Articles | Volume 23, issue 2
https://doi.org/10.5194/acp-23-1329-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-1329-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Characteristics of fine particle matter at the top of Shanghai Tower
Changqin Yin
Shanghai Key Laboratory of Meteorology and Health, Shanghai 200030, China
Jianming Xu
CORRESPONDING AUTHOR
Shanghai Key Laboratory of Meteorology and Health, Shanghai 200030, China
Wei Gao
Shanghai Key Laboratory of Meteorology and Health, Shanghai 200030, China
Liang Pan
Shanghai Key Laboratory of Meteorology and Health, Shanghai 200030, China
Yixuan Gu
Shanghai Key Laboratory of Meteorology and Health, Shanghai 200030, China
Qingyan Fu
Shanghai Environmental Monitoring Center, Shanghai 200433, China
Fan Yang
Pudong New Area Environmental Monitoring Station, Shanghai
200032, China
Related authors
Miaomiao Zhai, Ye Kuang, Li Liu, Yao He, Biao Luo, Wanyun Xu, Jiangchuan Tao, Yu Zou, Fei Li, Changqin Yin, Chunhui Li, Hanbing Xu, and Xuejiao Deng
Atmos. Chem. Phys., 23, 5119–5133, https://doi.org/10.5194/acp-23-5119-2023, https://doi.org/10.5194/acp-23-5119-2023, 2023
Short summary
Short summary
Using year-long aerosol mass spectrometer measurements, roles of secondary organic aerosols (SOA) during haze formations in an urban area of southern China were systematically analyzed. Almost all severe haze events were accompanied by continuous daytime and nighttime SOA formations, whereas coordinated gas-phase photochemistry and aqueous-phase reactions likely played significant roles in quick daytime SOA formations, and nitrate radicals played significant roles in nighttime SOA formations.
Li Liu, Ye Kuang, Miaomiao Zhai, Biao Xue, Yao He, Jun Tao, Biao Luo, Wanyun Xu, Jiangchuan Tao, Changqin Yin, Fei Li, Hanbing Xu, Tao Deng, Xuejiao Deng, Haobo Tan, and Min Shao
Atmos. Chem. Phys., 22, 7713–7726, https://doi.org/10.5194/acp-22-7713-2022, https://doi.org/10.5194/acp-22-7713-2022, 2022
Short summary
Short summary
Using simultaneous measurements of a humidified nephelometer system and an aerosol chemical speciation monitor in winter in Guangzhou, the strongest scattering ability of more oxidized oxygenated organic aerosol (MOOA) among aerosol components considering their dry-state scattering ability and water uptake ability was revealed, leading to large impacts of MOOA on visibility degradation. This has important implications for visibility improvement in China and aerosol radiative effect simulation.
Guangyuan Yu, Yan Zhang, Qian Wang, Zimin Han, Shenglan Jiang, Fan Yang, Xin Yang, and Cheng Huang
Atmos. Chem. Phys., 25, 9497–9518, https://doi.org/10.5194/acp-25-9497-2025, https://doi.org/10.5194/acp-25-9497-2025, 2025
Short summary
Short summary
China has carried out staged low-sulfur fuel policies since 2017. This study simulated the changing spatiotemporal patterns of the impacts of ship emissions on PM2.5 from 2017 to 2021 based on the updated emission inventories and mapping of chemical species in the CMAQ (Community Multiscale Air Quality). Fuel policies caused evident relative changes in inorganic and organic components of the shipping-related PM2.5 over China’s port cities. The driving factors of the interannual, seasonal, and diurnal patterns were discussed.
Zheng Li, Gehui Wang, Binyu Xiao, Rongjie Li, Can Wu, Shaojun Lv, Feng Wu, Qingyan Fu, and Yusen Duan
EGUsphere, https://doi.org/10.5194/egusphere-2025-654, https://doi.org/10.5194/egusphere-2025-654, 2025
Short summary
Short summary
Gas-to-aerosol partitioning of organics were investigated in Shanghai during 2023 dust storm period. We found the partitioning coefficients (Fp) of WSOCs in DS were comparable to those during a haze episode (HE), and aerosol liquid water content primarily drove Fp variation in HE, while pH was the dominant factor in DS. Moreover, an enhanced light absorption of Asian dust by brown carbon, mainly in coarse mode, formation was revealed.
Xiaofei Qin, Hao Li, Jia Chen, Junjie Wei, Hao Ding, Xiaohao Wang, Guochen Wang, Chengfeng Liu, Da Lu, Shengqian Zhou, Haowen Li, Yucheng Zhu, Ziwei Liu, Qingyan Fu, Juntao Huo, Yanfen Lin, Congrui Deng, Yisheng Zhang, and Kan Huang
EGUsphere, https://doi.org/10.5194/egusphere-2025-623, https://doi.org/10.5194/egusphere-2025-623, 2025
Short summary
Short summary
Mercury is a persistent toxic pollutant that has equally important anthropogenic and natural sources. This study developed a quantitative method on separating the anthropogenic and natural contributions of total gaseous mercury. The underlying impacts on the sea-air exchange fluxes of mercury are evaluated. The new method developed in this study can be reproducible in other regions and the findings are innovative in the field of mercury sources and biogeochemical cycles.
