Articles | Volume 23, issue 21
https://doi.org/10.5194/acp-23-13853-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-13853-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Secondary aerosol formation during a special dust transport event: impacts from unusually enhanced ozone and dust backflows over the ocean
Da Lu
Center for Atmospheric Chemistry Study, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
Hao Li
Center for Atmospheric Chemistry Study, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
Mengke Tian
Center for Atmospheric Chemistry Study, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
Guochen Wang
Center for Atmospheric Chemistry Study, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
Xiaofei Qin
Center for Atmospheric Chemistry Study, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
Na Zhao
Center for Atmospheric Chemistry Study, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
Juntao Huo
State Ecologic Environmental Scientific Observation and Research Station for Dianshan Lake, Shanghai Environmental Monitoring Center, Shanghai, 200030, China
Fan Yang
Pudong New Area Environmental Monitoring Station, Shanghai, 200122, China
Yanfen Lin
State Ecologic Environmental Scientific Observation and Research Station for Dianshan Lake, Shanghai Environmental Monitoring Center, Shanghai, 200030, China
Jia Chen
State Ecologic Environmental Scientific Observation and Research Station for Dianshan Lake, Shanghai Environmental Monitoring Center, Shanghai, 200030, China
Qingyan Fu
State Ecologic Environmental Scientific Observation and Research Station for Dianshan Lake, Shanghai Environmental Monitoring Center, Shanghai, 200030, China
Yusen Duan
State Ecologic Environmental Scientific Observation and Research Station for Dianshan Lake, Shanghai Environmental Monitoring Center, Shanghai, 200030, China
Xinyi Dong
School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China
Congrui Deng
Center for Atmospheric Chemistry Study, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
Sabur F. Abdullaev
Physical Technical Institute of the Academy of Sciences of Tajikistan, Dushanbe, Tajikistan
Kan Huang
CORRESPONDING AUTHOR
Center for Atmospheric Chemistry Study, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
Institute of Eco-Chongming (IEC), Shanghai, 202162, China
Related authors
No articles found.
Guangyuan Yu, Yan Zhang, Qian Wang, Zimin Han, Shenglan Jiang, Fan Yang, Xin Yang, and Cheng Huang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3892, https://doi.org/10.5194/egusphere-2024-3892, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
China has carried out staged low-sulfur fuel policies since 2017. This study simulated the changing spatiotemporal patterns of the impacts of ship emissions on PM2.5 from 2017 to 2021 based on the updated emission inventories and mapping of chemical species in the CMAQ. Fuel policies caused evident relative changes in inorganic and organic components of the shipping-related PM2.5 over China’s port cities. The driving factors of the interannual, seasonal, and diurnal patterns were discussed.
Xin Xi, Jun Wang, Zhendong Lu, Andrew Sayer, Jaehwa Lee, Robert Levy, Yujie Wang, Alexei Lyapustin, Hongqing Liu, Istvan Laszlo, Changwoo Ahn, Omar Torres, Sabur Abdullaev, and Ralph Kahn
EGUsphere, https://doi.org/10.5194/egusphere-2024-3416, https://doi.org/10.5194/egusphere-2024-3416, 2024
Short summary
Short summary
Currently there are a number of satellite aerosol products available for dust research. The consistency between them is generally poor understood. This paper reveals significant inconsistency between different satellite sensors and techniques in observing the wind-blown saline dust from the Aralkum Desert, and demonstrates the potential of a multisensor approach for robust characterization of airborne dust over desert areas.
Wenxin Zhang, Yaman Liu, Man Yue, Xinyi Dong, and Minghuai Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3420, https://doi.org/10.5194/egusphere-2024-3420, 2024
Short summary
Short summary
Understanding long-term organic aerosols (OA) trends and their driving factors is important for air quality management. Our modeling revealed that OA in China increased by 5.6% from 1990 to 2019, primarily due to a 32.3% increase in secondary organic aerosols (SOA) and an 8.1% decrease in primary organic aerosols (POA), both largely driven by changes in anthropogenic emissions. Biogenic SOA increased due to warming but showed little response to changes in anthropogenic nitrogen oxide emissions.
Hanzheng Zhu, Yaman Liu, Man Yue, Shihui Feng, Pingqing Fu, Kan Huang, Xinyi Dong, and Minghuai Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2293, https://doi.org/10.5194/egusphere-2024-2293, 2024
Short summary
Short summary
Dust soluble iron deposition from East Asia plays an important role in the marine ecology of the Northwest Pacific. Using the developed model, our findings highlight a dual trend: a decrease in the overall deposition of soluble iron from dust, but an increase in the solubility of the iron itself due to the enhanced atmospheric processing. It underscores the critical roles of both dust emission and atmospheric processing in soluble iron deposition and marine ecology.
Xinyue Shao, Minghuai Wang, Xinyi Dong, Yaman Liu, Wenxiang Shen, Stephen R. Arnold, Leighton A. Regayre, Meinrat O. Andreae, Mira L. Pöhlker, Duseong S. Jo, Man Yue, and Ken S. Carslaw
Atmos. Chem. Phys., 24, 11365–11389, https://doi.org/10.5194/acp-24-11365-2024, https://doi.org/10.5194/acp-24-11365-2024, 2024
Short summary
Short summary
Highly oxygenated organic molecules (HOMs) play an important role in atmospheric new particle formation (NPF). By semi-explicitly coupling the chemical mechanism of HOMs and a comprehensive nucleation scheme in a global climate model, the updated model shows better agreement with measurements of nucleation rate, growth rate, and NPF event frequency. Our results reveal that HOM-driven NPF leads to a considerable increase in particle and cloud condensation nuclei burden globally.
Shuai Wang, Mengyuan Zhang, Hui Zhao, Peng Wang, Sri Harsha Kota, Qingyan Fu, Cong Liu, and Hongliang Zhang
Earth Syst. Sci. Data, 16, 3565–3577, https://doi.org/10.5194/essd-16-3565-2024, https://doi.org/10.5194/essd-16-3565-2024, 2024
Short summary
Short summary
Long-term, open-source, gap-free daily ground-level PM2.5 and PM10 datasets for India (LongPMInd) were reconstructed using a robust machine learning model to support health assessment and air quality management.
Zijun Zhang, Weiqi Xu, Yi Zhang, Wei Zhou, Xiangyu Xu, Aodong Du, Yinzhou Zhang, Hongqin Qiao, Ye Kuang, Xiaole Pan, Zifa Wang, Xueling Cheng, Lanzhong Liu, Qingyan Fu, Douglas R. Worsnop, Jie Li, and Yele Sun
Atmos. Chem. Phys., 24, 8473–8488, https://doi.org/10.5194/acp-24-8473-2024, https://doi.org/10.5194/acp-24-8473-2024, 2024
Short summary
Short summary
We investigated aerosol composition and sources and the interaction between secondary organic aerosol (SOA) and clouds at a regional mountain site in southeastern China. Clouds efficiently scavenge more oxidized SOA; however, cloud evaporation leads to the production of less oxidized SOA. The unexpectedly high presence of nitrate in aerosol particles indicates that nitrate formed in polluted areas has undergone interactions with clouds, significantly influencing the regional background site.
Shuai Wang, Mengyuan Zhang, Yueqi Gao, Peng Wang, Qingyan Fu, and Hongliang Zhang
Geosci. Model Dev., 17, 3617–3629, https://doi.org/10.5194/gmd-17-3617-2024, https://doi.org/10.5194/gmd-17-3617-2024, 2024
Short summary
Short summary
Numerical models are widely used in air pollution modeling but suffer from significant biases. The machine learning model designed in this study shows high efficiency in identifying such biases. Meteorology (relative humidity and cloud cover), chemical composition (secondary organic components and dust aerosols), and emission sources (residential activities) are diagnosed as the main drivers of bias in modeling PM2.5, a typical air pollutant. The results will help to improve numerical models.
Victoria A. Flood, Kimberly Strong, Cynthia H. Whaley, Kaley A. Walker, Thomas Blumenstock, James W. Hannigan, Johan Mellqvist, Justus Notholt, Mathias Palm, Amelie N. Röhling, Stephen Arnold, Stephen Beagley, Rong-You Chien, Jesper Christensen, Makoto Deushi, Srdjan Dobricic, Xinyi Dong, Joshua S. Fu, Michael Gauss, Wanmin Gong, Joakim Langner, Kathy S. Law, Louis Marelle, Tatsuo Onishi, Naga Oshima, David A. Plummer, Luca Pozzoli, Jean-Christophe Raut, Manu A. Thomas, Svetlana Tsyro, and Steven Turnock
Atmos. Chem. Phys., 24, 1079–1118, https://doi.org/10.5194/acp-24-1079-2024, https://doi.org/10.5194/acp-24-1079-2024, 2024
Short summary
Short summary
It is important to understand the composition of the Arctic atmosphere and how it is changing. Atmospheric models provide simulations that can inform policy. This study examines simulations of CH4, CO, and O3 by 11 models. Model performance is assessed by comparing results matched in space and time to measurements from five high-latitude ground-based infrared spectrometers. This work finds that models generally underpredict the concentrations of these gases in the Arctic troposphere.
Qiongqiong Wang, Shuhui Zhu, Shan Wang, Cheng Huang, Yusen Duan, and Jian Zhen Yu
Atmos. Chem. Phys., 24, 475–486, https://doi.org/10.5194/acp-24-475-2024, https://doi.org/10.5194/acp-24-475-2024, 2024
Short summary
Short summary
We investigated short-term source apportionment of PM2.5 utilizing rolling positive matrix factorization (PMF) and online PM chemical speciation data, which included source-specific organic tracers collected over a period of 37 d during the winter of 2019–2020 in suburban Shanghai, China. The findings highlight that by imposing constraints on the primary source profiles, short-term PMF analysis successfully replicated both the individual primary sources and the total secondary sources.
Song Gao, Yong Yang, Xiao Tong, Linyuan Zhang, Yusen Duan, Guigang Tang, Qiang Wang, Changqing Lin, Qingyan Fu, Lipeng Liu, and Lingning Meng
Atmos. Meas. Tech., 16, 5709–5723, https://doi.org/10.5194/amt-16-5709-2023, https://doi.org/10.5194/amt-16-5709-2023, 2023
Short summary
Short summary
We optimized and conducted an experimental program for the real-time monitoring of non-methane hydrocarbon instruments using the direct method. Changing the enrichment and specially designed columns further improved the test effect. The results correct the measurement errors that have prevailed for many years and can lay a foundation for the evaluation of volatile organic compounds in the regional ambient air and provide direction for the measurement of low-concentration ambient air pollutants.
Meng Wang, Yusen Duan, Zhuozhi Zhang, Qi Yuan, Xinwei Li, Shuwen Han, Juntao Huo, Jia Chen, Yanfen Lin, Qingyan Fu, Tao Wang, Junji Cao, and Shun-cheng Lee
Atmos. Chem. Phys., 23, 10313–10324, https://doi.org/10.5194/acp-23-10313-2023, https://doi.org/10.5194/acp-23-10313-2023, 2023
Short summary
Short summary
Hourly elemental carbon (EC) and NOx were continuously measured for 5 years (2016–2020) at a sampling site near a highway in western Shanghai. We use a machine learning model to rebuild the measured EC and NOx, and a business-as-usual (BAU) scenario was assumed in 2020 and compared with the measured EC and NOx.
Hannah J. Rubin, Joshua S. Fu, Frank Dentener, Rui Li, Kan Huang, and Hongbo Fu
Atmos. Chem. Phys., 23, 7091–7102, https://doi.org/10.5194/acp-23-7091-2023, https://doi.org/10.5194/acp-23-7091-2023, 2023
Short summary
Short summary
We update the 2010 global deposition budget for nitrogen (N) and sulfur (S) with new regional wet deposition measurements, improving the ensemble results of 11 global chemistry transport models from HTAP II. Our study demonstrates that a global measurement–model fusion approach can substantially improve N and S deposition model estimates at a regional scale and represents a step forward toward the WMO goal of global fusion products for accurately mapping harmful air pollution.
Athena Augusta Floutsi, Holger Baars, Ronny Engelmann, Dietrich Althausen, Albert Ansmann, Stephanie Bohlmann, Birgit Heese, Julian Hofer, Thomas Kanitz, Moritz Haarig, Kevin Ohneiser, Martin Radenz, Patric Seifert, Annett Skupin, Zhenping Yin, Sabur F. Abdullaev, Mika Komppula, Maria Filioglou, Elina Giannakaki, Iwona S. Stachlewska, Lucja Janicka, Daniele Bortoli, Eleni Marinou, Vassilis Amiridis, Anna Gialitaki, Rodanthi-Elisavet Mamouri, Boris Barja, and Ulla Wandinger
Atmos. Meas. Tech., 16, 2353–2379, https://doi.org/10.5194/amt-16-2353-2023, https://doi.org/10.5194/amt-16-2353-2023, 2023
Short summary
Short summary
DeLiAn is a collection of lidar-derived aerosol intensive optical properties for several aerosol types, namely the particle linear depolarization ratio, the extinction-to-backscatter ratio (lidar ratio) and the Ångström exponent. The data collection is based on globally distributed, long-term, ground-based, multiwavelength, Raman and polarization lidar measurements and currently covers two wavelengths, 355 and 532 nm, for 13 aerosol categories ranging from basic aerosol types to mixtures.
Yizhen Wu, Juntao Huo, Gan Yang, Yuwei Wang, Lihong Wang, Shijian Wu, Lei Yao, Qingyan Fu, and Lin Wang
Atmos. Chem. Phys., 23, 2997–3014, https://doi.org/10.5194/acp-23-2997-2023, https://doi.org/10.5194/acp-23-2997-2023, 2023
Short summary
Short summary
Based on a field campaign in a suburban area of Shanghai during summer 2021, we calculated formaldehyde (HCHO) production rates from 24 volatile organic compounds (VOCs). In addition, HCHO photolysis, reactions with OH radicals, and dry deposition were considered for the estimation of HCHO loss rates. Our results reveal the key precursors of HCHO and suggest that HCHO wet deposition may be an important loss term on cloudy and rainy days, which needs to be further investigated.
Yu Han, Tao Wang, Rui Li, Hongbo Fu, Yusen Duan, Song Gao, Liwu Zhang, and Jianmin Chen
Atmos. Chem. Phys., 23, 2877–2900, https://doi.org/10.5194/acp-23-2877-2023, https://doi.org/10.5194/acp-23-2877-2023, 2023
Short summary
Short summary
Limited knowledge is available on volatile organic compound (VOC) multi-site research of different land-use types at city level. This study performed a concurrent multi-site observation campaign on the three typical land-use types of Shanghai, East China. The results showed that concentrations, sources and ozone and secondary organic aerosol formation potentials of VOCs varied with the land-use types.
