2017.
Pye, H. O. T., Liao, H., Wu, S., Mickley, L. J., Jacob, D. J., Henze, D. K., and Seinfeld, J. H.: Effect of changes in climate and emissions on future
sulfate-nitrate-ammonium aerosol levels in the United States, J. Geophys.
Res.-Atmos., 114, D01205, https://doi.org/10.1029/2008JD010701, 2009.
Randerson, J. T., Van Der Werf, G. R., Giglio, L., Collatz, G. J., and Kasibhatla, P. S.: Global Fire Emissions Database, Version 4, (GFEDv4), ORNL Distributed Active Archive Center [data set],
https://doi.org/10.3334/ornldaac/1293, 2015.
Ren, C., Huang, X., Wang, Z., Sun, P., Chi, X., Ma, Y., Zhou, D., Huang, J.,
Xie, Y., Gao, J., and Ding, A.: Nonlinear response of nitrate to NOx
reduction in China during the COVID-19 pandemic, Atmos. Environ., 264,
118715, https://doi.org/10.1016/j.atmosenv.2021.118715, 2021.
Shrivastava, M., Cappa, C. D., Fan, J., Goldstein, A. H., Guenther, A. B.,
Jimenez, J. L., Kuang, C., Laskin, A., Martin, S. T., Ng, N. L., Petaja, T.,
Pierce, J. R., Rasch, P. J., Roldin, P., Seinfeld, J. H., Shilling, J.,
Smith, J. N., Thornton, J. A., Volkamer, R., Wang, J., Worsnop, D. R.,
Zaveri, R. A., Zelenyuk, A., and Zhang, Q.: Recent advances in understanding
secondary organic aerosol: Implications for global climate forcing, Rev.
Geophys., 55, 509–559, https://doi.org/10.1002/2016RG000540, 2017.
Snider, G., Weagle, C. L., Murdymootoo, K. K., Ring, A., Ritchie, Y., Stone,
E., Walsh, A., Akoshile, C., Anh, N. X., Balasubramanian, R., Brook, J.,
Qonitan, F. D., Dong, J., Griffith, D., He, K., Holben, B. N., Kahn, R.,
Lagrosas, N., Lestari, P., Ma, Z., Misra, A., Norford, L. K., Quel, E. J.,
Salam, A., Schichtel, B., Segev, L., Tripathi, S., Wang, C., Yu, C., Zhang,
Q., Zhang, Y., Brauer, M., Cohen, A., Gibson, M. D., Liu, Y., Martins, J.
V., Rudich, Y., and Martin, R. V.: Variation in global chemical composition
of PM2.5: emerging results from SPARTAN, Atmos. Chem. Phys., 16,
9629–9653, https://doi.org/10.5194/acp-16-9629-2016, 2016.
Stettler, M. E. J., Eastham, S., and Barrett, S. R. H.: Air quality and
public health impacts of UK airports, Part I: Emissions, Atmos. Environ.,
45, 5415–5424, https://doi.org/10.1016/j.atmosenv.2011.07.012, 2011.
Tang, R., Zhao, J., Liu, Y., Huang, X., Zhang, Y., Zhou, D., Ding, A.,
Nielsen, C. P., and Wang, H.: Air quality and health co-benefits of China's
carbon dioxide emissions peaking before 2030, Nat. Commun., 13, 1008,
https://doi.org/10.1038/s41467-022-28672-3, 2022.
Tao, J., Zhang, L., Cao, J., and Zhang, R.: A review of current knowledge
concerning PM2.5 chemical composition, aerosol optical properties and their
relationships across China, Atmos. Chem. Phys., 17, 9485–9518,
https://doi.org/10.5194/acp-17-9485-2017, 2017.
Tong, D., Zhang, Q., Liu, F., Geng, G., Zheng, Y., Xue, T., Hong, C., Wu,
R., Qin, Y., Zhao, H., Yan, L., and He, K.: Current Emissions and Future
Mitigation Pathways of Coal-Fired Power Plants in China from 2010 to 2030,
Environ. Sci. Technol., 52, 12905–12914, https://doi.org/10.1021/acs.est.8b02919,
2018.