Ke Li, Rong Tan, Wenhao Qiao, Taegyung Lee, Yufen Wang, Danyuting Zhang, Minglong Tang, Wenqing Zhao, Yixuan Gu, Shaojia Fan, Jinqiang Zhang, Xiaopu Lyu, Likun Xue, Jianming Xu, Zhiqiang Ma, Mohd Talib Latif, Teerachai Amnuaylojaroen, Junsu Gil, Mee-Hye Lee, Juseon Bak, Joowan Kim, Hong Liao, Yugo Kanaya, Xiao Lu, Tatsuya Nagashima, and Ja-Ho Koo
EGUsphere, https://doi.org/10.5194/egusphere-2024-3756, https://doi.org/10.5194/egusphere-2024-3756, 2025
Short summary
Short summary
East Asia and Southeast Asia has been identified as a global hot spot with the fastest ozone increase. This paper presents the most comprehensive observational view of ozone distributions and evolution over East Asia and Southeast Asia across different spatiotemporal scales in the past two decades, which will have important implications for assessing ozone impacts on public health and crop yields, and for developing future ozone control strategies.
Shuai Wang, Mengyuan Zhang, Hui Zhao, Peng Wang, Sri Harsha Kota, Qingyan Fu, Cong Liu, and Hongliang Zhang
Earth Syst. Sci. Data, 16, 3565–3577, https://doi.org/10.5194/essd-16-3565-2024, https://doi.org/10.5194/essd-16-3565-2024, 2024
Short summary
Short summary
Long-term, open-source, gap-free daily ground-level PM2.5 and PM10 datasets for India (LongPMInd) were reconstructed using a robust machine learning model to support health assessment and air quality management.
Zijun Zhang, Weiqi Xu, Yi Zhang, Wei Zhou, Xiangyu Xu, Aodong Du, Yinzhou Zhang, Hongqin Qiao, Ye Kuang, Xiaole Pan, Zifa Wang, Xueling Cheng, Lanzhong Liu, Qingyan Fu, Douglas R. Worsnop, Jie Li, and Yele Sun
Atmos. Chem. Phys., 24, 8473–8488, https://doi.org/10.5194/acp-24-8473-2024, https://doi.org/10.5194/acp-24-8473-2024, 2024
Short summary
Short summary
We investigated aerosol composition and sources and the interaction between secondary organic aerosol (SOA) and clouds at a regional mountain site in southeastern China. Clouds efficiently scavenge more oxidized SOA; however, cloud evaporation leads to the production of less oxidized SOA. The unexpectedly high presence of nitrate in aerosol particles indicates that nitrate formed in polluted areas has undergone interactions with clouds, significantly influencing the regional background site.
Shuai Wang, Mengyuan Zhang, Yueqi Gao, Peng Wang, Qingyan Fu, and Hongliang Zhang
Geosci. Model Dev., 17, 3617–3629, https://doi.org/10.5194/gmd-17-3617-2024, https://doi.org/10.5194/gmd-17-3617-2024, 2024
Short summary
Short summary
Numerical models are widely used in air pollution modeling but suffer from significant biases. The machine learning model designed in this study shows high efficiency in identifying such biases. Meteorology (relative humidity and cloud cover), chemical composition (secondary organic components and dust aerosols), and emission sources (residential activities) are diagnosed as the main drivers of bias in modeling PM2.5, a typical air pollutant. The results will help to improve numerical models.
Song Gao, Yong Yang, Xiao Tong, Linyuan Zhang, Yusen Duan, Guigang Tang, Qiang Wang, Changqing Lin, Qingyan Fu, Lipeng Liu, and Lingning Meng
Atmos. Meas. Tech., 16, 5709–5723, https://doi.org/10.5194/amt-16-5709-2023, https://doi.org/10.5194/amt-16-5709-2023, 2023
Short summary
Short summary
We optimized and conducted an experimental program for the real-time monitoring of non-methane hydrocarbon instruments using the direct method. Changing the enrichment and specially designed columns further improved the test effect. The results correct the measurement errors that have prevailed for many years and can lay a foundation for the evaluation of volatile organic compounds in the regional ambient air and provide direction for the measurement of low-concentration ambient air pollutants.
Da Lu, Hao Li, Mengke Tian, Guochen Wang, Xiaofei Qin, Na Zhao, Juntao Huo, Fan Yang, Yanfen Lin, Jia Chen, Qingyan Fu, Yusen Duan, Xinyi Dong, Congrui Deng, Sabur F. Abdullaev, and Kan Huang
Atmos. Chem. Phys., 23, 13853–13868, https://doi.org/10.5194/acp-23-13853-2023, https://doi.org/10.5194/acp-23-13853-2023, 2023
Short summary
Short summary
Environmental conditions during dust are usually not favorable for secondary aerosol formation. However in this study, an unusual dust event was captured in a Chinese mega-city and showed “anomalous” meteorology and a special dust backflow transport pathway. The underlying formation mechanisms of secondary aerosols are probed in the context of this special dust event. This study shows significant implications for the varying dust aerosol chemistry in the future changing climate.
Meng Wang, Yusen Duan, Zhuozhi Zhang, Qi Yuan, Xinwei Li, Shuwen Han, Juntao Huo, Jia Chen, Yanfen Lin, Qingyan Fu, Tao Wang, Junji Cao, and Shun-cheng Lee
Atmos. Chem. Phys., 23, 10313–10324, https://doi.org/10.5194/acp-23-10313-2023, https://doi.org/10.5194/acp-23-10313-2023, 2023
Short summary
Short summary
Hourly elemental carbon (EC) and NOx were continuously measured for 5 years (2016–2020) at a sampling site near a highway in western Shanghai. We use a machine learning model to rebuild the measured EC and NOx, and a business-as-usual (BAU) scenario was assumed in 2020 and compared with the measured EC and NOx.