Changqin Yin, Jianming Xu, Wei Gao, Liang Pan, Yixuan Gu, Qingyan Fu, and Fan Yang
Atmos. Chem. Phys., 23, 1329–1343, https://doi.org/10.5194/acp-23-1329-2023, https://doi.org/10.5194/acp-23-1329-2023, 2023
Short summary
Short summary
The particle matter (PM2.5) at the top of the 632 m high Shanghai Tower was found to be higher than the surface from June to October due to unexpected larger PM2.5 levels during early to middle afternoon at Shanghai Tower. We suppose the significant chemical production of secondary species existed in the mid-upper planetary boundary layer. We found a high nitrate concentration at the tower site for both daytime and nighttime in winter, implying efficient gas-phase and heterogeneous formation.
Cynthia H. Whaley, Kathy S. Law, Jens Liengaard Hjorth, Henrik Skov, Stephen R. Arnold, Joakim Langner, Jakob Boyd Pernov, Garance Bergeron, Ilann Bourgeois, Jesper H. Christensen, Rong-You Chien, Makoto Deushi, Xinyi Dong, Peter Effertz, Gregory Faluvegi, Mark Flanner, Joshua S. Fu, Michael Gauss, Greg Huey, Ulas Im, Rigel Kivi, Louis Marelle, Tatsuo Onishi, Naga Oshima, Irina Petropavlovskikh, Jeff Peischl, David A. Plummer, Luca Pozzoli, Jean-Christophe Raut, Tom Ryerson, Ragnhild Skeie, Sverre Solberg, Manu A. Thomas, Chelsea Thompson, Kostas Tsigaridis, Svetlana Tsyro, Steven T. Turnock, Knut von Salzen, and David W. Tarasick
Atmos. Chem. Phys., 23, 637–661, https://doi.org/10.5194/acp-23-637-2023, https://doi.org/10.5194/acp-23-637-2023, 2023
Short summary
Short summary
This study summarizes recent research on ozone in the Arctic, a sensitive and rapidly warming region. We find that the seasonal cycles of near-surface atmospheric ozone are variable depending on whether they are near the coast, inland, or at high altitude. Several global model simulations were evaluated, and we found that because models lack some of the ozone chemistry that is important for the coastal Arctic locations, they do not accurately simulate ozone there.
Xiaofei Qin, Shengqian Zhou, Hao Li, Guochen Wang, Cheng Chen, Chengfeng Liu, Xiaohao Wang, Juntao Huo, Yanfen Lin, Jia Chen, Qingyan Fu, Yusen Duan, Kan Huang, and Congrui Deng
Atmos. Chem. Phys., 22, 15851–15865, https://doi.org/10.5194/acp-22-15851-2022, https://doi.org/10.5194/acp-22-15851-2022, 2022
Short summary
Short summary
Using artificial neural network modeling and an explainable analysis approach, natural surface emissions (NSEs) were identified as a main driver of gaseous elemental mercury (GEM) variations during the COVID-19 lockdown. A sharp drop in GEM concentrations due to a significant reduction in anthropogenic emissions may disrupt the surface–air exchange balance of Hg, leading to increases in NSEs. This implies that NSEs may pose challenges to the future control of Hg pollution.
Meng Wang, Yusen Duan, Wei Xu, Qiyuan Wang, Zhuozhi Zhang, Qi Yuan, Xinwei Li, Shuwen Han, Haijie Tong, Juntao Huo, Jia Chen, Shan Gao, Zhongbiao Wu, Long Cui, Yu Huang, Guangli Xiu, Junji Cao, Qingyan Fu, and Shun-cheng Lee
Atmos. Chem. Phys., 22, 12789–12802, https://doi.org/10.5194/acp-22-12789-2022, https://doi.org/10.5194/acp-22-12789-2022, 2022
Short summary
Short summary
In this study, we report the long-term measurement of organic carbon (OC) and elementary carbon (EC) in PM2.5 with hourly time resolution conducted at a regional site in Shanghai from 2016 to 2020. The results from this study provide critical information about the long-term trend of carbonaceous aerosol, in particular secondary OC, in one of the largest megacities in the world and are helpful for developing pollution control measures from a long-term planning perspective.
Xiaoxi Zhao, Kan Huang, Joshua S. Fu, and Sabur F. Abdullaev
Atmos. Chem. Phys., 22, 10389–10407, https://doi.org/10.5194/acp-22-10389-2022, https://doi.org/10.5194/acp-22-10389-2022, 2022
Short summary
Short summary
Long-range transport of Asian dust to the Arctic was considered an important source of Arctic air pollution. Different transport routes to the Arctic had divergent effects on the evolution of aerosol properties. Depositions of long-range-transported dust particles can reduce the Arctic surface albedo considerably. This study implied that the ubiquitous long-transport dust from China exerted considerable aerosol indirect effects on the Arctic and may have potential biogeochemical significance.
Cynthia H. Whaley, Rashed Mahmood, Knut von Salzen, Barbara Winter, Sabine Eckhardt, Stephen Arnold, Stephen Beagley, Silvia Becagli, Rong-You Chien, Jesper Christensen, Sujay Manish Damani, Xinyi Dong, Konstantinos Eleftheriadis, Nikolaos Evangeliou, Gregory Faluvegi, Mark Flanner, Joshua S. Fu, Michael Gauss, Fabio Giardi, Wanmin Gong, Jens Liengaard Hjorth, Lin Huang, Ulas Im, Yugo Kanaya, Srinath Krishnan, Zbigniew Klimont, Thomas Kühn, Joakim Langner, Kathy S. Law, Louis Marelle, Andreas Massling, Dirk Olivié, Tatsuo Onishi, Naga Oshima, Yiran Peng, David A. Plummer, Olga Popovicheva, Luca Pozzoli, Jean-Christophe Raut, Maria Sand, Laura N. Saunders, Julia Schmale, Sangeeta Sharma, Ragnhild Bieltvedt Skeie, Henrik Skov, Fumikazu Taketani, Manu A. Thomas, Rita Traversi, Kostas Tsigaridis, Svetlana Tsyro, Steven Turnock, Vito Vitale, Kaley A. Walker, Minqi Wang, Duncan Watson-Parris, and Tahya Weiss-Gibbons
Atmos. Chem. Phys., 22, 5775–5828, https://doi.org/10.5194/acp-22-5775-2022, https://doi.org/10.5194/acp-22-5775-2022, 2022
Short summary
Short summary
Air pollutants, like ozone and soot, play a role in both global warming and air quality. Atmospheric models are often used to provide information to policy makers about current and future conditions under different emissions scenarios. In order to have confidence in those simulations, in this study we compare simulated air pollution from 18 state-of-the-art atmospheric models to measured air pollution in order to assess how well the models perform.
Han Zang, Yue Zhao, Juntao Huo, Qianbiao Zhao, Qingyan Fu, Yusen Duan, Jingyuan Shao, Cheng Huang, Jingyu An, Likun Xue, Ziyue Li, Chenxi Li, and Huayun Xiao
Atmos. Chem. Phys., 22, 4355–4374, https://doi.org/10.5194/acp-22-4355-2022, https://doi.org/10.5194/acp-22-4355-2022, 2022
Short summary
Short summary
Particulate nitrate plays an important role in wintertime haze pollution in eastern China, yet quantitative constraints on detailed nitrate formation mechanisms remain limited. Here we quantified the contributions of the heterogeneous N2O5 hydrolysis (66 %) and gas-phase OH + NO2 reaction (32 %) to nitrate formation in this region and identified the atmospheric oxidation capacity (i.e., availability of O3 and OH radicals) as the driving factor of nitrate formation from both processes.
Syuichi Itahashi, Baozhu Ge, Keiichi Sato, Zhe Wang, Junichi Kurokawa, Jiani Tan, Kan Huang, Joshua S. Fu, Xuemei Wang, Kazuyo Yamaji, Tatsuya Nagashima, Jie Li, Mizuo Kajino, Gregory R. Carmichael, and Zifa Wang
Atmos. Chem. Phys., 21, 8709–8734, https://doi.org/10.5194/acp-21-8709-2021, https://doi.org/10.5194/acp-21-8709-2021, 2021
Short summary
Short summary
This study presents the detailed analysis of acid deposition over southeast Asia based on the Model Inter-Comparison Study for Asia (MICS-Asia) phase III. Simulated wet deposition is evaluated with observation data from the Acid Deposition Monitoring Network in East Asia (EANET). The difficulties of models to capture observations are related to the model performance on precipitation. The precipitation-adjusted approach was applied, and the distribution of wet deposition was successfully revised.
Na Zhao, Xinyi Dong, Kan Huang, Joshua S. Fu, Marianne Tronstad Lund, Kengo Sudo, Daven Henze, Tom Kucsera, Yun Fat Lam, Mian Chin, and Simone Tilmes
Atmos. Chem. Phys., 21, 8637–8654, https://doi.org/10.5194/acp-21-8637-2021, https://doi.org/10.5194/acp-21-8637-2021, 2021
Short summary
Short summary
Black carbon acts as a strong climate forcer, especially in vulnerable pristine regions such as the Arctic. This work utilizes ensemble modeling results from the task force Hemispheric Transport of Air Pollution Phase 2 to investigate the responses of Arctic black carbon and surface temperature to various source emission reductions. East Asia contributed the most to Arctic black carbon. The response of Arctic temperature to black carbon was substantially more sensitive than the global average.
Yaman Liu, Xinyi Dong, Minghuai Wang, Louisa K. Emmons, Yawen Liu, Yuan Liang, Xiao Li, and Manish Shrivastava
Atmos. Chem. Phys., 21, 8003–8021, https://doi.org/10.5194/acp-21-8003-2021, https://doi.org/10.5194/acp-21-8003-2021, 2021
Short summary
Short summary
Secondary organic aerosol (SOA) is considered one of the most important uncertainties in climate modeling. We evaluate SOA performance in the Community Earth System Model version 2.1 (CESM2.1) configured with the Community Atmosphere Model version 6 with chemistry (CAM6-Chem) through a long-term simulation (1988–2019) with observations in the United States, which indicates monoterpene-formed SOA contributes most to the overestimation of SOA at the surface and underestimation in the upper air.
Xinyi Dong, Man Yue, Yujun Jiang, Xiao-Ming Hu, Qianli Ma, Jingjiao Pu, and Guangqiang Zhou
Atmos. Chem. Phys., 21, 7217–7233, https://doi.org/10.5194/acp-21-7217-2021, https://doi.org/10.5194/acp-21-7217-2021, 2021
Short summary
Short summary
The dynamics of CO2 has received considerable attention in the literature, yet uncertainties remain. We applied an online coupled weather-biosphere model to simulate biosphere processes and meteorology simultaneously to characterize CO2 dynamics in China. Anthropogenic emission was more influential in upper air, and the biosphere flux played a more important role in surface CO2, suggesting a significant influence of the boundary layer thermal structure on the accumulation and depletion of CO2.
Kun Zhang, Ling Huang, Qing Li, Juntao Huo, Yusen Duan, Yuhang Wang, Elly Yaluk, Yangjun Wang, Qingyan Fu, and Li Li
Atmos. Chem. Phys., 21, 5905–5917, https://doi.org/10.5194/acp-21-5905-2021, https://doi.org/10.5194/acp-21-5905-2021, 2021
Short summary
Short summary
Recently, high O3 concentrations were frequently observed in rural areas of the Yangtze River Delta (YRD) region under stagnant conditions. Using an online measurement and observation-based model, we investigated the budget of ROx radicals and the influence of isoprene chemistry on O3 formation. Our results underline that isoprene chemistry in the rural atmosphere becomes important with the participation of anthropogenic NOx.
Rui Li, Qiongqiong Wang, Xiao He, Shuhui Zhu, Kun Zhang, Yusen Duan, Qingyan Fu, Liping Qiao, Yangjun Wang, Ling Huang, Li Li, and Jian Zhen Yu
Atmos. Chem. Phys., 20, 12047–12061, https://doi.org/10.5194/acp-20-12047-2020, https://doi.org/10.5194/acp-20-12047-2020, 2020
Xiaofei Qin, Leiming Zhang, Guochen Wang, Xiaohao Wang, Qingyan Fu, Jian Xu, Hao Li, Jia Chen, Qianbiao Zhao, Yanfen Lin, Juntao Huo, Fengwen Wang, Kan Huang, and Congrui Deng
Atmos. Chem. Phys., 20, 10985–10996, https://doi.org/10.5194/acp-20-10985-2020, https://doi.org/10.5194/acp-20-10985-2020, 2020
Short summary
Short summary
The uncertainties in mercury emissions are much larger from natural sources than anthropogenic sources. A method was developed to quantify the contributions of natural surface emissions to ambient GEM based on PMF modeling. The annual GEM concentration in eastern China showed a decreasing trend from 2015 to 2018, while the relative contribution of natural surface emissions increased significantly from 41 % in 2015 to 57 % in 2018, gradually surpassing those from anthropogenic sources.
Julian Hofer, Albert Ansmann, Dietrich Althausen, Ronny Engelmann, Holger Baars, Khanneh Wadinga Fomba, Ulla Wandinger, Sabur F. Abdullaev, and Abduvosit N. Makhmudov
Atmos. Chem. Phys., 20, 9265–9280, https://doi.org/10.5194/acp-20-9265-2020, https://doi.org/10.5194/acp-20-9265-2020, 2020
Short summary
Short summary
For the first time, a dense data set of particle extinction-to-backscatter ratios (lidar ratios), depolarization ratios, and backscatter- and extinction-related Ångström exponents for a Central Asian site are presented. The observations were performed with a continuously running multiwavelength polarization Raman lidar at Dushanbe, Tajikistan, during an 18-month campaign. The found optical properties reflect the large range of occurring aerosol mixtures.
Jiani Tan, Joshua S. Fu, Gregory R. Carmichael, Syuichi Itahashi, Zhining Tao, Kan Huang, Xinyi Dong, Kazuyo Yamaji, Tatsuya Nagashima, Xuemei Wang, Yiming Liu, Hyo-Jung Lee, Chuan-Yao Lin, Baozhu Ge, Mizuo Kajino, Jia Zhu, Meigen Zhang, Hong Liao, and Zifa Wang
Atmos. Chem. Phys., 20, 7393–7410, https://doi.org/10.5194/acp-20-7393-2020, https://doi.org/10.5194/acp-20-7393-2020, 2020
Short summary
Short summary
This study evaluated the performance of 12 chemical transport models from MICS-Asia III for predicting the particulate matter (PM) over East Asia. Four model processes were investigated as the possible reasons for model bias with measurements and the factors causing inconsistent predictions of PM from different models: (1) model inputs, (2) gas–particle conversion, (3) dust emission modules and (4) removal mechanisms (wet and dry depositions). The influence of each process was discussed.