Tong, D., Cheng, J., Liu, Y., Yu, S., Yan, L., Hong, C., Qin, Y., Zhao, H.,
Zheng, Y., Geng, G., Li, M., Liu, F., Zhang, Y., Zheng, B., Clarke, L., and Zhang, Q.: Dynamic projection of anthropogenic emissions in China:
Methodology and 2015–2050 emission pathways under a range of socio-economic,
climate policy, and pollution control scenarios, Atmos. Chem. Phys., 20,
5729–5757, https://doi.org/10.5194/acp-20-5729-2020, 2020.
van Donkelaar, A., Hammer, M. S., Bindle, L., Brauer, M., Brook, J. R.,
Garay, M. J., Hsu, N. C., Kalashnikova, O. V, Kahn, R. A., Lee, C., Levy, R.
C., Lyapustin, A., Sayer, A. M., and Martin, R. V.: Monthly Global Estimates
of Fine Particulate Matter and Their Uncertainty, Environ. Sci. Technol.,
55, 15287–15300, https://doi.org/10.1021/acs.est.1c05309, 2021.
Venkataraman, C., Brauer, M., Tibrewal, K., Sadavarte, P., Ma, Q., Cohen,
A., Chaliyakunnel, S., Frostad, J., Klimont, Z., Martin, R. V., Millet, D.
B., Philip, S., Walker, K., and Wang, S.: Source influence on emission
pathways and ambient PM2.5 pollution over India (2015–2050), Atmos. Chem.
Phys., 18, 8017–8039, https://doi.org/10.5194/acp-18-8017-2018, 2018.
Wang, H., Tian, M., Chen, Y., Shi, G., Liu, Y., Yang, F., Zhang, L., Deng,
L., Yu, J., Peng, C., and Cao, X.: Seasonal characteristics, formation
mechanisms and source origins of PM2.5 in two megacities in Sichuan Basin,
China, Atmos. Chem. Phys., 18, 865–881, https://doi.org/10.5194/acp-18-865-2018,
2018.
Wang, J., Ni, R., Lin, J., Tan, X., Tong, D., Zhao, H., Zhang, Q., Lu, Z.,
Streets, D., Pan, D., Huang, Y., Guan, D., Feng, K., Yan, Y., Hu, Y., Liu,
M., Chen, L., and Liu, P.: Socioeconomic and atmospheric factors affecting
aerosol radiative forcing: Production-based versus consumption-based
perspective, Atmos. Environ., 200, 197–207,
https://doi.org/10.1016/j.atmosenv.2018.12.012, 2019.
Wang, Q., Jacob, D. J., Fisher, J. A., Mao, J., Leibensperger, E. M.,
Carouge, C. C., Le Sager, P., Kondo, Y., Jimenez, J. L., Cubison, M. J., and Doherty, S. J.: Sources of carbonaceous aerosols and deposited black carbon
in the Arctic in winter-spring: implications for radiative forcing, Atmos.
Chem. Phys., 11, 12453–12473, https://doi.org/10.5194/acp-11-12453-2011, 2011.
Wang, Q., Jacob, D. J., Spackman, J. R., Perring, A. E., Schwarz, J. P.,
Moteki, N., Marais, E. A., Ge, C., Wang, J., and Barrett, S. R. H.: Global
budget and radiative forcing of black carbon aerosol: Constraints from
pole-to-pole (HIPPO) observations across the Pacific, J. Geophys. Res.-Atmos., 119, 195–206, https://doi.org/10.1002/2013JD020824, 2014.
Wang, S., Li, S., Xing, J., Ding, Y., Hu, S., Liu, S., Qin, Y., Dong, Z., Dong, J., Song, G., and Dong, L.: Current and future prediction of inter-provincial transport of ambient PM2.5 in China, Atmos. Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-2022-368, 2022.
Wang, T., Xue, L., Brimblecombe, P., Lam, Y. F., Li, L., and Zhang, L.: Ozone
pollution in China: A review of concentrations, meteorological influences,
chemical precursors, and effects, Sci. Total Environ., 575, 1582–1596,
https://doi.org/10.1016/j.scitotenv.2016.10.081, 2017.
Wang, Y. X., McElroy, M. B., Jacob, D. J., and Yantosca, R. M.: A nested grid
formulation for chemical transport over Asia: Applications to CO, J.
Geophys. Res.-Atmos., 109, D22307, https://doi.org/10.1029/2004JD005237, 2004.