Miaomiao Zhai, Ye Kuang, Li Liu, Yao He, Biao Luo, Wanyun Xu, Jiangchuan Tao, Yu Zou, Fei Li, Changqin Yin, Chunhui Li, Hanbing Xu, and Xuejiao Deng
Atmos. Chem. Phys., 23, 5119–5133, https://doi.org/10.5194/acp-23-5119-2023, https://doi.org/10.5194/acp-23-5119-2023, 2023
Short summary
Short summary
Using year-long aerosol mass spectrometer measurements, roles of secondary organic aerosols (SOA) during haze formations in an urban area of southern China were systematically analyzed. Almost all severe haze events were accompanied by continuous daytime and nighttime SOA formations, whereas coordinated gas-phase photochemistry and aqueous-phase reactions likely played significant roles in quick daytime SOA formations, and nitrate radicals played significant roles in nighttime SOA formations.
Yizhen Wu, Juntao Huo, Gan Yang, Yuwei Wang, Lihong Wang, Shijian Wu, Lei Yao, Qingyan Fu, and Lin Wang
Atmos. Chem. Phys., 23, 2997–3014, https://doi.org/10.5194/acp-23-2997-2023, https://doi.org/10.5194/acp-23-2997-2023, 2023
Short summary
Short summary
Based on a field campaign in a suburban area of Shanghai during summer 2021, we calculated formaldehyde (HCHO) production rates from 24 volatile organic compounds (VOCs). In addition, HCHO photolysis, reactions with OH radicals, and dry deposition were considered for the estimation of HCHO loss rates. Our results reveal the key precursors of HCHO and suggest that HCHO wet deposition may be an important loss term on cloudy and rainy days, which needs to be further investigated.
Xiaofei Qin, Shengqian Zhou, Hao Li, Guochen Wang, Cheng Chen, Chengfeng Liu, Xiaohao Wang, Juntao Huo, Yanfen Lin, Jia Chen, Qingyan Fu, Yusen Duan, Kan Huang, and Congrui Deng
Atmos. Chem. Phys., 22, 15851–15865, https://doi.org/10.5194/acp-22-15851-2022, https://doi.org/10.5194/acp-22-15851-2022, 2022
Short summary
Short summary
Using artificial neural network modeling and an explainable analysis approach, natural surface emissions (NSEs) were identified as a main driver of gaseous elemental mercury (GEM) variations during the COVID-19 lockdown. A sharp drop in GEM concentrations due to a significant reduction in anthropogenic emissions may disrupt the surface–air exchange balance of Hg, leading to increases in NSEs. This implies that NSEs may pose challenges to the future control of Hg pollution.
Meng Wang, Yusen Duan, Wei Xu, Qiyuan Wang, Zhuozhi Zhang, Qi Yuan, Xinwei Li, Shuwen Han, Haijie Tong, Juntao Huo, Jia Chen, Shan Gao, Zhongbiao Wu, Long Cui, Yu Huang, Guangli Xiu, Junji Cao, Qingyan Fu, and Shun-cheng Lee
Atmos. Chem. Phys., 22, 12789–12802, https://doi.org/10.5194/acp-22-12789-2022, https://doi.org/10.5194/acp-22-12789-2022, 2022
Short summary
Short summary
In this study, we report the long-term measurement of organic carbon (OC) and elementary carbon (EC) in PM2.5 with hourly time resolution conducted at a regional site in Shanghai from 2016 to 2020. The results from this study provide critical information about the long-term trend of carbonaceous aerosol, in particular secondary OC, in one of the largest megacities in the world and are helpful for developing pollution control measures from a long-term planning perspective.
Li Liu, Ye Kuang, Miaomiao Zhai, Biao Xue, Yao He, Jun Tao, Biao Luo, Wanyun Xu, Jiangchuan Tao, Changqin Yin, Fei Li, Hanbing Xu, Tao Deng, Xuejiao Deng, Haobo Tan, and Min Shao
Atmos. Chem. Phys., 22, 7713–7726, https://doi.org/10.5194/acp-22-7713-2022, https://doi.org/10.5194/acp-22-7713-2022, 2022
Short summary
Short summary
Using simultaneous measurements of a humidified nephelometer system and an aerosol chemical speciation monitor in winter in Guangzhou, the strongest scattering ability of more oxidized oxygenated organic aerosol (MOOA) among aerosol components considering their dry-state scattering ability and water uptake ability was revealed, leading to large impacts of MOOA on visibility degradation. This has important implications for visibility improvement in China and aerosol radiative effect simulation.
Han Zang, Yue Zhao, Juntao Huo, Qianbiao Zhao, Qingyan Fu, Yusen Duan, Jingyuan Shao, Cheng Huang, Jingyu An, Likun Xue, Ziyue Li, Chenxi Li, and Huayun Xiao
Atmos. Chem. Phys., 22, 4355–4374, https://doi.org/10.5194/acp-22-4355-2022, https://doi.org/10.5194/acp-22-4355-2022, 2022
Short summary
Short summary
Particulate nitrate plays an important role in wintertime haze pollution in eastern China, yet quantitative constraints on detailed nitrate formation mechanisms remain limited. Here we quantified the contributions of the heterogeneous N2O5 hydrolysis (66 %) and gas-phase OH + NO2 reaction (32 %) to nitrate formation in this region and identified the atmospheric oxidation capacity (i.e., availability of O3 and OH radicals) as the driving factor of nitrate formation from both processes.