Jian Xu, Jia Chen, Na Zhao, Guochen Wang, Guangyuan Yu, Hao Li, Juntao Huo, Yanfen Lin, Qingyan Fu, Hongyu Guo, Congrui Deng, Shan-Hu Lee, Jianmin Chen, and Kan Huang
Atmos. Chem. Phys., 20, 7259–7269, https://doi.org/10.5194/acp-20-7259-2020, https://doi.org/10.5194/acp-20-7259-2020, 2020
Short summary
Short summary
This study provided evidence that gas-particle partitioning of ammonia, as opposed to ammonia concentration, plays a critical role in the haze formation. A reduction in ammonia emissions alone may not reduce air pollution effectively, at least at rural agricultural sites in China.
Julian Hofer, Albert Ansmann, Dietrich Althausen, Ronny Engelmann, Holger Baars, Sabur F. Abdullaev, and Abduvosit N. Makhmudov
Atmos. Chem. Phys., 20, 4695–4711, https://doi.org/10.5194/acp-20-4695-2020, https://doi.org/10.5194/acp-20-4695-2020, 2020
Short summary
Short summary
For the first time, continuous, vertically resolved long-term aerosol measurements were conducted with a state-of-the-art multiwavelength lidar over a Central Asian site. Such observations are urgently required in efforts to predict future climate and environmental conditions and to support spaceborne remote sensing (ground truth activities).
Meng Gao, Zhiwei Han, Zhining Tao, Jiawei Li, Jeong-Eon Kang, Kan Huang, Xinyi Dong, Bingliang Zhuang, Shu Li, Baozhu Ge, Qizhong Wu, Hyo-Jung Lee, Cheol-Hee Kim, Joshua S. Fu, Tijian Wang, Mian Chin, Meng Li, Jung-Hun Woo, Qiang Zhang, Yafang Cheng, Zifa Wang, and Gregory R. Carmichael
Atmos. Chem. Phys., 20, 1147–1161, https://doi.org/10.5194/acp-20-1147-2020, https://doi.org/10.5194/acp-20-1147-2020, 2020
Short summary
Short summary
Topic 3 of the Model Inter-Comparison Study for Asia (MICS-Asia) Phase III examines how online coupled air quality models perform in simulating high aerosol pollution in the North China Plain region during wintertime haze events and evaluates the importance of aerosol radiative feedbacks. This paper discusses the estimates of aerosol radiative forcing, aerosol feedbacks, and possible causes for the differences among the models.
Emmanouil Proestakis, Vassilis Amiridis, Eleni Marinou, Ioannis Binietoglou, Albert Ansmann, Ulla Wandinger, Julian Hofer, John Yorks, Edward Nowottnick, Abduvosit Makhmudov, Alexandros Papayannis, Aleksander Pietruczuk, Anna Gialitaki, Arnoud Apituley, Artur Szkop, Constantino Muñoz Porcar, Daniele Bortoli, Davide Dionisi, Dietrich Althausen, Dimitra Mamali, Dimitris Balis, Doina Nicolae, Eleni Tetoni, Gian Luigi Liberti, Holger Baars, Ina Mattis, Iwona Sylwia Stachlewska, Kalliopi Artemis Voudouri, Lucia Mona, Maria Mylonaki, Maria Rita Perrone, Maria João Costa, Michael Sicard, Nikolaos Papagiannopoulos, Nikolaos Siomos, Pasquale Burlizzi, Rebecca Pauly, Ronny Engelmann, Sabur Abdullaev, and Gelsomina Pappalardo
Atmos. Chem. Phys., 19, 11743–11764, https://doi.org/10.5194/acp-19-11743-2019, https://doi.org/10.5194/acp-19-11743-2019, 2019
Short summary
Short summary
To increase accuracy and validate satellite-based products, comparison with ground-based reference observations is required. To do this, we present evaluation activity of EARLINET for the qualitative and quantitative assessment of NASA's CATS lidar operating aboard the International Space Station (ISS) while identified discrepancies are discussed. Better understanding CATS performance and limitations provides a valuable basis for scientific studies implementing the satellite-based lidar system.
Albert Ansmann, Rodanthi-Elisavet Mamouri, Julian Hofer, Holger Baars, Dietrich Althausen, and Sabur F. Abdullaev
Atmos. Meas. Tech., 12, 4849–4865, https://doi.org/10.5194/amt-12-4849-2019, https://doi.org/10.5194/amt-12-4849-2019, 2019
Rui Li, Lulu Cui, Yilong Zhao, Ziyu Zhang, Tianming Sun, Junlin Li, Wenhui Zhou, Ya Meng, Kan Huang, and Hongbo Fu
Atmos. Chem. Phys., 19, 11043–11070, https://doi.org/10.5194/acp-19-11043-2019, https://doi.org/10.5194/acp-19-11043-2019, 2019
Short summary
Short summary
Acid deposition is still an important environmental issue in China. Rainwater samples in 320 cities in China were collected to determine the acidic ion concentrations and identify their spatiotemporal variations and sources. The higher acidic ions showed higher concentrations in winter. Furthermore, the highest acidic ion concentrations were mainly distributed in YRD and SB. These acidic ions were mainly sourced from industrial emissions and agricultural activities.
Shengqian Zhou, Haowen Li, Tianjiao Yang, Ying Chen, Congrui Deng, Yahui Gao, Changping Chen, and Jian Xu
Atmos. Chem. Phys., 19, 10447–10467, https://doi.org/10.5194/acp-19-10447-2019, https://doi.org/10.5194/acp-19-10447-2019, 2019
Short summary
Short summary
An integrated observation on aerosol aminiums over a coastal city in eastern China, a nearby island and the surrounding marginal seas was conducted. Aminium concentrations exhibited significant spatiotemporal variation, which is dependent on their sources and environmental factors, including boundary layer height, temperature, atmospheric oxidizing capacity and relative humidity. The contributions of terrestrial and marine sources to aminiums over coastal areas were quantitatively calculated.
Jianming Xu, Xuexi Tie, Wei Gao, Yanfen Lin, and Qingyan Fu
Atmos. Chem. Phys., 19, 9017–9035, https://doi.org/10.5194/acp-19-9017-2019, https://doi.org/10.5194/acp-19-9017-2019, 2019
Short summary
Short summary
The PM2.5 in China has decreased significantly in recent years as a result of the implementation of the Chinese Clean Air Action Plan in 2013, while the O3 pollution is getting worse, especially in megacities. The work aims to better understand the elevated O3 pollution in the megacity of Shanghai, China, and its response to emission changes, which is important for developing an effective emission control strategy in the future.
Xinning Wang, Yin Shen, Yanfen Lin, Jun Pan, Yan Zhang, Peter K. K. Louie, Mei Li, and Qingyan Fu
Atmos. Chem. Phys., 19, 6315–6330, https://doi.org/10.5194/acp-19-6315-2019, https://doi.org/10.5194/acp-19-6315-2019, 2019
Short summary
Short summary
Shipping emissions were measured online at Shanghai Port, and their impacts on local air quality at the port and in the surrounding area were quantitatively assessed. Ship emission plumes were readily detectable before they dissipated. We captured ship emission plumes using synchronized peaks of SO2 and vanadium particles. By measuring the pollutant concentrations during plumes and their occurrence frequency, we made quantitative estimations of ship emission impacts on port air quality.
Junlan Feng, Yan Zhang, Shanshan Li, Jingbo Mao, Allison P. Patton, Yuyan Zhou, Weichun Ma, Cong Liu, Haidong Kan, Cheng Huang, Jingyu An, Li Li, Yin Shen, Qingyan Fu, Xinning Wang, Juan Liu, Shuxiao Wang, Dian Ding, Jie Cheng, Wangqi Ge, Hong Zhu, and Katherine Walker
Atmos. Chem. Phys., 19, 6167–6183, https://doi.org/10.5194/acp-19-6167-2019, https://doi.org/10.5194/acp-19-6167-2019, 2019
Short summary
Short summary
This study aims to estimate the emissions, air quality and population exposure impacts of shipping in 2015, prior to the implementation of the DECAs. It shows that ship emissions within 12 NM of the shore could account for over 55 % of the shipping impact on air pollution in the YRD in summer. Ships entering the Yangtze River and other inland waterways of Shanghai contribute 40–80 % of the ship-related air pollution and population exposure,which both have important implications regarding policy.
Xiaofei Qin, Xiaohao Wang, Yijie Shi, Guangyuan Yu, Na Zhao, Yanfen Lin, Qingyan Fu, Dongfang Wang, Zhouqing Xie, Congrui Deng, and Kan Huang
Atmos. Chem. Phys., 19, 5923–5940, https://doi.org/10.5194/acp-19-5923-2019, https://doi.org/10.5194/acp-19-5923-2019, 2019
Short summary
Short summary
The seasonal pattern of atmospheric mercury species over a regional transport intersection zone in east China indicated impacts from both natural re-emissions and anthropogenic emissions. Quasi-local sources were more important than long-range transport for mercury, opposite from particles. Shipping activities were especially outstanding emissions. Abnormally high GOM was ascribed to the high oxidant levels. The gas–particle partition inhibited the formation of GOM under high particle levels.
Zhaofeng Tan, Keding Lu, Meiqing Jiang, Rong Su, Hongli Wang, Shengrong Lou, Qingyan Fu, Chongzhi Zhai, Qinwen Tan, Dingli Yue, Duohong Chen, Zhanshan Wang, Shaodong Xie, Limin Zeng, and Yuanhang Zhang
Atmos. Chem. Phys., 19, 3493–3513, https://doi.org/10.5194/acp-19-3493-2019, https://doi.org/10.5194/acp-19-3493-2019, 2019
Short summary
Short summary
We evaluated the atmospheric oxidation capacity (AOC) in four Chinese megacities during photochemically polluted seasons. The chemical production of ozone and particle nitrate was diagnosed through a box model, which can be attributed to daytime radical chemistry. Our work highlights that the formation of both ozone and fine particles is largely driven by the atmospheric radical chemistry in China. Consequently, we suggest future pollution mitigation strategies should consider the role of AOC.
Xinyi Dong, Joshua S. Fu, Qingzhao Zhu, Jian Sun, Jiani Tan, Terry Keating, Takashi Sekiya, Kengo Sudo, Louisa Emmons, Simone Tilmes, Jan Eiof Jonson, Michael Schulz, Huisheng Bian, Mian Chin, Yanko Davila, Daven Henze, Toshihiko Takemura, Anna Maria Katarina Benedictow, and Kan Huang
Atmos. Chem. Phys., 18, 15581–15600, https://doi.org/10.5194/acp-18-15581-2018, https://doi.org/10.5194/acp-18-15581-2018, 2018
Short summary
Short summary
We have applied the HTAP phase II multi-model data to investigate the long-range transport impacts on surface concentration and column density of PM from Europe and Russia, Belarus, and Ukraine to eastern Asia, with a special focus on the long-range transport contribution during haze episodes in China. We found that long-range transport plays a more important role in elevating the background concentration of surface PM during the haze days.
Ying Ji, Xiaofei Qin, Bo Wang, Jian Xu, Jiandong Shen, Jianmin Chen, Kan Huang, Congrui Deng, Renchang Yan, Kaier Xu, and Tian Zhang
Atmos. Chem. Phys., 18, 13581–13600, https://doi.org/10.5194/acp-18-13581-2018, https://doi.org/10.5194/acp-18-13581-2018, 2018
Short summary
Short summary
Large-scale joint emission control measures were carried out in the Yangtze River Delta during the Hangzhou G20 Summit in 2016. The extent of secondary inorganic aerosol formation was found to be significantly enhanced under transport conditions from northern China. However, the formation of secondary organic aerosols was also greatly suppressed due to the emission control measures. Overall, it was found that regional/long-range transport could have offset part of the emission control efforts.
Yunhua Chang, Kan Huang, Mingjie Xie, Congrui Deng, Zhong Zou, Shoudong Liu, and Yanlin Zhang
Atmos. Chem. Phys., 18, 11793–11812, https://doi.org/10.5194/acp-18-11793-2018, https://doi.org/10.5194/acp-18-11793-2018, 2018
Short summary
Short summary
We continuously performed a one-year and hourly-resolved measurement of 18 atmospheric elements in PM2.5 in Shanghai megacity. Here our high time-resolution observations over a long-term period provide baseline data with high detail, which are of great use for examining acute exposure of morbidity and mortality risk in association with PM2.5 metal species in China's megacities.
Meng Gao, Zhiwei Han, Zirui Liu, Meng Li, Jinyuan Xin, Zhining Tao, Jiawei Li, Jeong-Eon Kang, Kan Huang, Xinyi Dong, Bingliang Zhuang, Shu Li, Baozhu Ge, Qizhong Wu, Yafang Cheng, Yuesi Wang, Hyo-Jung Lee, Cheol-Hee Kim, Joshua S. Fu, Tijian Wang, Mian Chin, Jung-Hun Woo, Qiang Zhang, Zifa Wang, and Gregory R. Carmichael
Atmos. Chem. Phys., 18, 4859–4884, https://doi.org/10.5194/acp-18-4859-2018, https://doi.org/10.5194/acp-18-4859-2018, 2018
Short summary
Short summary
Topic 3 of the Model Inter-Comparison Study for Asia (MICS-Asia) Phase III examines how online coupled air quality models perform in simulating high aerosol pollution in the North China Plain region during wintertime haze events and evaluates the importance of aerosol radiative and microphysical feedbacks. A comprehensive overview of the MICS-ASIA III Topic 3 study design is presented.
Qiongzhen Wang, Xinyi Dong, Joshua S. Fu, Jian Xu, Congrui Deng, Yilun Jiang, Qingyan Fu, Yanfen Lin, Kan Huang, and Guoshun Zhuang
Atmos. Chem. Phys., 18, 3505–3521, https://doi.org/10.5194/acp-18-3505-2018, https://doi.org/10.5194/acp-18-3505-2018, 2018
Short summary
Short summary
A synergy of ground-based atmospheric chemistry observation, lidar, and numerical modeling was used to investigate a super dust event passing over Shanghai. The degree of dust that was modified by anthropogenic sources highly depended on the transport pathways. A community regional air quality model with improved dust scheme reproduced reasonable dust chemistry results. The chemical and optical properties of evolving dust are crucial for evaluating the climatic effects of dust.
Julian Hofer, Dietrich Althausen, Sabur F. Abdullaev, Abduvosit N. Makhmudov, Bakhron I. Nazarov, Georg Schettler, Ronny Engelmann, Holger Baars, K. Wadinga Fomba, Konrad Müller, Bernd Heinold, Konrad Kandler, and Albert Ansmann
Atmos. Chem. Phys., 17, 14559–14577, https://doi.org/10.5194/acp-17-14559-2017, https://doi.org/10.5194/acp-17-14559-2017, 2017
Short summary
Short summary
The Central Asian Dust Experiment provides unprecedented data on vertically resolved aerosol optical properties over Central Asia from continuous 18-month polarization Raman lidar observations in Dushanbe, Tajikistan. Central Asia is affected by climate change (e.g. glacier retreat) but in a large part missing vertically resolved aerosol measurements, which would help to better understand transport of dust and pollution aerosol across Central Asia and their influence on climate and health.
