Articles | Volume 23, issue 1
https://doi.org/10.5194/acp-23-273-2023
https://doi.org/10.5194/acp-23-273-2023
Research article
 | 
09 Jan 2023
Research article |  | 09 Jan 2023

Impacts of an aerosol layer on a midlatitude continental system of cumulus clouds: how do these impacts depend on the vertical location of the aerosol layer?

Seoung Soo Lee, Junshik Um, Won Jun Choi, Kyung-Ja Ha, Chang Hoon Jung, Jianping Guo, and Youtong Zheng

Related authors

On the calculation of single-scattering properties of frozen droplets and frozen droplet aggregates observed in deep convective clouds
Jeonggyu Kim, Sungmin Park, Greg Michael McFarquhar, Anthony J. Baran, Joo Wan Cha, Kyoungmi Lee, Seoung Soo Lee, Chang Hoon Jung, Kyo-Sun Sunny Lim, and Junshik Um
EGUsphere, https://doi.org/10.5194/egusphere-2024-608,https://doi.org/10.5194/egusphere-2024-608, 2024
Short summary
Examination of varying mixed-phase stratocumulus clouds in terms of their properties, ice processes and aerosol-cloud interactions between polar and midlatitude cases: An attempt to propose a microphysical factor to explain the variation
Seoung Soo Lee, Chang-Hoon Jung, Young Jun Yoon, Junshik Um, Youtong Zheng, Jianping Guo, Manguttathil G. Manoj, and Sang-Keun Song
EGUsphere, https://doi.org/10.5194/egusphere-2023-862,https://doi.org/10.5194/egusphere-2023-862, 2023
Short summary
Examination of aerosol impacts on convective clouds and precipitation in two metropolitan areas in East Asia; how varying depths of convective clouds between the areas diversify those aerosol effects?
Seoung Soo Lee, Jinho Choi, Goun Kim, Kyung-Ja Ha, Kyong-Hwan Seo, Chang Hoon Jung, Junshik Um, Youtong Zheng, Jianping Guo, Sang-Keun Song, Yun Gon Lee, and Nobuyuki Utsumi
Atmos. Chem. Phys., 22, 9059–9081, https://doi.org/10.5194/acp-22-9059-2022,https://doi.org/10.5194/acp-22-9059-2022, 2022
Short summary
Midlatitude mixed-phase stratocumulus clouds and their interactions with aerosols: how ice processes affect microphysical, dynamic, and thermodynamic development in those clouds and interactions?
Seoung Soo Lee, Kyung-Ja Ha, Manguttathil Gopalakrishnan Manoj, Mohammad Kamruzzaman, Hyungjun Kim, Nobuyuki Utsumi, Youtong Zheng, Byung-Gon Kim, Chang Hoon Jung, Junshik Um, Jianping Guo, Kyoung Ock Choi, and Go-Un Kim
Atmos. Chem. Phys., 21, 16843–16868, https://doi.org/10.5194/acp-21-16843-2021,https://doi.org/10.5194/acp-21-16843-2021, 2021
Short summary
The mechanisms and seasonal differences of the impact of aerosols on daytime surface urban heat island effect
Wenchao Han, Zhanqing Li, Fang Wu, Yuwei Zhang, Jianping Guo, Tianning Su, Maureen Cribb, Jiwen Fan, Tianmeng Chen, Jing Wei, and Seoung-Soo Lee
Atmos. Chem. Phys., 20, 6479–6493, https://doi.org/10.5194/acp-20-6479-2020,https://doi.org/10.5194/acp-20-6479-2020, 2020
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Uncertainties in laboratory-measured shortwave refractive indices of mineral dust aerosols and derived optical properties: a theoretical assessment
Senyi Kong, Zheng Wang, and Lei Bi
Atmos. Chem. Phys., 24, 6911–6935, https://doi.org/10.5194/acp-24-6911-2024,https://doi.org/10.5194/acp-24-6911-2024, 2024
Short summary
Diagnosing uncertainties in global biomass burning emission inventories and their impact on modeled air pollutants
Wenxuan Hua, Sijia Lou, Xin Huang, Lian Xue, Ke Ding, Zilin Wang, and Aijun Ding
Atmos. Chem. Phys., 24, 6787–6807, https://doi.org/10.5194/acp-24-6787-2024,https://doi.org/10.5194/acp-24-6787-2024, 2024
Short summary
Role of atmospheric aerosols in severe winter fog over the Indo-Gangetic Plain of India: a case study
Chandrakala Bharali, Mary Barth, Rajesh Kumar, Sachin D. Ghude, Vinayak Sinha, and Baerbel Sinha
Atmos. Chem. Phys., 24, 6635–6662, https://doi.org/10.5194/acp-24-6635-2024,https://doi.org/10.5194/acp-24-6635-2024, 2024
Short summary
Long-term variability in black carbon emissions constrained by gap-filled absorption aerosol optical depth and associated premature mortality in China
Wenxin Zhao, Yu Zhao, Yu Zheng, Dong Chen, Jinyuan Xin, Kaitao Li, Huizheng Che, Zhengqiang Li, Mingrui Ma, and Yun Hang
Atmos. Chem. Phys., 24, 6593–6612, https://doi.org/10.5194/acp-24-6593-2024,https://doi.org/10.5194/acp-24-6593-2024, 2024
Short summary
Intercomparison of aerosol optical depths from four reanalyses and their multi-reanalysis consensus
Peng Xian, Jeffrey S. Reid, Melanie Ades, Angela Benedetti, Peter R. Colarco, Arlindo da Silva, Tom F. Eck, Johannes Flemming, Edward J. Hyer, Zak Kipling, Samuel Rémy, Tsuyoshi Thomas Sekiyama, Taichu Tanaka, Keiya Yumimoto, and Jianglong Zhang
Atmos. Chem. Phys., 24, 6385–6411, https://doi.org/10.5194/acp-24-6385-2024,https://doi.org/10.5194/acp-24-6385-2024, 2024
Short summary

Cited articles

Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227–1230, 1989. 
Brown, A., Milton, S., Cullen, M., Golding, B., Mitchell, J., and Shelly, A.: Unified modeling and prediction of weather and climate: A 25-year journey, B. Am Meteorol. Soc., 93, 1865–1877, 2012. 
Chaboureau, J.-P., Labbouz, L., Flamant, C., and Hodzic, A.: Acceleration of the southern African easterly jet driven by the radiative effect of biomass burning aerosols and its impact on transport during AEROCLO-sA, Atmos. Chem. Phys., 22, 8639–8658, https://doi.org/10.5194/acp-22-8639-2022, 2022. 
Che, H., Stier, P., Watson-Parris, D., Gordon, H., and Deaconu, L.: Source attribution of cloud condensation nuclei and their impact on stratocumulus clouds and radiation in the south-eastern Atlantic, Atmos. Chem. Phys., 22, 10789–10807, https://doi.org/10.5194/acp-22-10789-2022, 2022.  
Chen, F. and Dudhia, J.: Coupling an advanced land-surface hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model description and implementation, Mon. Weather Rev., 129, 569–585, 2001. 
Download
Short summary
This paper elaborates on process-level mechanisms regarding how the interception of radiation by aerosols interacts with the surface heat fluxes and atmospheric instability in warm cumulus clouds. This paper elucidates how these mechanisms vary with the location or altitude of an aerosol layer. This elucidation indicates that the location of aerosol layers should be taken into account for parameterizations of aerosol–cloud interactions.
Altmetrics
Final-revised paper
Preprint