Kun Zhang, Ling Huang, Qing Li, Juntao Huo, Yusen Duan, Yuhang Wang, Elly Yaluk, Yangjun Wang, Qingyan Fu, and Li Li
Atmos. Chem. Phys., 21, 5905–5917, https://doi.org/10.5194/acp-21-5905-2021, https://doi.org/10.5194/acp-21-5905-2021, 2021
Short summary
Short summary
Recently, high O3 concentrations were frequently observed in rural areas of the Yangtze River Delta (YRD) region under stagnant conditions. Using an online measurement and observation-based model, we investigated the budget of ROx radicals and the influence of isoprene chemistry on O3 formation. Our results underline that isoprene chemistry in the rural atmosphere becomes important with the participation of anthropogenic NOx.
Tongqiang Liu, Qianshan He, Yonghang Chen, Jie Liu, Qiong Liu, Wei Gao, Guan Huang, Wenhao Shi, and Xiaohong Yu
Atmos. Chem. Phys., 21, 5377–5391, https://doi.org/10.5194/acp-21-5377-2021, https://doi.org/10.5194/acp-21-5377-2021, 2021
Short summary
Short summary
The variation in aerosol 355 nm lidar ratio and its influence factors were analyzed in Shanghai. About 90 % of the lidar ratio was distributed in 10 sr–80 sr, with an average of 41.0±22.5 sr, and the lidar ratio decreased with the increase in height. Due to aerosol radiative effects, the vertical slope of the lidar ratio presented a decreasing trend with increasing atmospheric turbidity. A large lidar ratio above 1 km was related to biomass burning aerosols and high relative humidity.
Yijing Chen, Qianli Ma, Weili Lin, Xiaobin Xu, Jie Yao, and Wei Gao
Atmos. Chem. Phys., 20, 15969–15982, https://doi.org/10.5194/acp-20-15969-2020, https://doi.org/10.5194/acp-20-15969-2020, 2020
Short summary
Short summary
CO is one of the major air pollutants. Our study showed that the long-term CO levels at a background station in one of the most developed areas of China decreased significantly and verified that this downward trend was attributed to the decrease in anthropogenic emissions, which indicated that the adopted pollution control policies were effective. Also, this decrease has an implication for the atmospheric chemistry considering the negative correlation between CO levels and OH radical's lifetime.
Yixuan Gu, Fengxia Yan, Jianming Xu, Yuanhao Qu, Wei Gao, Fangfang He, and Hong Liao
Atmos. Chem. Phys., 20, 14361–14375, https://doi.org/10.5194/acp-20-14361-2020, https://doi.org/10.5194/acp-20-14361-2020, 2020
Short summary
Short summary
High levels and statistically insignificant changes of ozone are detected at a remote monitoring site on Sheshan Island in Shanghai, China, from 2012 to 2017; 6-year observations suggest regional transport exerted minimum influence on the offshore oceanic air in September and October. Both city plumes and oceanic air inflows could contribute to ozone enhancements in Shanghai, and the latter are found to lead to 20–30 % increases in urban ozone concentrations based on WRF-Chem simulations.
Rui Li, Qiongqiong Wang, Xiao He, Shuhui Zhu, Kun Zhang, Yusen Duan, Qingyan Fu, Liping Qiao, Yangjun Wang, Ling Huang, Li Li, and Jian Zhen Yu
Atmos. Chem. Phys., 20, 12047–12061, https://doi.org/10.5194/acp-20-12047-2020, https://doi.org/10.5194/acp-20-12047-2020, 2020
Xiaofei Qin, Leiming Zhang, Guochen Wang, Xiaohao Wang, Qingyan Fu, Jian Xu, Hao Li, Jia Chen, Qianbiao Zhao, Yanfen Lin, Juntao Huo, Fengwen Wang, Kan Huang, and Congrui Deng
Atmos. Chem. Phys., 20, 10985–10996, https://doi.org/10.5194/acp-20-10985-2020, https://doi.org/10.5194/acp-20-10985-2020, 2020
Short summary
Short summary
The uncertainties in mercury emissions are much larger from natural sources than anthropogenic sources. A method was developed to quantify the contributions of natural surface emissions to ambient GEM based on PMF modeling. The annual GEM concentration in eastern China showed a decreasing trend from 2015 to 2018, while the relative contribution of natural surface emissions increased significantly from 41 % in 2015 to 57 % in 2018, gradually surpassing those from anthropogenic sources.
Cited articles
Aldhaif, A. M., Stahl, C., Braun, R. A., Moghaddam, M. A., Shingler, T.,
Crosbie, E., Sawamura, P., Dadashazar, H., Ziemba, L., Jimenez, J. L.,
Campuzano-Jost, P., and Sorooshian, A.: Characterization of the Real Part of
Dry Aerosol Refractive Index Over North America From the Surface to 12 km,
J. Geophys. Res.-Atmos., 123, 8283–8300,
https://doi.org/10.1029/2018jd028504, 2018.
Bahreini, R., Jimenez, J. L., Wang, J., Flagan, R. C., Seinfeld, J. H.,
Jayne, J. T., and Worsnop, D. R.: Aircraft-based aerosol size and
composition measurements during ACE-Asia using an Aerodyne aerosol mass
spectrometer, J. Geophys. Res.-Atmos., 108, 8645,
https://doi.org/10.1029/2002jd003226, 2003.