Yunhua Chang, Congrui Deng, Fang Cao, Chang Cao, Zhong Zou, Shoudong Liu, Xuhui Lee, Jun Li, Gan Zhang, and Yanlin Zhang
Atmos. Chem. Phys., 17, 9945–9964, https://doi.org/10.5194/acp-17-9945-2017, https://doi.org/10.5194/acp-17-9945-2017, 2017
Short summary
Short summary
This paper presents the results from a 5-year and near-real-time measurement study of carbonaceous aerosols in PM2.5 conducted at an urban site in Shanghai. Moreover, we integrated the results from historical field measurements and satellite observations, concluding that carbonaceous aerosol pollution in Shanghai has gradually reduced since 2006. This can be largely explained by the introduction of air-cleaning measures such as controlling vehicular emissions.
Yunhua Chang, Xuejun Liu, Congrui Deng, Anthony J. Dore, and Guoshun Zhuang
Atmos. Chem. Phys., 16, 11635–11647, https://doi.org/10.5194/acp-16-11635-2016, https://doi.org/10.5194/acp-16-11635-2016, 2016
Short summary
Short summary
First, we establish a pool of isotopic signatures (δ15N–NH3) for the major NH3 emission sources in China. Second, we demonstrated that the isotopic source signatures of NH3 represent an emerging tool for partitioning NH3 sources in urban atmospheres.
Xinyi Dong, Joshua S. Fu, Kan Huang, Daniel Tong, and Guoshun Zhuang
Atmos. Chem. Phys., 16, 8157–8180, https://doi.org/10.5194/acp-16-8157-2016, https://doi.org/10.5194/acp-16-8157-2016, 2016
Short summary
Short summary
The Community Multiscale Air Quality (CMAQ) model has been further developed in terms of simulating natural wind-blown dust in this study, with a series of modifications aimed at improving the model's capability to predict the emission, transport, and chemical reactions of dust aerosols. Evaluation with observations suggested improved model performance by correcting the double counting of soil moisture impact, applying source-dependent speciation profile, and implementing heterogeneous chemitry.
Yunhua Chang, Zhong Zou, Congrui Deng, Kan Huang, Jeffrey L. Collett, Jing Lin, and Guoshun Zhuang
Atmos. Chem. Phys., 16, 3577–3594, https://doi.org/10.5194/acp-16-3577-2016, https://doi.org/10.5194/acp-16-3577-2016, 2016
Short summary
Short summary
This study linked a long-term and near real-time measurement of NH3 at one of China’s flagship supersites with a vehicle source-specific campaign performed inside and outside of a major freeway tunnel in Shanghai. Our results clearly show that vehicle emissions associated with combustion are an important NH3 source in Shanghai urban areas and may have potential implications for PM2.5 pollution in the urban atmosphere.
S. Xiao, M. Y. Wang, L. Yao, M. Kulmala, B. Zhou, X. Yang, J. M. Chen, D. F. Wang, Q. Y. Fu, D. R. Worsnop, and L. Wang
Atmos. Chem. Phys., 15, 1769–1781, https://doi.org/10.5194/acp-15-1769-2015, https://doi.org/10.5194/acp-15-1769-2015, 2015
K. Huang, G. Zhuang, Q. Wang, J. S. Fu, Y. Lin, T. Liu, L. Han, and C. Deng
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-7517-2014, https://doi.org/10.5194/acpd-14-7517-2014, 2014
Revised manuscript not accepted
K. Huang, G. Zhuang, Y. Lin, Q. Wang, J. S. Fu, Q. Fu, T. Liu, and C. Deng
Atmos. Chem. Phys., 13, 5927–5942, https://doi.org/10.5194/acp-13-5927-2013, https://doi.org/10.5194/acp-13-5927-2013, 2013
K. Huang, G. Zhuang, Y. Lin, Q. Wang, J. S. Fu, R. Zhang, J. Li, C. Deng, and Q. Fu
Atmos. Chem. Phys., 12, 11631–11645, https://doi.org/10.5194/acp-12-11631-2012, https://doi.org/10.5194/acp-12-11631-2012, 2012
Related subject area
Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
High-resolution analyses of concentrations and sizes of refractory black carbon particles deposited in northwestern Greenland over the past 350 years – Part 2: Seasonal and temporal trends in refractory black carbon originated from fossil fuel combustion and biomass burning
Significant role of biomass burning in heavy haze formation in Nanjing, a megacity in China: molecular-level insights from intensive PM2.5 sampling on winter hazy days
Widespread trace bromine and iodine in remote tropospheric non-sea-salt aerosols
Formation and chemical evolution of secondary organic aerosol in two different environments: a dual-chamber study
Technical note: Quantified organic aerosol subsaturated hygroscopicity by a simple optical scatter monitor system through field measurements
Measurement report: Oxidation potential of water-soluble aerosol components in the south and north of Beijing
Enhanced daytime secondary aerosol formation driven by gas–particle partitioning in downwind urban plumes
Understanding the mechanism and importance of brown carbon bleaching across the visible spectrum in biomass burning plumes from the WE-CAN campaign
Influence of terrestrial and marine air mass on the constituents and intermixing of bioaerosols over a coastal atmosphere
A multi-site passive approach to studying the emissions and evolution of smoke from prescribed fires
The annual cycle and sources of relevant aerosol precursor vapors in the central Arctic during the MOSAiC expedition
Opinion: How will advances in aerosol science inform our understanding of the health impacts of outdoor particulate pollution?
Measurement report: Intra-annual variability of black carbon and brown carbon and their interrelation with meteorological conditions over Gangtok, Sikkim
Long-range transport of air pollutants increases the concentration of hazardous components of PM2.5 in northern South America
Dominant influence of biomass combustion and cross-border transport on nitrogen-containing organic compound levels in the southeastern Tibetan Plateau
The Critical Role of Aqueous-Phase Processes in Aromatic-Derived Nitrogen-Containing Organic Aerosol Formation in Cities with Different Energy Consumption Patterns
Impacts of elevated anthropogenic emissions on physicochemical characteristics of black-carbon-containing particles over the Tibetan Plateau
Online characterization of primary and secondary emissions of particulate matter and acidic molecules from a modern fleet of city buses
Atmospheric evolution of environmentally persistent free radicals in the rural North China Plain: effects on water solubility and PM2.5 oxidative potential
Two distinct ship emission profiles for organic-sulfate source apportionment of PM in sulfur emission control areas
Automated compound speciation, cluster analysis, and quantification of organic vapors and aerosols using comprehensive two-dimensional gas chromatography and mass spectrometry
Measurement report: Occurrence of aminiums in PM2.5 during winter in China – aminium outbreak during polluted episodes and potential constraints
Bridging gas and aerosol properties between the northeastern US and Bermuda: analysis of eight transit flights
The behaviour of charged particles (ions) during new particle formation events in urban Leipzig, Germany
Sensitivity of aerosol and cloud properties to coupling strength of marine boundary layer clouds over the northwest Atlantic
Exploring the sources of light-absorbing carbonaceous aerosols by integrating observational and modeling results: insights from Northeast China
Characterization of atmospheric water-soluble brown carbon in the Athabasca Oil Sands Region, Canada
Measurement report: Characteristics of airborne black-carbon-containing particles during the 2021 summer COVID-19 lockdown in a typical Yangtze River Delta city, China
Aerosol optical properties within the atmospheric boundary layer predicted from ground-based observations compared to Raman lidar retrievals during RITA-2021
Hygroscopic growth and activation changed submicron aerosol composition and properties in the North China Plain
Measurement report: Formation of tropospheric brown carbon in a lifting air mass
Vertical variability of aerosol properties and trace gases over a remote marine region: a case study over Bermuda
Differences in aerosol and cloud properties along the central California coast when winds change from northerly to southerly
International airport emissions and their impact on local air quality: chemical speciation of ambient aerosols at Madrid–Barajas Airport during the AVIATOR campaign
The local ship speed reduction effect on black carbon emissions measured at a remote marine station
High-altitude aerosol chemical characterization and source identification: insights from the CALISHTO campaign
Measurement report: Impact of emission control measures on environmental persistent free radicals and reactive oxygen species – a short-term case study in Beijing
Characterizing water solubility of fresh and aged secondary organic aerosol in PM2.5 with the stable carbon isotope technique
Measurement report: Impact of cloud processes on secondary organic aerosols at a forested mountain site in southeastern China
Critical contribution of chemically diverse carbonyl molecules to the oxidative potential of atmospheric aerosols
Seasonal Investigation of Ultrafine Particle Composition in an Eastern Amazonian Rainforest
Measurement report: Vanadium-containing ship exhaust particles detected in and above the marine boundary layer in the remote atmosphere
Diverging trends in aerosol sulfate and nitrate measured in the remote North Atlantic in Barbados are attributed to clean air policies, African smoke, and anthropogenic emissions
Diverse sources and aging change the mixing state and ice nucleation properties of aerosol particles over the western Pacific and Southern Ocean
The water-insoluble organic carbon in PM2.5 of typical Chinese urban areas: light-absorbing properties, potential sources, radiative forcing effects, and a possible light-absorbing continuum
Measurement report: Size-resolved secondary organic aerosol formation modulated by aerosol water uptake in wintertime haze
Observations of high time-resolution and size-resolved aerosol chemical composition and microphyscis in the central Arctic: implications for climate-relevant particle properties
Brown carbon aerosol in rural Germany: sources, chemistry, and diurnal variations
In situ measurement of organic aerosol molecular markers in urban Hong Kong during a summer period: temporal variations and source apportionment
Technical note: Determining chemical composition of atmospheric single particles by a standard-free mass calibration algorithm
Kumiko Goto-Azuma, Yoshimi Ogawa-Tsukagawa, Kaori Fukuda, Koji Fujita, Motohiro Hirabayashi, Remi Dallmayr, Jun Ogata, Nobuhiro Moteki, Tatsuhiro Mori, Sho Ohata, Yutaka Kondo, Makoto Koike, Sumito Matoba, Moe Kadota, Akane Tsushima, Naoko Nagatsuka, and Teruo Aoki
Atmos. Chem. Phys., 25, 657–683, https://doi.org/10.5194/acp-25-657-2025, https://doi.org/10.5194/acp-25-657-2025, 2025
Short summary
Short summary
Monthly ice core records spanning 350 years from Greenland show trends in refractory black carbon (rBC) concentrations and sizes. rBC levels have increased since the 1870s due to the inflow of anthropogenic rBC, with larger diameters than those from biomass burning (BB) rBC. High summer BB rBC peaks may reduce the ice sheet albedo, but BB rBC showed no increase until the early 2000s. These results are vital for validating aerosol and climate models.
Mingjie Kang, Mengying Bao, Wenhuai Song, Aduburexiati Abulimiti, Changliu Wu, Fang Cao, Sönke Szidat, and Yanlin Zhang
Atmos. Chem. Phys., 25, 73–91, https://doi.org/10.5194/acp-25-73-2025, https://doi.org/10.5194/acp-25-73-2025, 2025
Short summary
Short summary
Reports on molecular-level knowledge of high-temporal-resolution particulate matter ≤2.5 µm in diameter (PM2.5) on hazy days are limited. We investigated various PM2.5 species and their sources. The results show biomass burning (BB) was the main source of organic carbon. Moreover, BB enhanced fungal spore emissions and secondary aerosol formation. The contribution of non-fossil sources increased with increasing haze pollution, suggesting BB may be an important driver of haze events in winter.
Gregory P. Schill, Karl D. Froyd, Daniel M. Murphy, Christina J. Williamson, Charles A. Brock, Tomás Sherwen, Mat J. Evans, Eric A. Ray, Eric C. Apel, Rebecca S. Hornbrook, Alan J. Hills, Jeff Peischl, Thomas B. Ryerson, Chelsea R. Thompson, Ilann Bourgeois, Donald R. Blake, Joshua P. DiGangi, and Glenn S. Diskin
Atmos. Chem. Phys., 25, 45–71, https://doi.org/10.5194/acp-25-45-2025, https://doi.org/10.5194/acp-25-45-2025, 2025
Short summary
Short summary
Using single-particle mass spectrometry, we show that trace concentrations of bromine and iodine are ubiquitous in remote tropospheric aerosol and suggest that aerosols are an important part of the global reactive iodine budget. Comparisons to a global climate model with detailed iodine chemistry are favorable in the background atmosphere; however, the model cannot replicate our measurements near the ocean surface, in biomass burning plumes, and in the stratosphere.
Andreas Aktypis, Dontavious J. Sippial, Christina N. Vasilakopoulou, Angeliki Matrali, Christos Kaltsonoudis, Andrea Simonati, Marco Paglione, Matteo Rinaldi, Stefano Decesari, and Spyros N. Pandis
Atmos. Chem. Phys., 24, 13769–13791, https://doi.org/10.5194/acp-24-13769-2024, https://doi.org/10.5194/acp-24-13769-2024, 2024
Short summary
Short summary
A dual-chamber system was deployed in two different environments (Po Valley, Italy, and Pertouli forest, Greece) to study the potential of ambient air directly injected into the chambers, to form secondary organic aerosol (SOA). In the Po Valley, the system reacts rapidly, forming large amounts of SOA, while in Pertouli the SOA formation chemistry appears to have been practically terminated before the beginning of most experiments, so there is little additional SOA formation potential left.
Jie Zhang, Tianyu Zhu, Alexandra Catena, Yaowei Li, Margaret J. Schwab, Pengfei Liu, Akua Asa-Awuku, and James Schwab
Atmos. Chem. Phys., 24, 13445–13456, https://doi.org/10.5194/acp-24-13445-2024, https://doi.org/10.5194/acp-24-13445-2024, 2024
Short summary
Short summary
This study shows the derived organic aerosol hygroscopicity under high-humidity conditions based on a simple optical scatter monitor system, including two nephelometric monitors (pDR-1500), when the aerosol chemical composition is already known.
Wei Yuan, Ru-Jin Huang, Chao Luo, Lu Yang, Wenjuan Cao, Jie Guo, and Huinan Yang
Atmos. Chem. Phys., 24, 13219–13230, https://doi.org/10.5194/acp-24-13219-2024, https://doi.org/10.5194/acp-24-13219-2024, 2024
Short summary
Short summary
We characterized water-soluble oxidative potential (OP) levels in wintertime PM2.5 in the south and north of Beijing. Our results show that the volume-normalized dithiothreitol (DTTv) in the north was comparable to that in the south, while the mass-normalized dithiothreitol (DTTm) in the north was almost twice that in the south. Traffic-related emissions and biomass burning were the main sources of DTTv in the south, and traffic-related emissions contributed the most to DTTv in the north.