Weng, H., Lin, J., Martin, R., Millet, D. B., Jaeglé, L., Ridley, D.,
Keller, C., Li, C., Du, M., and Meng, J.: Global high-resolution emissions of
soil NOx, sea salt aerosols, and biogenic volatile organic compounds, Sci.
Data, 7, 148–163, https://doi.org/10.1038/s41597-020-0488-5, 2020.
West, J. J., Cohen, A., Dentener, F., Brunekreef, B., Zhu, T., Armstrong,
B., Bell, M. L., Brauer, M., Carmichael, G., Costa, D. L., Dockery, D. W.,
Kleeman, M., Krzyzanowski, M., Künzli, N., Liousse, C., Lung, S.-C. C.,
Martin, R. V, Pöschl, U., Pope, C. A., Roberts, J. M., Russell, A. G., and Wiedinmyer, C.: What We Breathe Impacts Our Health: Improving
Understanding of the Link between Air Pollution and Health, Environ. Sci.
Technol., 50, 4895–4904, https://doi.org/10.1021/acs.est.5b03827, 2016.
WHO: WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide, World Health Organization (WHO), Geneva, Switzerland, 2021.
Wu, S., Mickley, L. J., Jacob, D. J., Logan, J. A., Yantosca, R. M., and Rind, D.: Why are there large differences between models in global budgets
of tropospheric ozone?, J. Geophys. Res.-Atmos., 112, D05302,
https://doi.org/10.1029/2006JD007801, 2007.
Xing, J., Lu, X., Wang, S., Wang, T., Ding, D., Yu, S., Shindell, D., Ou,
Y., Morawska, L., Li, S., Ren, L., Zhang, Y., Loughlin, D., Zheng, H., Zhao,
B., Liu, S., Smith, K. R., and Hao, J.: The quest for improved air quality
may push China to continue its CO2 reduction beyond the Paris Commitment,
P. Natl. Acad. Sci. USA, 117, 29535–29542,
https://doi.org/10.1073/pnas.2013297117, 2020.
Yan, Y., Zhou, Y., Kong, S., Lin, J., Wu, J., Zheng, H., Zhang, Z., Song,
A., Bai, Y., Ling, Z., Liu, D., and Zhao, T.: Effectiveness of emission
control in reducing PM2.5 pollution in central China during winter haze
episodes under various potential synoptic controls, Atmos. Chem. Phys.,
21, 3143–3162, https://doi.org/10.5194/acp-21-3143-2021, 2021a.
Yan, Y., Zheng, H., Kong, S., Lin, J., Yao, L., Wu, F., Cheng, Y., Niu, Z.,
Zheng, S., Zeng, X., Yan, Q., Wu, J., Zheng, M., Liu, M., Ni, R., Chen, L.,
Chen, N., Xu, K., Liu, D., Zhao, D., Zhao, T., and Qi, S.: On the local
anthropogenic source diversities and transboundary transport for urban
agglomeration ozone mitigation, Atmos. Environ., 245, 118005,
https://doi.org/10.1016/j.atmosenv.2020.118005, 2021b.
Yue, H., He, C., Huang, Q., Yin, D., and Bryan, B. A.: Stronger policy
required to substantially reduce deaths from PM2.5 pollution in China, Nat.
Commun., 11, 1462, https://doi.org/10.1038/s41467-020-15319-4, 2020.
Zang, H., Zhao, Y., Huo, J., Zhao, Q., Fu, Q., Duan, Y., Shao, J., Huang,
C., An, J., Xue, L., Li, Z., Li, C., and Xiao, H.: High atmospheric oxidation
capacity drives wintertime nitrate pollution in the eastern Yangtze River
Delta of China, Atmos. Chem. Phys., 22, 4355–4374,
https://doi.org/10.5194/acp-22-4355-2022, 2022.
Zender, C. S., Bian, H., and Newman, D.: Mineral Dust Entrainment and
Deposition (DEAD) model: Description and 1990s dust climatology, J. Geophys.
Res., 108, 4416, https://doi.org/10.1029/2002JD002775, 2003.
Zhai, S., Jacob, D. J., Brewer, J. F., Li, K., Moch, J. M., Kim, J., Lee,
S., Lim, H., Lee, H. C., Kuk, S. K., Park, R. J., Jeong, J. I., Wang, X.,
Liu, P., Luo, G., Yu, F., Meng, J., Martin, R. V, Travis, K. R., Hair, J.