Brooks, J., Allan, J. D., Williams, P. I., Liu, D., Fox, C., Haywood, J., Langridge, J. M., Highwood, E. J., Kompalli, S. K., O'Sullivan, D., Babu, S. S., Satheesh, S. K., Turner, A. G., and Coe, H.: Vertical and horizontal distribution of submicron aerosol chemical composition and physical characteristics across northern India during pre-monsoon and monsoon seasons, Atmos. Chem. Phys., 19, 5615–5634, https://doi.org/10.5194/acp-19-5615-2019, 2019.
Brown, S. S., Dubé, W. P., Bahreini, R., Middlebrook, A. M., Brock, C. A., Warneke, C., de Gouw, J. A., Washenfelder, R. A., Atlas, E., Peischl, J., Ryerson, T. B., Holloway, J. S., Schwarz, J. P., Spackman, R., Trainer, M., Parrish, D. D., Fehshenfeld, F. C., and Ravishankara, A. R.: Biogenic VOC oxidation and organic aerosol formation in an urban nocturnal boundary layer: aircraft vertical profiles in Houston, TX, Atmos. Chem. Phys., 13, 11317–11337, https://doi.org/10.5194/acp-13-11317-2013, 2013.
Canagaratna, M. R., Jayne, J. T., Jimenez, J. L., Allan, J. D., Alfarra, M.
R., Zhang, Q., Onasch, T. B., Drewnick, F., Coe, H., Middlebrook, A., Delia,
A., Williams, L. R., Trimborn, A. M., Northway, M. J., DeCarlo, P. F., Kolb,
C. E., Davidovits, P., and Worsnop, D. R.: Chemical and microphysical
characterization of ambient aerosols with the aerodyne aerosol mass
spectrometer, Mass Spectrom. Rev., 26, 185–222, https://doi.org/10.1002/mas.20115,
2007.
Canonaco, F., Crippa, M., Slowik, J. G., Baltensperger, U., and Prévôt, A. S. H.: SoFi, an IGOR-based interface for the efficient use of the generalized multilinear engine (ME-2) for the source apportionment: ME-2 application to aerosol mass spectrometer data, Atmos. Meas. Tech., 6, 3649–3661, https://doi.org/10.5194/amt-6-3649-2013, 2013.
Chen, C., Sun, Y. L., Xu, W. Q., Du, W., Zhou, L. B., Han, T. T., Wang, Q. Q., Fu, P. Q., Wang, Z. F., Gao, Z. Q., Zhang, Q., and Worsnop, D. R.: Characteristics and sources of submicron aerosols above the urban canopy (260 m) in Beijing, China, during the 2014 APEC summit, Atmos. Chem. Phys., 15, 12879–12895, https://doi.org/10.5194/acp-15-12879-2015, 2015.
Chen, C. R., Zhang, H. X., Yan, W. J., Wu, N. A., Zhang, Q., and He, K. B.:
Aerosol water content enhancement leads to changes in the major formation
mechanisms of nitrate and secondary organic aerosols in winter over the
North China Plain, Environ. Pollut., 287, 117625,
https://doi.org/10.1016/j.envpol.2021.117625, 2021.
Cui, S., Huang, D. D., Wu, Y., Wang, J., Shen, F., Xian, J., Zhang, Y., Wang, H., Huang, C., Liao, H., and Ge, X.: Chemical properties, sources and size-resolved hygroscopicity of submicron black-carbon-containing aerosols in urban Shanghai, Atmos. Chem. Phys., 22, 8073–8096, https://doi.org/10.5194/acp-22-8073-2022, 2022.
Dai, Q., Schulze, B. C., Bi, X., Bui, A. A. T., Guo, F., Wallace, H. W., Sanchez, N. P., Flynn, J. H., Lefer, B. L., Feng, Y., and Griffin, R. J.: Seasonal differences in formation processes of oxidized organic aerosol near Houston, TX, Atmos. Chem. Phys., 19, 9641–9661, https://doi.org/10.5194/acp-19-9641-2019, 2019.
Duan, J., Huang, R.-J., Lin, C., Dai, W., Wang, M., Gu, Y., Wang, Y., Zhong, H., Zheng, Y., Ni, H., Dusek, U., Chen, Y., Li, Y., Chen, Q., Worsnop, D. R., O'Dowd, C. D., and Cao, J.: Distinctions in source regions and formation mechanisms of secondary aerosol in Beijing from summer to winter, Atmos. Chem. Phys., 19, 10319–10334, https://doi.org/10.5194/acp-19-10319-2019, 2019.
Duan, J., Huang, R.-J., Li, Y., Chen, Q., Zheng, Y., Chen, Y., Lin, C., Ni, H., Wang, M., Ovadnevaite, J., Ceburnis, D., Chen, C., Worsnop, D. R., Hoffmann, T., O'Dowd, C., and Cao, J.: Summertime and wintertime atmospheric processes of secondary aerosol in Beijing, Atmos. Chem. Phys., 20, 3793–3807, https://doi.org/10.5194/acp-20-3793-2020, 2020.
Fröhlich, R., Cubison, M. J., Slowik, J. G., Bukowiecki, N., Canonaco, F., Croteau, P. L., Gysel, M., Henne, S., Herrmann, E., Jayne, J. T., Steinbacher, M., Worsnop, D. R., Baltensperger, U., and Prévôt, A. S. H.: Fourteen months of on-line measurements of the non-refractory submicron aerosol at the Jungfraujoch (3580 m a.s.l.) – chemical composition, origins and organic aerosol sources, Atmos. Chem. Phys., 15, 11373–11398, https://doi.org/10.5194/acp-15-11373-2015, 2015.