Mingfu Cai, Chenshuo Ye, Bin Yuan, Shan Huang, E Zheng, Suxia Yang, Zelong Wang, Yi Lin, Tiange Li, Weiwei Hu, Wei Chen, Qicong Song, Wei Li, Yuwen Peng, Baoling Liang, Qibin Sun, Jun Zhao, Duohong Chen, Jiaren Sun, Zhiyong Yang, and Min Shao
Atmos. Chem. Phys., 24, 13065–13079, https://doi.org/10.5194/acp-24-13065-2024, https://doi.org/10.5194/acp-24-13065-2024, 2024
Short summary
Short summary
This study investigated the daytime secondary organic aerosol (SOA) formation in urban plumes. We observed a significant daytime SOA formation through gas–particle partitioning when the site was affected by urban plumes. A box model simulation indicated that urban pollutants (nitrogen oxide and volatile organic compounds) could enhance the oxidizing capacity, while the elevated volatile organic compounds were mainly responsible for promoting daytime SOA formation.
Yingjie Shen, Rudra P. Pokhrel, Amy P. Sullivan, Ezra J. T. Levin, Lauren A. Garofalo, Delphine K. Farmer, Wade Permar, Lu Hu, Darin W. Toohey, Teresa Campos, Emily V. Fischer, and Shane M. Murphy
Atmos. Chem. Phys., 24, 12881–12901, https://doi.org/10.5194/acp-24-12881-2024, https://doi.org/10.5194/acp-24-12881-2024, 2024
Short summary
Short summary
The magnitude and evolution of brown carbon (BrC) absorption remain unclear, with uncertainty in climate models. Data from the WE-CAN airborne experiment show that model parameterizations overestimate the mass absorption cross section (MAC) of BrC. Observed decreases in BrC absorption with chemical markers are due to decreasing organic aerosol (OA) mass rather than a decreasing BrC MAC, which is currently implemented in models. Water-soluble BrC contributes 23 % of total absorption at 660 nm.
Qun He, Zhaowen Wang, Houfeng Liu, Pengju Xu, Rongbao Duan, Caihong Xu, Jianmin Chen, and Min Wei
Atmos. Chem. Phys., 24, 12775–12792, https://doi.org/10.5194/acp-24-12775-2024, https://doi.org/10.5194/acp-24-12775-2024, 2024
Short summary
Short summary
Coastal environments provide an ideal setting for investigating the intermixing of terrestrial and marine aerosols. Terrestrial air mass constituted a larger number of microbes from anthropogenic and soil emissions, whereas saprophytic and gut microbes were predominant in marine samples. Mixed air masses indicated a fusion of marine and terrestrial aerosols, characterized by alterations in the ratio of pathogenic and saprophytic microbes when compared to either terrestrial or marine samples.
Rime El Asmar, Zongrun Li, David J. Tanner, Yongtao Hu, Susan O'Neill, L. Gregory Huey, M. Talat Odman, and Rodney J. Weber
Atmos. Chem. Phys., 24, 12749–12773, https://doi.org/10.5194/acp-24-12749-2024, https://doi.org/10.5194/acp-24-12749-2024, 2024
Short summary
Short summary
Prescribed burning is an important method for managing ecosystems and preventing wildfires. However, smoke from prescribed fires can have a significant impact on air quality. Here, using a network of fixed sites and sampling throughout an extended prescribed burning period in 2 different years, we characterize emissions and evolutions of up to 8 h of PM2.5 mass, black carbon (BC), and brown carbon (BrC) in smoke from burning of forested lands in the southeastern USA.
Matthew Boyer, Diego Aliaga, Lauriane L. J. Quéléver, Silvia Bucci, Hélène Angot, Lubna Dada, Benjamin Heutte, Lisa Beck, Marina Duetsch, Andreas Stohl, Ivo Beck, Tiia Laurila, Nina Sarnela, Roseline C. Thakur, Branka Miljevic, Markku Kulmala, Tuukka Petäjä, Mikko Sipilä, Julia Schmale, and Tuija Jokinen
Atmos. Chem. Phys., 24, 12595–12621, https://doi.org/10.5194/acp-24-12595-2024, https://doi.org/10.5194/acp-24-12595-2024, 2024
Short summary
Short summary
We analyze the seasonal cycle and sources of gases that are relevant for the formation of aerosol particles in the central Arctic. Since theses gases can form new particles, they can influence Arctic climate. We show that the sources of these gases are associated with changes in the Arctic environment during the year, especially with respect to sea ice. Therefore, the concentration of these gases will likely change in the future as the Arctic continues to warm.
Imad El Haddad, Danielle Vienneau, Kaspar R. Daellenbach, Robin Modini, Jay G. Slowik, Abhishek Upadhyay, Petros N. Vasilakos, David Bell, Kees de Hoogh, and Andre S. H. Prevot
Atmos. Chem. Phys., 24, 11981–12011, https://doi.org/10.5194/acp-24-11981-2024, https://doi.org/10.5194/acp-24-11981-2024, 2024
Short summary
Short summary
This opinion paper explores how advances in aerosol science inform our understanding of the health impacts of outdoor particulate pollution. We advocate for a shift in the way we target PM pollution, focusing on the most harmful anthropogenic emissions. We highlight key observations, modelling developments, and emission measurements needed to achieve this shift.
Pramod Kumar, Khushboo Sharma, Ankita Malu, Rajeev Rajak, Aparna Gupta, Bidyutjyoti Baruah, Shailesh Yadav, Thupstan Angchuk, Jayant Sharma, Rakesh Kumar Ranjan, Anil Kumar Misra, and Nishchal Wanjari
Atmos. Chem. Phys., 24, 11585–11601, https://doi.org/10.5194/acp-24-11585-2024, https://doi.org/10.5194/acp-24-11585-2024, 2024
Short summary
Short summary
This work monitors and assesses air pollution, especially black and brown carbon, its controlling factor, and its effect on the environment of Sikkim Himalayan region. The huge urban sprawl in recent decades has led to regional human-induced air pollution in the region. Black carbon was highest in April 2021 and March 2022, exceeding the WHO limit. The monsoon season causes huge rainfall over the region, which reduces the pollutants by scavenging (rainout and washout).
Maria P. Velásquez-García, K. Santiago Hernández, James A. Vergara-Correa, Richard J. Pope, Miriam Gómez-Marín, and Angela M. Rendón
Atmos. Chem. Phys., 24, 11497–11520, https://doi.org/10.5194/acp-24-11497-2024, https://doi.org/10.5194/acp-24-11497-2024, 2024
Short summary
Short summary
In the Aburrá Valley, northern South America, local emissions determine air quality conditions. However, we found that external sources, such as regional fires, Saharan dust, and volcanic emissions, increase particulate concentrations and worsen chemical composition by introducing elements like heavy metals. Dry winds and source variability contribute to seasonal influences on these events. This study assesses the air quality risks posed by such events, which can affect broad regions worldwide.
Meng Wang, Qiyuan Wang, Steven Sai Hang Ho, Jie Tian, Yong Zhang, Shun-cheng Lee, and Junji Cao
Atmos. Chem. Phys., 24, 11175–11189, https://doi.org/10.5194/acp-24-11175-2024, https://doi.org/10.5194/acp-24-11175-2024, 2024
Short summary
Short summary
We studied nitrogen-containing organic compounds (NOCs) in particulate matter <2.5 µm particles on the southeastern Tibetan Plateau. We found that biomass burning and transboundary transport are the main sources of NOCs in the high-altitude area. Understanding these aerosol sources informs how they add to regional and potentially global climate changes. Our findings could help shape effective environmental policies to enhance air quality and address climate impacts in this sensitive region.
Yi-Jia Ma, Yu Xu, Ting Yang, Lin Gui, Hong-Wei Xiao, Hao Xiao, and Hua-Yun Xiao
EGUsphere, https://doi.org/10.5194/egusphere-2024-2602, https://doi.org/10.5194/egusphere-2024-2602, 2024
Short summary
Short summary
The abundance, potential precursors, and main formation mechanisms of NOCs in PM2.5 during winter were compared among cities with different energy consumption. We found that the aerosol NOC pollution during winter is closely associated with the intensity of precursor emissions and the efficiency of aqueous-phase processes in converting these emissions into NOCs. The overall results highlight the importance of emission reduction strategies in controlling aerosol NOCs pollution during winter.
Jinbo Wang, Jiaping Wang, Yuxuan Zhang, Tengyu Liu, Xuguang Chi, Xin Huang, Dafeng Ge, Shiyi Lai, Caijun Zhu, Lei Wang, Qiaozhi Zha, Ximeng Qi, Wei Nie, Congbin Fu, and Aijun Ding
Atmos. Chem. Phys., 24, 11063–11080, https://doi.org/10.5194/acp-24-11063-2024, https://doi.org/10.5194/acp-24-11063-2024, 2024
Short summary
Short summary
In this study, we found large spatial discrepancies in the physical and chemical properties of black carbon over the Tibetan Plateau (TP). Elevated anthropogenic emissions from low-altitude regions can significantly change the mass concentration, mixing state and chemical composition of black-carbon-containing aerosol in the TP region, further altering its light absorption ability. Our study emphasizes the vulnerability of remote plateau regions to intense anthropogenic influences.
Liyuan Zhou, Qianyun Liu, Christian M. Salvador, Michael Le Breton, Mattias Hallquist, Jian Zhen Yu, Chak K. Chan, and Åsa M. Hallquist
Atmos. Chem. Phys., 24, 11045–11061, https://doi.org/10.5194/acp-24-11045-2024, https://doi.org/10.5194/acp-24-11045-2024, 2024
Short summary
Short summary
Our research on city bus emissions reveals that alternative fuels (compressed natural gas and biofuels) reduce fresh particle emissions compared to diesel. However, all fuels lead to secondary air pollution. Aiming at guiding better environmental policies, we studied 76 buses using advanced emission measurement techniques. This work sheds light on the complex effects of bus fuels on urban air quality, emphasizing the need for comprehensive evaluations of future transportation technologies.
Xu Yang, Fobang Liu, Shuqi Yang, Yuling Yang, Yanan Wang, Jingjing Li, Mingyu Zhao, Zhao Wang, Kai Wang, Chi He, and Haijie Tong
Atmos. Chem. Phys., 24, 11029–11043, https://doi.org/10.5194/acp-24-11029-2024, https://doi.org/10.5194/acp-24-11029-2024, 2024
Short summary
Short summary
A study in the rural North China Plain showed environmentally persistent free radicals (EPFRs) in atmospheric particulate matter (PM), with a notable water-soluble fraction likely from atmospheric oxidation during transport. Significant positive correlations between EPFRs and the water-soluble oxidative potential of PM2.5 were found, primarily attributable to the water-soluble fractions of EPFRs. These findings emphasize understanding EPFRs' atmospheric evolution for climate and health impacts.
Kirsten N. Fossum, Chunshui Lin, Niall O'Sullivan, Lu Lei, Stig Hellebust, Darius Ceburnis, Aqeel Afzal, Anja Tremper, David Green, Srishti Jain, Steigvilė Byčenkienė, Colin O'Dowd, John Wenger, and Jurgita Ovadnevaite
Atmos. Chem. Phys., 24, 10815–10831, https://doi.org/10.5194/acp-24-10815-2024, https://doi.org/10.5194/acp-24-10815-2024, 2024
Short summary
Short summary
The chemical composition and sources of submicron aerosol in the Dublin Port area were investigated over a month-long campaign. Two distinct types of ship emissions were identified and characterised: sulfate-rich plumes from the use of heavy fuel oil with scrubbers and organic-rich plumes from the use of low-sulfur fuels. The latter were more frequent, emitting double the particle number and having a typical V / Ni ratio for ship emission.
Xiao He, Xuan Zheng, Shuwen Guo, Lewei Zeng, Ting Chen, Bohan Yang, Shupei Xiao, Qiongqiong Wang, Zhiyuan Li, Yan You, Shaojun Zhang, and Ye Wu
Atmos. Chem. Phys., 24, 10655–10666, https://doi.org/10.5194/acp-24-10655-2024, https://doi.org/10.5194/acp-24-10655-2024, 2024
Short summary
Short summary
This study introduces an innovative method for identifying and quantifying complex organic vapors and aerosols. By combining advanced analytical techniques and new algorithms, we categorized thousands of compounds from heavy-duty diesel vehicles and ambient air and highlighted specific tracers for emission sources. The innovative approach enhances peak identification, reduces quantification uncertainties, and offers new insights for air quality management and atmospheric chemistry.
Yu Xu, Tang Liu, Yi-Jia Ma, Qi-Bin Sun, Hong-Wei Xiao, Hao Xiao, Hua-Yun Xiao, and Cong-Qiang Liu
Atmos. Chem. Phys., 24, 10531–10542, https://doi.org/10.5194/acp-24-10531-2024, https://doi.org/10.5194/acp-24-10531-2024, 2024
Short summary
Short summary
This study investigates the characteristics of aminiums and ammonium in PM2.5 on clean and polluted winter days in 11 Chinese cities, highlighting the possibility of the competitive uptake of ammonia versus amines on acidic aerosols or the displacement of aminiums by ammonia under high-ammonia conditions. The overall results deepen the understanding of the spatiotemporal differences in aminium characteristics and formation in China.
Cassidy Soloff, Taiwo Ajayi, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Marta A. Fenn, Richard A. Ferrare, Francesca Gallo, Johnathan W. Hair, Miguel Ricardo A. Hilario, Simon Kirschler, Richard H. Moore, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 24, 10385–10408, https://doi.org/10.5194/acp-24-10385-2024, https://doi.org/10.5194/acp-24-10385-2024, 2024
Short summary
Short summary
Using aircraft measurements over the northwestern Atlantic between the US East Coast and Bermuda and trajectory modeling of continental outflow, we identify trace gas and particle properties that exhibit gradients with offshore distance and quantify these changes with high-resolution measurements of concentrations and particle chemistry, size, and scattering properties. This work furthers our understanding of the complex interactions between continental and marine environments.
Alex Rowell, James Brean, David C. S. Beddows, Zongbo Shi, Avinash Kumar, Matti Rissanen, Miikka Dal Maso, Peter Mettke, Kay Weinhold, Maik Merkel, and Roy M. Harrison
Atmos. Chem. Phys., 24, 10349–10361, https://doi.org/10.5194/acp-24-10349-2024, https://doi.org/10.5194/acp-24-10349-2024, 2024
Short summary
Short summary
Ions enhance the formation and growth rates of new particles, affecting the Earth's radiation budget. Despite these effects, there is little published data exploring the sources of ions in the urban environment and their role in new particle formation (NPF). Here we show that natural ion sources dominate in urban environments, while traffic is a secondary source. Ions contribute up to 12.7 % of the formation rate of particles, indicating that they are important for forming urban PM.
