Articles | Volume 23, issue 3
https://doi.org/10.5194/acp-23-2215-2023
https://doi.org/10.5194/acp-23-2215-2023
Research article
 | 
14 Feb 2023
Research article |  | 14 Feb 2023

The importance of acid-processed meteoric smoke relative to meteoric fragments for crystal nucleation in polar stratospheric clouds

Alexander D. James, Finn Pace, Sebastien N. F. Sikora, Graham W. Mann, John M. C. Plane, and Benjamin J. Murray

Related authors

Particle shapes and infrared extinction spectra of nitric acid dihydrate (NAD) crystals: optical constants of the β-NAD modification
Robert Wagner, Alexander D. James, Victoria L. Frankland, Ottmar Möhler, Benjamin J. Murray, John M. C. Plane, Harald Saathoff, Ralf Weigel, and Martin Schnaiter
Atmos. Chem. Phys., 23, 6789–6811, https://doi.org/10.5194/acp-23-6789-2023,https://doi.org/10.5194/acp-23-6789-2023, 2023
Short summary
Optical properties of meteoric smoke analogues
Tasha Aylett, James S. A. Brooke, Alexander D. James, Mario Nachbar, Denis Duft, Thomas Leisner, and John M. C. Plane
Atmos. Chem. Phys., 19, 12767–12777, https://doi.org/10.5194/acp-19-12767-2019,https://doi.org/10.5194/acp-19-12767-2019, 2019
Short summary
Nucleation of nitric acid hydrates in polar stratospheric clouds by meteoric material
Alexander D. James, James S. A. Brooke, Thomas P. Mangan, Thomas F. Whale, John M. C. Plane, and Benjamin J. Murray
Atmos. Chem. Phys., 18, 4519–4531, https://doi.org/10.5194/acp-18-4519-2018,https://doi.org/10.5194/acp-18-4519-2018, 2018
Short summary

Related subject area

Subject: Aerosols | Research Activity: Laboratory Studies | Altitude Range: Stratosphere | Science Focus: Chemistry (chemical composition and reactions)
Nucleation of nitric acid hydrates in polar stratospheric clouds by meteoric material
Alexander D. James, James S. A. Brooke, Thomas P. Mangan, Thomas F. Whale, John M. C. Plane, and Benjamin J. Murray
Atmos. Chem. Phys., 18, 4519–4531, https://doi.org/10.5194/acp-18-4519-2018,https://doi.org/10.5194/acp-18-4519-2018, 2018
Short summary
Heterogeneous reaction of HO2 with airborne TiO2 particles and its implication for climate change mitigation strategies
Daniel R. Moon, Giorgio S. Taverna, Clara Anduix-Canto, Trevor Ingham, Martyn P. Chipperfield, Paul W. Seakins, Maria-Teresa Baeza-Romero, and Dwayne E. Heard
Atmos. Chem. Phys., 18, 327–338, https://doi.org/10.5194/acp-18-327-2018,https://doi.org/10.5194/acp-18-327-2018, 2018
Short summary
Evaporation of sulfate aerosols at low relative humidity
Georgios Tsagkogeorgas, Pontus Roldin, Jonathan Duplissy, Linda Rondo, Jasmin Tröstl, Jay G. Slowik, Sebastian Ehrhart, Alessandro Franchin, Andreas Kürten, Antonio Amorim, Federico Bianchi, Jasper Kirkby, Tuukka Petäjä, Urs Baltensperger, Michael Boy, Joachim Curtius, Richard C. Flagan, Markku Kulmala, Neil M. Donahue, and Frank Stratmann
Atmos. Chem. Phys., 17, 8923–8938, https://doi.org/10.5194/acp-17-8923-2017,https://doi.org/10.5194/acp-17-8923-2017, 2017
Short summary
Heterogeneous kinetics of H2O, HNO3 and HCl on HNO3 hydrates (α-NAT, β-NAT, NAD) in the range 175–200 K
Riccardo Iannarelli and Michel J. Rossi
Atmos. Chem. Phys., 16, 11937–11960, https://doi.org/10.5194/acp-16-11937-2016,https://doi.org/10.5194/acp-16-11937-2016, 2016
Short summary
Complex chemical composition of colored surface films formed from reactions of propanal in sulfuric acid at upper troposphere/lower stratosphere aerosol acidities
A. L. Van Wyngarden, S. Pérez-Montaño, J. V. H. Bui, E. S. W. Li, T. E. Nelson, K. T. Ha, L. Leong, and L. T. Iraci
Atmos. Chem. Phys., 15, 4225–4239, https://doi.org/10.5194/acp-15-4225-2015,https://doi.org/10.5194/acp-15-4225-2015, 2015
Short summary

Cited articles

Adachi, K., Oshima, N., Takegawa, N., Moteki, N., and Koike, M.: Meteoritic materials within sulfate aerosol particles in the troposphere are detected with transmission electron microscopy, Comm. Earth & Env., 3, 134, https://doi.org/10.1038/s43247-022-00469-8, 2022. 
Bertram, A. K. and Sloan, J. J.: The nucleation rate constants and freezing mechanism of nitric acid trihydrate aerosol under stratospheric conditions, J. Geophys. Res.-Atmos., 103, 13261–13265, https://doi.org/10.1029/98JD00921, 1998. 
Biermann, U. M., Presper, T., Koop, T., Mößinger, J., Crutzen, P. J., and Peter, T.: The unsuitability of meteoritic and other nuclei for polar stratospheric cloud freezing, Geophys. Res. Lett., 23, 1693–1696, https://doi.org/10.1029/96GL01577, 1996. 
Bigg, K. E.: Sources of insoluble inclusions in stratospheric sulfate particles, Meteorit. Planet. Sci., 47, 799–805, https://doi.org/10.1111/j.1945-5100.2012.01346.x, 2012. 
Bogdan, A., Molina, M. J., Kulmala, M., MacKenzie, A. R., and Laaksonen, A.: Study of finely divided aqueous systems as an aid to understanding the formation mechanism of polar stratospheric clouds: Case of HNO3/ H2O and H2SO4/ H2O systems, J. Geophys. Res.-Atmos., 108, 4302, https://doi.org/10.1029/2002JD002605, 2003. 
Download
Short summary
Here, we examine whether several materials of meteoric origin can nucleate crystallisation in stratospheric cloud droplets which would affect ozone depletion. We find that material which could fragment on atmospheric entry without melting is unlikely to be present in high enough concentration in the stratosphere to contribute to observed crystalline clouds. Material which ablates completely then forms a new solid known as meteoric smoke can provide enough nucleation to explain observed clouds.
Altmetrics
Final-revised paper
Preprint