Hao, X., Zhang, Y., Yu, G. Y., He, B. S., Yang, F., Zou, Z., Zhang, C. G.,
Yang, X., Ouyang, B., and Chang, Y. H.: Online vertical measurement of air
pollutants: Development of a monitoring platform on a skyscraper and its
application in Shanghai, Atmos. Pollut. Res., 13, 101477, https://doi.org/10.1016/j.apr.2022.101477,
2022.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horanyi, A.,
Munoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons,
A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati,
G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Holm, E., Janiskova, M.,
Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thepaut, J. N.: The ERA5 global
reanalysis, Q. J. Roy. Meteorol. Soc., 146,
1999-2049, https://doi.org/10.1002/qj.3803, 2020.
Hu, W. W., Hu, M., Hu, W., Jimenez, J. L., Yuan, B., Chen, W. T., Wang, M.,
Wu, Y. S., Chen, C., Wang, Z. B., Peng, J. F., Zeng, L. M., and Shao, M.:
Chemical composition, sources, and aging process of submicron aerosols in
Beijing: Contrast between summer and winter, J. Geophys.
Res.-Atmos., 121, 1955–1977, https://doi.org/10.1002/2015jd024020, 2016.
Huang, X.-F., He, L.-Y., Xue, L., Sun, T.-L., Zeng, L.-W., Gong, Z.-H., Hu, M., and Zhu, T.: Highly time-resolved chemical characterization of atmospheric fine particles during 2010 Shanghai World Expo, Atmos. Chem. Phys., 12, 4897–4907, https://doi.org/10.5194/acp-12-4897-2012, 2012.
Kim, K.-Y.: Diurnal and seasonal variation of planetary boundary layer
height over East Asia and its climatic change as seen in the ERA-5
reanalysis data, SN Appl. Sci., 4, 39, https://doi.org/10.1007/s42452-021-04918-5,
2022.
Kulmala, M., Vehkamaki, H., Petaja, T., Dal Maso, M., Lauri, A., Kerminen,
V. M., Birmili, W., and McMurry, P. H.: Formation and growth rates of
ultrafine atmospheric particles: a review of observations, J.
Aerosol Sci., 35, 143–176, https://doi.org/10.1016/j.jaerosci.2003.10.003, 2004.
Liu, Q., Quan, J. N., Jia, X. C., Sun, Z. B., Li, X., Gao, Y., and Liu, Y.
G.: Vertical Profiles of Aerosol Composition over Beijing, China: Analysis
of In Situ Aircraft Measurements, J. Atmos. Sci., 76, 231–245,
https://doi.org/10.1175/jas-d-18-0157.1, 2019.
Liu, T., He, Q., Chen, Y., Liu, J., Liu, Q., Gao, W., Huang, G., Shi, W., and Yu, X.: Long-term variation in aerosol lidar ratio in Shanghai based on Raman lidar measurements, Atmos. Chem. Phys., 21, 5377–5391, https://doi.org/10.5194/acp-21-5377-2021, 2021.
Middlebrook, A. M., Bahreini, R., Jimenez, J. L., and Canagaratna, M. R.:
Evaluation of composition-dependent collection efficiencies for the Aerodyne
aerosol mass spectrometer using field data, Aerosol Sci. Technol., 46,
258–271, https://doi.org/10.1080/02786826.2011.620041, 2012.
Mo, Z., Huang, S., Yuan, B., Pei, C., Song, Q., Qi, J., Wang, M., Wang, B.,
Wang, C., Li, M., Zhang, Q., and Shao, M.: Deriving emission fluxes of
volatile organic compounds from tower observation in the Pearl River Delta,
China, Sci. Total Environ., 741, 139763,
https://doi.org/10.1016/j.scitotenv.2020.139763, 2020.
Ng, N. L., Canagaratna, M. R., Jimenez, J. L., Chhabra, P. S., Seinfeld, J. H., and Worsnop, D. R.: Changes in organic aerosol composition with aging inferred from aerosol mass spectra, Atmos. Chem. Phys., 11, 6465–6474, https://doi.org/10.5194/acp-11-6465-2011, 2011a.
Ng, N. L., Herndon, S. C., Trimborn, A., Canagaratna, M. R., Croteau, P. L.,
Onasch, T. B., Sueper, D., Worsnop, D. R., Zhang, Q., Sun, Y. L., and Jayne,
J. T.: An aerosol chemical speciation monitor (ACSM) for routine monitoring
of the composition and mass concentrations of ambient aerosol, Aerosol Sci.
Technol., 45, 780–794, https://doi.org/10.1080/02786826.2011.560211, 2011b.
Ozturk, F., Bahreini, R., Wagner, N. L., Dube, W. P., Young, C. J., Brown,
S. S., Brock, C. A., Ulbrich, I. M., Jimenez, J. L., Cooper, O. R., and
Middlebrook, A. M.: Vertically resolved chemical characteristics and sources
of submicron aerosols measured on a Tall Tower in a suburban area near
Denver, Colorado in winter, J. Geophys. Res.-Atmos.,
118, 13591–13605, https://doi.org/10.1002/2013jd019923, 2013.
Pan, L., Xu, J. M., Tie, X. X., Mao, X. Q., Gao, W., and Chang, L. Y.:
Long-term measurements of planetary boundary layer height and interactions
with PM2.5 in Shanghai, China, Atmos. Pollut. Res., 10, 989–996,
https://doi.org/10.1016/j.apr.2019.01.007, 2019.