Kira Zeider, Kayla McCauley, Sanja Dmitrovic, Leong Wai Siu, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Simon Kirschler, John B. Nowak, Michael A. Shook, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, Paquita Zuidema, and Armin Sorooshian
EGUsphere, https://doi.org/10.5194/egusphere-2024-2743, https://doi.org/10.5194/egusphere-2024-2743, 2024
Short summary
Short summary
In-situ aircraft data collected over the northwest Atlantic Ocean are utilized to compare aerosol conditions and turbulence between near-surface and below cloud base altitudes for different regimes of coupling strength between those two levels, along with how cloud microphysical properties vary across those regimes. Stronger coupling yields more homogenous aerosol structure vertically along with higher cloud drop concentrations and sea salt influence in clouds.
Yuan Cheng, Xu-bing Cao, Sheng-qiang Zhu, Zhi-qing Zhang, Jiu-meng Liu, Hong-liang Zhang, Qiang Zhang, and Ke-bin He
Atmos. Chem. Phys., 24, 9869–9883, https://doi.org/10.5194/acp-24-9869-2024, https://doi.org/10.5194/acp-24-9869-2024, 2024
Short summary
Short summary
The agreement between observational and modeling results is essential for the development of efficient air pollution control strategies. Here we constrained the modeling results of carbonaceous aerosols by field observation in Northeast China, a historically overlooked but recently targeted region of national clean-air actions. Our study suggested that the simulation of agricultural fire emissions and secondary organic aerosols remains challenging.
Dane Blanchard, Mark Gordon, Duc Huy Dang, Paul Andrew Makar, and Julian Aherne
EGUsphere, https://doi.org/10.5194/egusphere-2024-2584, https://doi.org/10.5194/egusphere-2024-2584, 2024
Short summary
Short summary
This study offers the first known evaluation of water-soluble brown carbon aerosols in the Athabasca Oil Sands Region (AOSR), Canada. Fluorescence spectroscopy analysis of aerosol samples from five regional sites (summer 2021) found that oil sands operations were a measurable source of brown carbon. Industrial aerosol emissions may impact atmospheric reaction chemistry and albedo. These findings demonstrate that fluorescence spectroscopy can be applied to monitor brown carbon in the ASOR.
Yuan Dai, Junfeng Wang, Houjun Wang, Shijie Cui, Yunjiang Zhang, Haiwei Li, Yun Wu, Ming Wang, Eleonora Aruffo, and Xinlei Ge
Atmos. Chem. Phys., 24, 9733–9748, https://doi.org/10.5194/acp-24-9733-2024, https://doi.org/10.5194/acp-24-9733-2024, 2024
Short summary
Short summary
Short-term strict emission control can improve air quality, but its effectiveness needs assessment. During the 2021 summer COVID-19 lockdown in Yangzhou, we found that PM2.5 levels did not decrease despite reduced primary emissions. Aged black-carbon particles increased substantially due to higher O3 levels and transported pollutants. High humidity and low wind also played key roles. The results highlight the importance of a regionally balanced control strategy for future air quality management.
Xinya Liu, Diego Alves Gouveia, Bas Henzing, Arnoud Apituley, Arjan Hensen, Danielle van Dinther, Rujin Huang, and Ulrike Dusek
Atmos. Chem. Phys., 24, 9597–9614, https://doi.org/10.5194/acp-24-9597-2024, https://doi.org/10.5194/acp-24-9597-2024, 2024
Short summary
Short summary
The vertical distribution of aerosol optical properties is important for their effect on climate. This is usually measured by lidar, which has limitations, most notably the assumption of a lidar ratio. Our study shows that routine surface-level aerosol measurements are able to predict this lidar ratio reasonably well within the lower layers of the atmosphere and thus provide a relatively simple and cost-effective method to improve lidar measurements.
Weiqi Xu, Ye Kuang, Wanyun Xu, Zhiqiang Zhang, Biao Luo, Xiaoyi Zhang, Jiangchuang Tao, Hongqin Qiao, Li Liu, and Yele Sun
Atmos. Chem. Phys., 24, 9387–9399, https://doi.org/10.5194/acp-24-9387-2024, https://doi.org/10.5194/acp-24-9387-2024, 2024
Short summary
Short summary
We deployed an advanced aerosol–fog sampling system at a rural site in the North China Plain to investigate impacts of aerosol hygroscopic growth and activation on the physicochemical properties of submicron aerosols. Observed results highlighted remarkably different aqueous processing of primary and secondary submicron aerosol components under distinct ambient relative humidity (RH) conditions and that RH levels significantly impact aerosol sampling through the aerosol swelling effect.
Can Wu, Xiaodi Liu, Ke Zhang, Si Zhang, Cong Cao, Jianjun Li, Rui Li, Fan Zhang, and Gehui Wang
Atmos. Chem. Phys., 24, 9263–9275, https://doi.org/10.5194/acp-24-9263-2024, https://doi.org/10.5194/acp-24-9263-2024, 2024
Short summary
Short summary
Brown carbon (BrC) is prevalent in the troposphere and can efficiently absorb solar and terrestrial radiation. Our observations show that the enhanced light absorption of BrC relative to black carbon at the tropopause can be attributed to the formation of nitrogen-containing organic compounds through the aqueous-phase reactions of carbonyls with ammonium.
Taiwo Ajayi, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Marta A. Fenn, Richard A. Ferrare, Johnathan W. Hair, Miguel Ricardo A. Hilario, Chris A. Hostetler, Simon Kirschler, Richard H. Moore, Taylor J. Shingler, Michael A. Shook, Cassidy Soloff, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 24, 9197–9218, https://doi.org/10.5194/acp-24-9197-2024, https://doi.org/10.5194/acp-24-9197-2024, 2024
Short summary
Short summary
This study uses airborne data to examine vertical profiles of trace gases, aerosol particles, and meteorological variables over a remote marine area (Bermuda). Results show distinct differences based on both air mass source region (North America, Ocean, Caribbean/North Africa) and altitude for a given air mass type. This work highlights the sensitivity of remote marine areas to long-range transport and the importance of considering the vertical dependence of trace gas and aerosol properties.
Kira Zeider, Grace Betito, Anthony Bucholtz, Peng Xian, Annette Walker, and Armin Sorooshian
Atmos. Chem. Phys., 24, 9059–9083, https://doi.org/10.5194/acp-24-9059-2024, https://doi.org/10.5194/acp-24-9059-2024, 2024
Short summary
Short summary
The predominant wind direction along the California coast (northerly) reverses several times during the summer (to southerly). The effects of these wind reversals on aerosol and cloud characteristics are not well understood. Using data from multiple datasets we found that southerly flow periods had enhanced signatures of anthropogenic emissions due to shipping and continental sources, and clouds had more but smaller droplets.
Saleh Alzahrani, Doğuşhan Kılıç, Michael Flynn, Paul I. Williams, and James Allan
Atmos. Chem. Phys., 24, 9045–9058, https://doi.org/10.5194/acp-24-9045-2024, https://doi.org/10.5194/acp-24-9045-2024, 2024
Short summary
Short summary
This paper investigates emissions from aviation activities at an international airport to evaluate their impact on local air quality. The study provides detailed insights into the chemical composition of aerosols and key pollutants in the airport environment. Source apportionment analysis using positive matrix factorisation (PMF) identified three significant sources: less oxidised oxygenated organic aerosol, alkane organic aerosol, and more oxidised oxygenated organic aerosol.
Mikko Heikkilä, Krista Luoma, Timo Mäkelä, and Tiia Grönholm
Atmos. Chem. Phys., 24, 8927–8941, https://doi.org/10.5194/acp-24-8927-2024, https://doi.org/10.5194/acp-24-8927-2024, 2024
Short summary
Short summary
Black carbon (BC) concentration was measured from 211 ship exhaust gas plumes at a remote marine station. Emission factors of BC were calculated in grams per kilogram of fuel. Ships with an exhaust gas cleaning system (EGCS) were found to have median BC emissions per fuel consumed 5 times lower than ships without an EGCS. However, this might be because of non-EGCS ships running at low engine loads rather than the EGCS itself. A local speed restriction would increase BC emissions of ships.
Olga Zografou, Maria Gini, Prodromos Fetfatzis, Konstantinos Granakis, Romanos Foskinis, Manousos Ioannis Manousakas, Fotios Tsopelas, Evangelia Diapouli, Eleni Dovrou, Christina N. Vasilakopoulou, Alexandros Papayannis, Spyros N. Pandis, Athanasios Nenes, and Konstantinos Eleftheriadis
Atmos. Chem. Phys., 24, 8911–8926, https://doi.org/10.5194/acp-24-8911-2024, https://doi.org/10.5194/acp-24-8911-2024, 2024
Short summary
Short summary
Characterization of PM1 and positive matrix factorization (PMF) source apportionment of organic and inorganic fractions were conducted at the high-altitude station (HAC)2. Cloud presence reduced PM1, affecting sulfate more than organics. Free-troposphere (FT) conditions showed more black carbon (eBC) than planetary boundary layer (PBL) conditions.
Yuanyuan Qin, Xinghua Zhang, Wei Huang, Juanjuan Qin, Xiaoyu Hu, Yuxuan Cao, Tianyi Zhao, Yang Zhang, Jihua Tan, Ziyin Zhang, Xinming Wang, and Zhenzhen Wang
Atmos. Chem. Phys., 24, 8737–8750, https://doi.org/10.5194/acp-24-8737-2024, https://doi.org/10.5194/acp-24-8737-2024, 2024
Short summary
Short summary
Environmental persistent free radicals (EPFRs) and reactive oxygen species (ROSs) play an active role in the atmosphere. Despite control measures having effectively reduced their emissions, reductions were less than in PM2.5. Emission control measures performed well in achieving Parade Blue, but reducing the impact of the atmosphere on human health remains challenging. Thus, there is a need to reassess emission control measures to better address the challenges posed by EPFRs and ROSs.
Fenghua Wei, Xing Peng, Liming Cao, Mengxue Tang, Ning Feng, Xiaofeng Huang, and Lingyan He
Atmos. Chem. Phys., 24, 8507–8518, https://doi.org/10.5194/acp-24-8507-2024, https://doi.org/10.5194/acp-24-8507-2024, 2024
Short summary
Short summary
The water solubility of secondary organic aerosols (SOAs) is a crucial factor in determining their hygroscopicity and climatic impact. Stable carbon isotope and mass spectrometry techniques were combined to assess the water solubility of SOAs with different aging degrees in a coastal megacity in China. This work revealed a much higher water-soluble fraction of aged SOA compared to fresh SOA, indicating that the aging degree of SOA has considerable impacts on its water solubility.
Zijun Zhang, Weiqi Xu, Yi Zhang, Wei Zhou, Xiangyu Xu, Aodong Du, Yinzhou Zhang, Hongqin Qiao, Ye Kuang, Xiaole Pan, Zifa Wang, Xueling Cheng, Lanzhong Liu, Qingyan Fu, Douglas R. Worsnop, Jie Li, and Yele Sun
Atmos. Chem. Phys., 24, 8473–8488, https://doi.org/10.5194/acp-24-8473-2024, https://doi.org/10.5194/acp-24-8473-2024, 2024
Short summary
Short summary
We investigated aerosol composition and sources and the interaction between secondary organic aerosol (SOA) and clouds at a regional mountain site in southeastern China. Clouds efficiently scavenge more oxidized SOA; however, cloud evaporation leads to the production of less oxidized SOA. The unexpectedly high presence of nitrate in aerosol particles indicates that nitrate formed in polluted areas has undergone interactions with clouds, significantly influencing the regional background site.
Feifei Li, Shanshan Tang, Jitao Lv, Shiyang Yu, Xu Sun, Dong Cao, Yawei Wang, and Guibin Jiang
Atmos. Chem. Phys., 24, 8397–8411, https://doi.org/10.5194/acp-24-8397-2024, https://doi.org/10.5194/acp-24-8397-2024, 2024
Short summary
Short summary
Targeted derivatization and non-targeted analysis with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) were used to reveal the molecular composition of carbonyl molecules in PM2.5, and the important role of carbonyls in increasing the oxidative potential of organic aerosol was found in real samples.
Adam E. Thomas, Hayley S. Glicker, Alex B. Guenther, Roger Seco, Oscar Vega Bustillos, Julio Tota, Rodrigo A. F. Souza, and James N. Smith
EGUsphere, https://doi.org/10.5194/egusphere-2024-2230, https://doi.org/10.5194/egusphere-2024-2230, 2024
Short summary
Short summary
We present measurements of the composition of ultrafine particles collected from the eastern Amazon, a relatively understudied region that is subjected to increasing human influence. We find that while isoprene chemistry is likely significant to ultrafine particle growth throughout the year, compounds related to other sources such as biological spore emissions and biomass burning exhibit striking seasonal differences, implying an extensive variation in regional ultrafine particle sources.
Maya Abou-Ghanem, Daniel M. Murphy, Gregory P. Schill, Michael J. Lawler, and Karl D. Froyd
Atmos. Chem. Phys., 24, 8263–8275, https://doi.org/10.5194/acp-24-8263-2024, https://doi.org/10.5194/acp-24-8263-2024, 2024
Short summary
Short summary
Using particle analysis by laser mass spectrometry, we examine vanadium-containing ship exhaust particles measured on NASA's DC-8 during the Atmospheric Tomography Mission (ATom). Our results reveal ship exhaust particles are sufficiently widespread in the marine atmosphere and experience atmospheric aging. Finally, we use laboratory calibrations to determine the vanadium, sulfate, and organic single-particle mass fractions of vanadium-containing ship exhaust particles.
Cassandra J. Gaston, Joseph M. Prospero, Kristen Foley, Havala O. T. Pye, Lillian Custals, Edmund Blades, Peter Sealy, and James A. Christie
Atmos. Chem. Phys., 24, 8049–8066, https://doi.org/10.5194/acp-24-8049-2024, https://doi.org/10.5194/acp-24-8049-2024, 2024
Short summary
Short summary
To understand how changing emissions have impacted aerosols in remote regions, we measured nitrate and sulfate in Barbados and compared them to model predictions from EPA’s Air QUAlity TimE Series (EQUATES). Nitrate was stable, except for spikes in 2008 and 2010 due to transported smoke. Sulfate decreased in the 1990s due to reductions in sulfur dioxide (SO2) in the US and Europe; then it increased in the 2000s, likely due to anthropogenic emissions from Africa.
Jiao Xue, Tian Zhang, Keyhong Park, Jinpei Yan, Young Jun Yoon, Jiyeon Park, and Bingbing Wang
Atmos. Chem. Phys., 24, 7731–7754, https://doi.org/10.5194/acp-24-7731-2024, https://doi.org/10.5194/acp-24-7731-2024, 2024
Short summary
Short summary
Ice formation by particles is an important way of making mixed-phase and ice clouds. We found that particles collected in the marine atmosphere exhibit diverse ice nucleation abilities and mixing states. Sea salt mixed-sulfate particles were enriched in ice-nucleating particles. Selective aging on sea salt particles made particle populations more externally mixed. Characterizations of particles and their mixing state are needed for a better understanding of aerosol–cloud interactions.