W., Anderson, B. E., Dibb, J. E., Jimenez, J. L., Campuzano-Jost, P., Nault,
B. A., Woo, J.-H., Kim, Y., Zhang, Q., and Liao, H.: Relating geostationary
satellite measurements of aerosol optical depth (AOD) over East Asia to fine
particulate matter (PM2.5): insights from the KORUS-AQ aircraft campaign and GEOS-Chem model
simulations, Atmos. Chem. Phys., 21, 16775–16791,
https://doi.org/10.5194/acp-21-16775-2021, 2021.
Zhang, L., Liu, L., Zhao, Y., Gong, S., Zhang, X., Henze, D. K., Capps, S.
L., Fu, T.-M., Zhang, Q., and Wang, Y.: Source attribution of particulate
matter pollution over North China with the adjoint method, Environ. Res.
Lett., 10, 84011, https://doi.org/10.1088/1748-9326/10/8/084011, 2015.
Zhang, Q., Jiang, X., Tong, D., Davis, S. J., Zhao, H., Geng, G., Feng, T.,
Zheng, B., Lu, Z., Streets, D. G., Ni, R., Brauer, M., Van Donkelaar, A.,
Martin, R. V., Huo, H., Liu, Z., Pan, D., Kan, H., Yan, Y., Lin, J., He, K., and Guan, D.: Transboundary health impacts of transported global air
pollution and international trade, Nature, 543, 705–709,
https://doi.org/10.1038/nature21712, 2017.
Zhang, Q., Zheng, Y., Tong, D., Shao, M., Wang, S., Zhang, Y., Xu, X., Wang,
J., He, H., Liu, W., Ding, Y., Lei, Y., Li, J., Wang, Z., Zhang, X., Wang,
Y., Cheng, J., Liu, Y., Shi, Q., Yan, L., Geng, G., Hong, C., Li, M., Liu,
F., Zheng, B., Cao, J., Ding, A., Gao, J., Fu, Q., Huo, J., Liu, B., Liu,
Z., Yang, F., He, K., and Hao, J.: Drivers of improved PM2.5 air quality in
China from 2013 to 2017, P. Natl. Acad. Sci. USA, 116, 24463–24469,
https://doi.org/10.1073/pnas.1907956116, 2019.
Zhang, Y.-L. and Cao, F.: Fine particulate matter (PM2.5) in China at a city
level, Sci. Rep., 5, 14884, https://doi.org/10.1038/srep14884, 2015.
Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X.,
Peng, L., Qi, J., Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K., and Zhang,
Q.: Trends in China's anthropogenic emissions since 2010 as the consequence
of clean air actions, Atmos. Chem. Phys., 18, 14095–14111,
https://doi.org/10.5194/acp-18-14095-2018, 2018.
Executive editor
This paper investigates the influence of internationally-transported pollution on China, with a specific highlight on the formation of secondary PM2.5 in the form of nitrate. While sources from within China have traditionally been of most interest for domestic air quality policy, these have diminished over recent years, so sources from outside China may become more significant. The topic of transboundary exchange of air pollution has long been studied in other parts of the world, in particular among CLRTAP signatory countries in North America and Europe, but East Asian transboundary pollution represents a different challenge, in part owing to differences in geography and emissions, but also compared to Europe in particular, the transportation scales are much larger. This work not only quantifies the impacts of long distance pollution on Chinese air quality, but also highlights the complex chemical interactions between the local and transboundary pollutants. Papers such as this will likely influence the debate regarding international controls of air pollutants.
This paper investigates the influence of internationally-transported pollution on China, with a...
Short summary
Research on the sources of Chinese PM2.5 pollution has focused on the contributions of China’s domestic emissions. However, the impact of foreign anthropogenic emissions has typically been simplified or neglected. Here we find that foreign anthropogenic emissions play an important role in Chinese PM2.5 pollution through chemical interactions between foreign-transported pollutants and China’s local emissions. Thus, foreign emission reductions are essential for improving Chinese air quality.
Research on the sources of Chinese PM2.5 pollution has focused on the contributions of China’s...
Altmetrics
Final-revised paper
Preprint