Yangzhi Mo, Jun Li, Guangcai Zhong, Sanyuan Zhu, Shizhen Zhao, Jiao Tang, Hongxing Jiang, Zhineng Cheng, Chongguo Tian, Yingjun Chen, and Gan Zhang
Atmos. Chem. Phys., 24, 7755–7772, https://doi.org/10.5194/acp-24-7755-2024, https://doi.org/10.5194/acp-24-7755-2024, 2024
Short summary
Short summary
In this study, we found that biomass burning (31.0 %) and coal combustion (31.1 %) were the dominant sources of water-insoluble organic carbon in China, with coal combustion sources exhibiting the strongest light-absorbing capacity. Additionally, we propose a light-absorbing carbonaceous continuum, revealing that components enriched with fossil sources tend to have stronger light-absorbing capacity, higher aromaticity, higher molecular weights, and greater recalcitrance in the atmosphere.
Jing Duan, Ru-Jin Huang, Ying Wang, Wei Xu, Haobin Zhong, Chunshui Lin, Wei Huang, Yifang Gu, Jurgita Ovadnevaite, Darius Ceburnis, and Colin O'Dowd
Atmos. Chem. Phys., 24, 7687–7698, https://doi.org/10.5194/acp-24-7687-2024, https://doi.org/10.5194/acp-24-7687-2024, 2024
Short summary
Short summary
The chemical composition of atmospheric particles has shown significant changes in recent years. We investigated the potential effects of changes in inorganics on aerosol water uptake and, thus, secondary organic aerosol formation in wintertime haze based on the size-resolved measurements of non-refractory fine particulate matter (NR-PM2.5) in Xi’an, northwestern China. We highlight the key role of aerosol water as a medium to link inorganics and organics in their multiphase processes.
Benjamin Heutte, Nora Bergner, Hélène Angot, Jakob B. Pernov, Lubna Dada, Jessica A. Mirrielees, Ivo Beck, Andrea Baccarini, Matthew Boyer, Jessie M. Creamean, Kaspar R. Daellenbach, Imad El Haddad, Markus M. Frey, Silvia Henning, Tiaa Laurila, Vaios Moschos, Tuukka Petäjä, Kerri A. Pratt, Lauriane L. J. Quéléver, Matthew D. Shupe, Paul Zieger, Tuija Jokinen, and Julia Schmale
EGUsphere, https://doi.org/10.5194/egusphere-2024-1912, https://doi.org/10.5194/egusphere-2024-1912, 2024
Short summary
Short summary
Limited aerosol measurements in the central Arctic hinder our understanding of aerosol-climate interactions in the region. Our year-long observations of aerosol physicochemical properties during the MOSAiC expedition reveal strong seasonal variations in aerosol chemical composition, where the short-term variability is heavily affected by storms in the Arctic. Locally wind-generated particles are shown to be an important source of cloud seeds, especially in autumn.
Feng Jiang, Harald Saathoff, Junwei Song, Hengheng Zhang, Linyu Gao, and Thomas Leisner
EGUsphere, https://doi.org/10.5194/egusphere-2024-1848, https://doi.org/10.5194/egusphere-2024-1848, 2024
Short summary
Short summary
The chemical composition of brown carbon in the particle and gas phase were determined by mass spectrometry. BrC in the gas phase was mainly controlled by secondary formation and particle-to-gas partitioning. BrC in the particle phase was mainly from secondary formation. This work helps to get a better understanding of diurnal variations and the sources of brown carbon aerosol at rural location in central Europe.
Hongyong Li, Xiaopu Lyu, Likun Xue, Yunxi Huo, Dawen Yao, Haoxian Lu, and Hai Guo
Atmos. Chem. Phys., 24, 7085–7100, https://doi.org/10.5194/acp-24-7085-2024, https://doi.org/10.5194/acp-24-7085-2024, 2024
Short summary
Short summary
Organic aerosol is ubiquitous in the atmosphere and largely explains the gap between current levels of fine particulate matter in many cities and the World Health Organization guideline values. This study highlights the dominant contributions of cooking emissions to organic aerosol when marine air prevailed in Hong Kong, which were occasionally overwhelmed by aromatics-derived secondary organic aerosol in continental ouflows.
Shao Shi, Jinghao Zhai, Xin Yang, Yechun Ruan, Yuanlong Huang, Xujian Chen, Antai Zhang, Jianhuai Ye, Guomao Zheng, Baohua Cai, Yaling Zeng, Yixiang Wang, Chunbo Xing, Yujie Zhang, Tzung-May Fu, Lei Zhu, Huizhong Shen, and Chen Wang
Atmos. Chem. Phys., 24, 7001–7012, https://doi.org/10.5194/acp-24-7001-2024, https://doi.org/10.5194/acp-24-7001-2024, 2024
Short summary
Short summary
The determination of ions in the mass spectra of individual particles remains uncertain. We have developed a standard-free mass calibration algorithm applicable to more than 98 % of ambient particles. With our algorithm, ions with ~ 0.05 Th mass difference could be determined. Therefore, many more atmospheric species could be determined and involved in the source apportionment of aerosols, the study of chemical reaction mechanisms, and the analysis of single-particle mixing states.
Cited articles
Alicke, B., Platt, U., and Stutz, J.: Impact of nitrous acid photolysis on the total hydroxyl radical budget during the Limitation of Oxidant Production/Pianura Padana Produzione di Ozono study in Milan, J. Geophys. Res.-Atmos., 107, 8196, https://doi.org/10.1029/2000jd000075, 2002.
Ansari, A. S. and Pandis, S. N.: An analysis of four models predicting the partitioning of semivolatile inorganic aerosol components, Aerosol Sci. Tech., 31, 129–153, https://doi.org/10.1080/027868299304200, 1999.
Arimoto, R., Ray, B. J., Lewis, N. F., Tomza, U., and Duce, R. A.: Mass-particle size distributions of atmospheric dust and the dry deposition of dust to the remote ocean, J. Geophys. Res.-Atmos., 102, 15867–15874, https://doi.org/10.1029/97jd00796, 1997.
Barkley, A., Olson, N., Prospero, J., Gatineau, A., Panechou, K., Maynard, N., Blackwelder, P., China, S., Ault, A., and Gaston, C.: Atmospheric Transport of North African Dust – Bearing Supermicron Freshwater Diatoms to South America: Implications for Iron Transport to the Equatorial North Atlantic Ocean, Geophys. Res. Lett., 48, e2020GL090476, https://doi.org/10.1029/2020GL090476, 2021.
Becagli, S., Sferlazzo, D. M., Pace, G., di Sarra, A., Bommarito, C., Calzolai, G., Ghedini, C., Lucarelli, F., Meloni, D., Monteleone, F., Severi, M., Traversi, R., and Udisti, R.: Evidence for heavy fuel oil combustion aerosols from chemical analyses at the island of Lampedusa: a possible large role of ships emissions in the Mediterranean, Atmos. Chem. Phys., 12, 3479–3492, https://doi.org/10.5194/acp-12-3479-2012, 2012.
Benas, N., Mourtzanou, E., Kouvarakis, G., Bais, A., Mihalopoulos, N., and Vardavas, I.: Surface ozone photolysis rate trends in the Eastern Mediterranean: Modeling the effects of aerosols and total column ozone based on Terra MODIS data, Atmos. Environ., 74, 1–9, https://doi.org/10.1016/j.atmosenv.2013.03.019, 2013.
Bozlaker, A., Prospero, J. M., Price, J., and Chellam, S.: Identifying and Quantifying the Impacts of Advected North African Dust on the Concentration and Composition of Airborne Fine Particulate Matter in Houston and Galveston, Texas, J. Geophys. Res.-Atmos., 124, 12282–12300, https://doi.org/10.1029/2019jd030792, 2019.
Cwiertny, D. M., Baltrusaitis, J., Hunter, G. J., Laskin, A., Scherer, M. M., and Grassian, V. H.: Characterization and acid-mobilization study of iron-containing mineral dust source materials, J. Geophys. Res.-Atmos., 113, D05202, https://doi.org/10.1029/2007jd009332, 2008.
Draxler, R. R. and Hess, G. D.: An overview of the HYSPLIT_4 modeling system for trajectories, dispersion, and deposition, Aust. Meteorol. Mag., 47, 295–308, 1998.
Fan, H., Zhao, C., Yang, Y., and Yang, X.: Spatio-Temporal Variations of the PM2.5 PM10 Ratios and Its Application to Air Pollution Type Classification in China, Front. Environ. Sci., 2021, 692440, https://doi.org/10.3389/fenvs.2021.692440.
Fan, Q. Z., Zhang, Y., Ma, W. C., Ma, H. X., Feng, J. L., Yu, Q., Yang, X., Ng, S. K. W., Fu, Q. Y., and Chen, L. M.: Spatial and Seasonal Dynamics of Ship Emissions over the Yangtze River Delta and East China Sea and Their Potential Environmental Influence, Environ. Sci. Technol., 50, 1322–1329, https://doi.org/10.1021/acs.est.5b03965, 2016.
Feng, X., Mao, R., Gong, D.-Y., Zhao, C., Wu, C., Zhao, C., Wu, G., Lin, Z., Liu, X., Wang, K., and Sun, Y.: Increased Dust Aerosols in the High Troposphere Over the Tibetan Plateau From 1990s to 2000s, J. Geophys. Res.-Atmos., 125, e2020JD032807, https://doi.org/10.1029/2020JD032807, 2020.
GDAS: one-degree archive (Dec 2004–present), GDAS [data set], https://www.ready.noaa.gov/data/archives/gdas1 (last access: 2 November 2023), 2004.
Goodman, M. M., Carling, G. T., Fernandez, D. P., Rey, K. A., Hale, C. A., Bickmore, B. R., Nelson, S. T., and Munroe, J. S.: Trace element chemistry of atmospheric deposition along the Wasatch Front (Utah, USA) reflects regional playa dust and local urban aerosols, Chem. Geol., 530, 119317, https://doi.org/10.1016/j.chemgeo.2019.119317, 2019.
Hammond, D. M., Dvonch, J. T., Keeler, G. J., Parker, E. A., Kamal, A. S., Barres, J. A., Yip, F. Y., and Brakefield-Caldwell, W.: Sources of ambient fine particulate matter at two community sites in Detroit, Michigan, Atmos. Environ., 42, 720–732, https://doi.org/10.1016/j.atmosenv.2007.09.065, 2008.
Hilario, M. R. A., Cruz, M. T., Cambaliza, M. O. L., Reid, J. S., Xian, P., Simpas, J. B., Lagrosas, N. D., Uy, S. N. Y., Cliff, S., and Zhao, Y.: Investigating size-segregated sources of elemental composition of particulate matter in the South China Sea during the 2011 Vasco cruise, Atmos. Chem. Phys., 20, 1255–1276, https://doi.org/10.5194/acp-20-1255-2020, 2020.
Hsu, S.-C., Lee, C. S. L., Huh, C.-A., Shaheen, R., Lin, F.-J., Liu, S. C., Liang, M.-C., and Tao, J.: Ammonium deficiency caused by heterogeneous reactions during a super Asian dust episode, J. Geophys. Res.-Atmos., 119, 6803–6817, https://doi.org/10.1002/2013jd021096, 2014.
Huang, K., Zhuang, G., Li, J., Wang, Q., Sun, Y., Lin, Y., and Fu, J. S.: Mixing of Asian dust with pollution aerosol and the transformation of aerosol components during the dust storm over China in spring 2007, J. Geophys. Res., 115, D00K13, https://doi.org/10.1029/2009jd013145, 2010.
Huang, K., Fu, J. S., Lin, N.-H., Wang, S.-H., Dong, X., and Wang, G.: Superposition of Gobi Dust and Southeast Asian Biomass Burning: The Effect of Multisource Long-Range Transport on Aerosol Optical Properties and Regional Meteorology Modification, J. Geophys. Res.-Atmos., 124, 9464–9483, https://doi.org/10.1029/2018JD030241, 2019.
Huang, X., Ding, A. J., Gao, J., Zheng, B., Zhou, D. R., Qi, X. M., Tang, R., Wang, J. P., Ren, C. H., Nie, W., Chi, X. G., Xu, Z., Chen, L. D., Li, Y. Y., Che, F., Pang, N. N., Wang, H. K., Tong, D., Qin, W., Cheng, W., Liu, W. J., Fu, Q. Y., Liu, B. X., Chai, F. H., Davis, S. J., Zhang, Q., and He, K. B.: Enhanced secondary pollution offset reduction of primary emissions during COVID-19 lockdown in China, Natl. Sci. Rev., 8, nwaa137, https://doi.org/10.1093/nsr/nwaa137, 2021.
ISORROPIA: https://www.epfl.ch/labs/lapi/models-and-software/isorropia/iso-code-repository/ EPFL [code], (last access: 2 November 2023), 2009.
Jeong, G. Y.: Bulk and single-particle mineralogy of Asian dust and a comparison with its source soils, J. Geophys. Res.-Atmos., 113, D02208, https://doi.org/10.1029/2007jd008606, 2008.
Ji, Y., Qin, X., Wang, B., Xu, J., Shen, J., Chen, J., Huang, K., Deng, C., Yan, R., Xu, K., and Zhang, T.: Counteractive effects of regional transport and emission control on the formation of fine particles: a case study during the Hangzhou G20 summit, Atmos. Chem. Phys., 18, 13581–13600, https://doi.org/10.5194/acp-18-13581-2018, 2018.
Jiang, Y., Zhuang, G., Wang, Q., Huang, K., Deng, C., Yu, G., Xu, C., Fu, Q., Lin, Y., Fu, J. S., Li, M., and Zhou, Z.: Impact of mixed anthropogenic and natural emissions on air quality and eco-environment – the major water-soluble components in aerosols from northwest to offshore isle, Air Qual. Atmos. Hlth., 11, 521–534, https://doi.org/10.1007/s11869-018-0557-5, 2018.
Laskin, A., Wietsma, T. W., Krueger, B. J., and Grassian, V. H.: Heterogeneous chemistry of individual mineral dust particles with nitric acid: A combined CCSEM/EDX, ESEM, and ICP-MS study, J. Geophys. Res.-Atmos., 110, D10208, https://doi.org/10.1029/2004jd005206, 2005.
Li, T., Wang, Y., Zhou, J., Wang, T., Ding, A. J., Nie, W., Xue, L. K., Wang, X. F., and Wang, W. X.: Evolution of trace elements in the planetary boundary layer in southern China: Effects of dust storms and aerosol-cloud interactions, J. Geophys. Res.-Atmos., 122, 3492–3506, https://doi.org/10.1002/2016jd025541, 2017.
Liu, H., Liu, S., Xue, B., Lv, Z., Meng, Z., Yang, X., Xue, T., Yu, Q., and He, K.: Ground-level ozone pollution and its health impacts in China, Atmos. Environ., 173, 223–230, https://doi.org/10.1016/j.atmosenv.2017.11.014, 2018.
Liu, J., Ding, J., Rexiding, M., Li, X., Zhang, J., Ran, S., Bao, Q., and Ge, X.: Characteristics of dust aerosols and identification of dust sources in Xinjiang, China, Atmos. Environ., 262, 118651, https://doi.org/10.1016/j.atmosenv.2021.118651, 2021.
Liu, Y. C., Zhan, J. L., Zheng, F. X., Song, B. Y., Zhang, Y. S., Ma, W., Hua, C. J., Xie, J. L., Bao, X. L., Yan, C., Bianchi, F., Petaja, T., Ding, A. J., Song, Y., He, H., and Kulmala, M.: Dust emission reduction enhanced gas-to-particle conversion of ammonia in the North China Plain, Nat. Commun., 13, 6887, https://doi.org/10.1038/s41467-022-34733-4, 2022.
Ma, S. Q., Zhang, X. L., Gao, C., Tong, Q. S., Xiu, A. J., Zhao, H. M., and Zhang, S. C.: Simulating Performance of CHIMERE on a Late Autumnal Dust Storm over Northern China, Sustainability-Basel, 11, 1074, https://doi.org/10.3390/su11041074, 2019.
Malm, W. C., Sisler, J. F., Huffman, D., Eldred, R. A., and Cahill, T. A.: Spatial and seasonal trends in particle concentration and optical extinction in the United States, J. Geophys. Res.-Atmos., 99, 1347–1370, https://doi.org/10.1029/93JD02916, 1994.
Mcneil, W. R. and Carswell, A. I.: Lidar Polarization Studies of Troposphere, Appl. Opt., 14, 2158–2168, 1975.
Nagashima, K., Suzuki, Y., Irino, T., Nakagawa, T., Tada, R., Hara, Y., Yamada, K., and Kurosaki, Y.: Asian dust transport during the last century recorded in Lake Suigetsu sediments, Geophys. Res. Lett., 43, 2835–2842, https://doi.org/10.1002/2015GL067589, 2016.
Nenes, A., Pandis, S. N., and Pilinis, C.: ISORROPIA: A new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols, Aquat. Geochem., 4, 123–152, https://doi.org/10.1023/a:1009604003981, 1998.
Patel, A. and Rastogi, N.: Chemical Composition and Oxidative Potential of Atmospheric PM10 over the Arabian Sea, ACS Earth Space Chem., 4, 112–121, https://doi.org/10.1021/acsearthspacechem.9b00285, 2020.
Perez, N., Pey, J., Reche, C., Cortes, J., Alastuey, A., and Querol, X.: Impact of harbour emissions on ambient PM10 and PM2.5 in Barcelona (Spain): Evidences of secondary aerosol formation within the urban area, Sci. Total Environ., 571, 237–250, https://doi.org/10.1016/j.scitotenv.2016.07.025, 2016.
Shen, L., Zhao, C., Ma, Z., Li, Z., Li, J., and Wang, K.: Observed decrease of summer sea-land breeze in Shanghai from 1994 to 2014 and its association with urbanization, Atmos. Res., 227, 198–209, https://doi.org/10.1016/j.atmosres.2019.05.007, 2019.
Shimizu, A., Sugimoto, N., Matsui, I., Arao, K., Uno, I., Murayama, T., Kagawa, N., Aoki, K., Uchiyama, A., and Yamazaki, A.: Continuous observations of Asian dust and other aerosols by polarization lidars in China and Japan during ACE-Asia, J. Geophys. Res., 109, D19S17, https://doi.org/10.1029/2002JD003253, 2004.
Song, S., Gao, M., Xu, W., Shao, J., Shi, G., Wang, S., Wang, Y., Sun, Y., and McElroy, M. B.: Fine-particle pH for Beijing winter haze as inferred from different thermodynamic equilibrium models, Atmos. Chem. Phys., 18, 7423–7438, https://doi.org/10.5194/acp-18-7423-2018, 2018.
Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., and Ngan, F.: NOAA's HYSPLIT Atmospheric Transport and Dispersion Modeling System, B. Am. Meteorol. Soc., 96, 2059–2077, 2015.
Su, L., Yuan, Z., Fung, J. C. H., and Lau, A. K. H.: A comparison of HYSPLIT backward trajectories generated from two GDAS datasets, Sci. Total Environ., 506–507, 527–537, https://doi.org/10.1016/j.scitotenv.2014.11.072, 2015.
Tang, M., Cziczo, D. J., and Grassian, V. H.: Interactions of Water with Mineral Dust Aerosol: Water Adsorption, Hygroscopicity, Cloud Condensation, and Ice Nucleation, Chem. Rev., 116, 4205–4259, https://doi.org/10.1021/acs.chemrev.5b00529, 2016.
Tang, M., Huang, X., Lu, K., Ge, M., Li, Y., Cheng, P., Zhu, T., Ding, A., Zhang, Y., Gligorovski, S., Song, W., Ding, X., Bi, X., and Wang, X.: Heterogeneous reactions of mineral dust aerosol: implications for tropospheric oxidation capacity, Atmos. Chem. Phys., 17, 11727–11777, https://doi.org/10.5194/acp-17-11727-2017, 2017.
Tian, R., Ma, X., Sha, T., Pan, X., and Wang, Z.: Exploring dust heterogeneous chemistry over China: Insights from field observation and GEOS-Chem simulation, Sci. Total Environ., 798, 149307, https://doi.org/10.1016/j.scitotenv.2021.149307, 2021.
Wang, G., Chen, J., Xu, J., Yun, L., Zhang, M., Li, H., Qin, X., Deng, C., Zheng, H., Gui, H., Liu, J., and Huang, K.: Atmospheric processing at the sea-land interface over the South China Sea: secondary aerosol formation, aerosol acidity, and role of sea salts, J. Geophys. Res.-Atmos., 127, e2021JD036255, https://doi.org/10.1029/2021JD036255, 2022.
Wang, G. H., Cheng, C. L., Huang, Y., Tao, J., Ren, Y. Q., Wu, F., Meng, J. J., Li, J. J., Cheng, Y. T., Cao, J. J., Liu, S. X., Zhang, T., Zhang, R., and Chen, Y. B.: Evolution of aerosol chemistry in Xi'an, inland China, during the dust storm period of 2013 – Part 1: Sources, chemical forms and formation mechanisms of nitrate and sulfate, Atmos. Chem. Phys., 14, 11571–11585, https://doi.org/10.5194/acp-14-11571-2014, 2014.
Wang, H. C. and Lu, K. D.: Determination and Parameterization of the Heterogeneous Uptake Coefficient of Dinitrogen Pentoxide (N2O5), Prog. Chem., 28, 917–933, https://doi.org/10.7536/Pc151225, 2016.
Wang, J. J., Zhang, M. G., Bai, X. L., Tan, H. J., Li, S., Liu, J. P., Zhang, R., Wolters, M. A., Qin, X. Y., Zhang, M. M., Lin, H. M., Li, Y. N., Li, J., and Chen, L. Q.: Large-scale transport of PM2.5 in the lower troposphere during winter cold surges in China, Sci. Rep.-UK, 7, 13238, https://doi.org/10.1038/s41598-017-13217-2, 2017.
Wang, L., Du, H., Chen, J., Zhang, M., Huang, X., Tan, H., Kong, L., and Geng, F.: Consecutive transport of anthropogenic air masses and dust storm plume: Two case events at Shanghai, China, Atmos. Res., 127, 22–33, https://doi.org/10.1016/j.atmosres.2013.02.011, 2013.
Wang, N., Zheng, P., Wang, R., Wei, B., An, Z., Li, M., Xie, J., Wang, Z., Wang, H., and He, M.: Homogeneous and heterogeneous atmospheric ozonolysis of acrylonitrile on the mineral dust aerosols surface, Journal of Environmental Chemical Engineering, 9, 106654, https://doi.org/10.1016/j.jece.2021.106654, 2021.
Wang, Q., Wang, X., Huang, R., Wu, J., Xiao, Y., Hu, M., Fu, Q., Duan, Y., and Chen, J.-M.: Regional Transport of PM2.5 and O3 Based on Complex Network Method and Chemical Transport Model in the Yangtze River Delta, China, J. Geophys. Res.-Atmos., 127, e2021JD034807, https://doi.org/10.1029/2021JD034807, 2022.
Wang, Z., Pan, X. L., Uno, I., Chen, X. S., Yamamoto, S., Zheng, H. T., Li, J., and Wang, Z. F.: Importance of mineral dust and anthropogenic pollutants mixing during a long-lasting high PM event over East Asia, Environ. Pollut., 234, 368–378, https://doi.org/10.1016/j.envpol.2017.11.068, 2018.
Wang, Z. L., Huang, X., Wang, N., Xu, J. W., and Ding, A. J.: Aerosol-Radiation Interactions of Dust Storm Deteriorate Particle and Ozone Pollution in East China, J. Geophys. Res.-Atmos., 125, e2020JD033601, https://doi.org/10.1029/2020JD033601, 2020.
West, J. J., Ansari, A. S., and Pandis, S. N.: Marginal PM25: Nonlinear Aerosol Mass Response to Sulfate Reductions in the Eastern United States, J. Air Waste Manage., 49, 1415–1424, https://doi.org/10.1080/10473289.1999.10463973, 1999.
Wu, C., Zhang, S., Wang, G., Lv, S., Li, D., Liu, L., Li, J., Liu, S., Du, W., Meng, J., Qiao, L., Zhou, M., Huang, C., and Wang, H.: Efficient Heterogeneous Formation of Ammonium Nitrate on the Saline Mineral Particle Surface in the Atmosphere of East Asia during Dust Storm Periods, Environ. Sci. Technol., 54, 15622–15630, https://doi.org/10.1021/acs.est.0c04544, 2020.
Wu, F., Cheng, Y., Hu, T. F., Song, N., Zhang, F., Shi, Z. B., Ho, S. S. H., Cao, J. J., and Zhang, D. Z.: Saltation-Sandblasting Processes Driving Enrichment of Water- Soluble Salts in Mineral Dust, Environ. Sci. Tech. Let., 9, 921–928, https://doi.org/10.1021/acs.estlett.2c00652, 2022.
Xie, S. D., Yu, T., Zhang, Y. H., Zeng, L. M., Qi, L., and Tang, X. Y.: Characteristics of PM10, SO2, NO, and O3 in ambient air during the dust storm period in Beijing, Sci. Total Environ., 345, 153–164, https://doi.org/10.1016/j.scitotenv.2004.10.013, 2005.
Xu, J., Chen, J., Zhao, N., Wang, G., Yu, G., Li, H., Huo, J., Lin, Y., Fu, Q., Guo, H., Deng, C., Lee, S.-H., Chen, J., and Huang, K.: Importance of gas-particle partitioning of ammonia in haze formation in the rural agricultural environment, Atmos. Chem. Phys., 20, 7259–7269, https://doi.org/10.5194/acp-20-7259-2020, 2020.
Xu, P., Zhang, J. K., Ji, D. S., Liu, Z. R., Tang, G. Q., Hu, B., Jiang, C. S., and Wang, Y. S.: Evaluating the Effects of Springtime Dust Storms over Beijing and the Associated Characteristics of Sub-Micron Aerosol, Aerosol Air Qual. Res., 17, 680–692, https://doi.org/10.4209/aaqr.2016.05.0195, 2017.
Yang, Y., Wang, Z. L., Lou, S. J., Xue, L., Lu, J. P., Wang, H. Y., Wang, J. D., Ding, A. J., and Huang, X.: Strong ozone intrusions associated with super dust storms in East Asia, Atmos. Environ., 290, 119355, https://doi.org/10.1016/j.atmosenv.2022.119355, 2022.
Yu, S. C., Dennis, R., Roselle, S., Nenes, A., Walker, J., Eder, B., Schere, K., Swall, J., and Robarge, W.: An assessment of the ability of three-dimensional air quality models with current thermodynamic equilibrium models to predict aerosol NO3, J. Geophys. Res.-Atmos., 110, D07S13, https://doi.org/10.1029/2004jd004718, 2005.
Zhang, D., Iwasaka, Y., Shi, G., Zang, J., Hu, M., and Li, C.: Separated status of the natural dust plume and polluted air masses in an Asian dust storm event at coastal areas of China, J. Geophys. Res.-Atmos., 110, D06302, https://doi.org/10.1029/2004jd005305, 2005.
Zhang, S. P., Xing, J., Sarwar, G., Ge, Y. L., He, H., Duan, F. K., Zhao, Y., He, K. B., Zhu, L. D., and Chu, B. W.: Parameterization of heterogeneous reaction of SO2 to sulfate on dust with coexistence of NH3 and NO2 under different humidity conditions, Atmos. Environ., 208, 133–140, https://doi.org/10.1016/j.atmosenv.2019.04.004, 2019.
Zhang, X. L., Wu, G. J., Zhang, C. L., Xu, T. L., and Zhou, Q. Q.: What is the real role of iron oxides in the optical properties of dust aerosols?, Atmos. Chem. Phys., 15, 12159–12177, https://doi.org/10.5194/acp-15-12159-2015, 2015.
Zhao, D., Xin, J., Wang, W., Jia, D., Wang, Z., Xiao, H., Liu, C., Zhou, J., Tong, L., Ma, Y., Wen, T.-X., Wu, F.-K., and Wang, L.: Effects of the sea-land breeze on coastal ozone pollution in the Yangtze River Delta, Sci. Total Environ., 807, 150306, https://doi.org/10.1016/j.scitotenv.2021.150306, 2021.
Zheng, G. J., Duan, F. K., Su, H., Ma, Y. L., Cheng, Y., Zheng, B., Zhang, Q., Huang, T., Kimoto, T., Chang, D., Pöschl, U., Cheng, Y. F., and He, K. B.: Exploring the severe winter haze in Beijing: the impact of synoptic weather, regional transport and heterogeneous reactions, Atmos. Chem. Phys., 15, 2969–2983, https://doi.org/10.5194/acp-15-2969-2015, 2015.
Zheng, Y., Zhao, T., Che, H., Liu, Y., Han, Y., Liu, C., Xiong, J., Liu, J., and Zhou, Y.: A 20-year simulated climatology of global dust aerosol deposition, Sci. Total Environ., 557–558, 861–868, https://doi.org/10.1016/j.scitotenv.2016.03.086, 2016.
Short summary
Environmental conditions during dust are usually not favorable for secondary aerosol formation. However in this study, an unusual dust event was captured in a Chinese mega-city and showed “anomalous” meteorology and a special dust backflow transport pathway. The underlying formation mechanisms of secondary aerosols are probed in the context of this special dust event. This study shows significant implications for the varying dust aerosol chemistry in the future changing climate.
Environmental conditions during dust are usually not favorable for secondary aerosol formation....
Altmetrics
Final-revised paper
Preprint