Pappalardo, G., Amodeo, A., Apituley, A., Comeron, A., Freudenthaler, V., Linné, H., Ansmann, A., Bösenberg, J., D'Amico, G., Mattis, I., Mona, L., Wandinger, U., Amiridis, V., Alados-Arboledas, L., Nicolae, D., and Wiegner, M.: EARLINET: towards an advanced sustainable European aerosol lidar network, Atmos. Meas. Tech., 7, 2389–2409, https://doi.org/10.5194/amt-7-2389-2014, 2014.
Pratt, K. A., Mielke, L. H., Shepson, P. B., Bryan, A. M., Steiner, A. L., Ortega, J., Daly, R., Helmig, D., Vogel, C. S., Griffith, S., Dusanter, S., Stevens, P. S., and Alaghmand, M.: Contributions of individual reactive biogenic volatile organic compounds to organic nitrates above a mixed forest, Atmos. Chem. Phys., 12, 10125–10143, https://doi.org/10.5194/acp-12-10125-2012, 2012.
Qiao, T., Zhao, M. F., Xiu, G. L., and Yu, J. Z.: Seasonal variations of
water soluble composition (WSOC, Hulis and WSIIs) in PM1 and its
implications on haze pollution in urban Shanghai, China, Atmos.
Environ., 123, 306–314, https://doi.org/10.1016/j.atmosenv.2015.03.010, 2015.
Qiao, T., Zhao, M., Xiu, G., and Yu, J.: Simultaneous monitoring and
compositions analysis of PM1 and PM2.5 in Shanghai: Implications for
characterization of haze pollution and source apportionment, Sci.
Total Environ., 557–558, 386–394, https://doi.org/10.1016/j.scitotenv.2016.03.095, 2016.
Solomon, P. A., Crumpler, D., Flanagan, J. B., Jayanty, R. K. M., Rickman,
E. E., and McDade, C. E.: US National PM2.5 Chemical Speciation Monitoring
Networks-CSN and IMPROVE: Description of networks, J. Air Waste Manage.
Assoc., 64, 1410–1438, https://doi.org/10.1080/10962247.2014.956904, 2014.
Sun, Y., Xu, W., Zhang, Q., Jiang, Q., Canonaco, F., Prévôt, A. S. H., Fu, P., Li, J., Jayne, J., Worsnop, D. R., and Wang, Z.: Source apportionment of organic aerosol from 2-year highly time-resolved measurements by an aerosol chemical speciation monitor in Beijing, China, Atmos. Chem. Phys., 18, 8469–8489, https://doi.org/10.5194/acp-18-8469-2018, 2018.
Tao, Z., Wang, Z., Yang, S., Shan, H., Ma, X., Zhang, H., Zhao, S., Liu, D., Xie, C., and Wang, Y.: Profiling the PM2.5 mass concentration vertical distribution in the boundary layer, Atmos. Meas. Tech., 9, 1369–1376, https://doi.org/10.5194/amt-9-1369-2016, 2016.
Voudouri, K. A., Siomos, N., Michailidis, K., D'Amico, G., Mattis, I., and
Balis, D.: Consistency of the Single Calculus Chain Optical Products with
Archived Measurements from an EARLINET Lidar Station, Remote Sens., 12, 3969,
https://doi.org/10.3390/rs12233969, 2020.
Wang, Y. J., Xu, X. D., Zhao, Y., and Wang, M. Z.: Variation characteristics
of the planetary boundary layer height and its relationship with PM2.5
concentration over China, J. Trop. Meteorol., 24, 385–394,
https://doi.org/10.16555/j.1006-8775.2018.03.011, 2018.
Wonaschuetz, A., Sorooshian, A., Ervens, B., Chuang, P. Y., Feingold, G.,
Murphy, S. M., de Gouw, J., Warneke, C., and Jonsson, H. H.: Aerosol and gas
re-distribution by shallow cumulus clouds: An investigation using airborne
measurements, J. Geophys. Res.-Atmos., 117, D17202,
https://doi.org/10.1029/2012jd018089, 2012.
Xie, C., Xu, W., Wang, J., Wang, Q., Liu, D., Tang, G., Chen, P., Du, W., Zhao, J., Zhang, Y., Zhou, W., Han, T., Bian, Q., Li, J., Fu, P., Wang, Z., Ge, X., Allan, J., Coe, H., and Sun, Y.: Vertical characterization of aerosol optical properties and brown carbon in winter in urban Beijing, China, Atmos. Chem. Phys., 19, 165–179, https://doi.org/10.5194/acp-19-165-2019, 2019.
Yin, C. Q.: Hourly data of Shanghai Tower observation, National Earth Observation Data Center [data set], https://chinageoss.cn/datasharing/datasetDetails/630094ef42544e709be88207 (last access: 23 January 2023), 2022.
Yu, H., Kaufman, Y. J., Chin, M., Feingold, G., Remer, L. A., Anderson, T. L., Balkanski, Y., Bellouin, N., Boucher, O., Christopher, S., DeCola, P., Kahn, R., Koch, D., Loeb, N., Reddy, M. S., Schulz, M., Takemura, T., and Zhou, M.: A review of measurement-based assessments of the aerosol direct radiative effect and forcing, Atmos. Chem. Phys., 6, 613–666, https://doi.org/10.5194/acp-6-613-2006, 2006.
Zang, H., Zhao, Y., Huo, J., Zhao, Q., Fu, Q., Duan, Y., Shao, J., Huang, C., An, J., Xue, L., Li, Z., Li, C., and Xiao, H.: High atmospheric oxidation capacity drives wintertime nitrate pollution in the eastern Yangtze River Delta of China, Atmos. Chem. Phys., 22, 4355–4374, https://doi.org/10.5194/acp-22-4355-2022, 2022.
Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Allan, J. D., Coe, H.,
Ulbrich, I., Alfarra, M. R., Takami, A., Middlebrook, A. M., Sun, Y. L.,
Dzepina, K., Dunlea, E., Docherty, K., DeCarlo, P. F., Salcedo, D., Onasch,
T., Jayne, J. T., Miyoshi, T., Shimono, A., Hatakeyama, S., Takegawa, N.,
Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian,
K., Williams, P., Bower, K., Bahreini, R., Cottrell, L., Griffin, R. J.,
Rautiainen, J., Sun, J. Y., Zhang, Y. M., and Worsnop, D. R.: Ubiquity and
dominance of oxygenated species in organic aerosols in
anthropogenically-influenced Northern Hemisphere midlatitudes, Geophys.
Res. Lett., 34, 6, https://doi.org/10.1029/2007gl029979, 2007.
Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Ulbrich, I. M., Ng, N. L.,
Worsnop, D. R., and Sun, Y. L.: Understanding atmospheric organic aerosols
via factor analysis of aerosol mass spectrometry: a review, Anal. Bioanal.
Chem., 401, 3045–3067, https://doi.org/10.1007/s00216-011-5355-y, 2011.
Zhang, Y. L. and Cao, F.: Fine particulate matter (PM2.5) in China at a city
level, Sci. Rep., 5, 12, https://doi.org/10.1038/srep14884, 2015.
Zhang, Y. M., Sun, J. Y., Zhang, X. Y., Shen, X. J., Wang, T. T., and Qin,
M. K.: Seasonal characterization of components and size distributions for
submicron aerosols in Beijing, Sci. China-Earth Sci., 56, 890–900,
https://doi.org/10.1007/s11430-012-4515-z, 2013.
Zhang, Y. R., Xu, L. L., Zhuang, M. Z., Zhao, G. Q., Chen, Y. P., Tong, L.,
Yang, C., Xiao, H., Chen, J. S., Wu, X., Hong, Y. W., Li, M. R., Bian, Y.
H., and Chen, Y. T.: Chemical composition and sources of submicron aerosol
in a coastal city of China: Results from the 2017 BRICS summit study,
Sci. Total Environ., 741, 140470, https://doi.org/10.1016/j.scitotenv.2020.140470,
2020.
Zhao, Q. B., Huo, J. T., Yang, X., Fu, Q. Y., Duan, Y. S., Liu, Y. X., Lin,
Y. F., and Zhang, Q.: Chemical characterization and source identification of
submicron aerosols from a year-long real-time observation at a rural site of
Shanghai using an Aerosol Chemical Speciation Monitor, Atmos. Res.,
246, 105154, https://doi.org/10.1016/j.atmosres.2020.105154, 2020a.
Zhao, S. P., Yu, Y., Du, Z. H., Yin, D. Y., Yang, J. C., Dong, L. X., and
Li, P.: Size-resolved carbonaceous aerosols at near surface level and the
hilltop in a typical valley city, China, Atmos. Pollut. Res., 11, 129–140,
https://doi.org/10.1016/j.apr.2019.09.022, 2020b.
Zhao, W., Ren, H., Kawamura, K., Du, H., Chen, X., Yue, S., Xie, Q., Wei, L., Li, P., Zeng, X., Kong, S., Sun, Y., Wang, Z., and Fu, P.: Vertical distribution of particle-phase dicarboxylic acids, oxoacids and α-dicarbonyls in the urban boundary layer based on the 325 m tower in Beijing, Atmos. Chem. Phys., 20, 10331–10350, https://doi.org/10.5194/acp-20-10331-2020, 2020c.
Zhou, G. Q., Xu, J. M., Gao, W., Gu, Y. X., Mao, Z. C., and Cui, L. L.:
Characteristics of PM1 over Shanghai, relationships with precursors and
meteorological variables and impacts on visibility, Atmos. Environ.,
184, 224–232, https://doi.org/10.1016/j.atmosenv.2018.04.041, 2018.
Zhou, W., Sun, Y. L., Xu, W. Q., Zhao, X. J., Wang, Q. Q., Tang, G. Q.,
Zhou, L. B., Chen, C., Du, W., Zhao, J., Xie, C. H., Fu, P. Q., and Wang, Z.
F.: Vertical Characterization of Aerosol Particle Composition in Beijing,
China: Insights From 3-Month Measurements With Two Aerosol Mass
Spectrometers, J. Geophys. Res.-Atmos., 123,
13016–13029, https://doi.org/10.1029/2018jd029337, 2018.
Zhou, W., Gao, M., He, Y., Wang, Q. Q., Xie, C. H., Xu, W. Q., Zhao, J., Du,
W., Qiu, Y. M., Lei, L., Fu, P. Q., Wang, Z. F., Worsnop, D. R., Zhang, Q.,
and Sun, Y. L.: Response of aerosol chemistry to clean air action in
Beijing, China: Insights from two-year ACSM measurements and model
simulations, Environ. Pollut., 255, 113345, https://doi.org/10.1016/j.envpol.2019.113345,
2019.
Zhou, W., Xu, W., Kim, H., Zhang, Q., Fu, P., Worsnop, D. R., and Sun, Y.: A
review of aerosol chemistry in Asia: insights from aerosol mass spectrometer
measurements, Environ. Sci.-Process. Impacts, 22, 1616–1653,
https://doi.org/10.1039/d0em00212g, 2020.
Zhu, W., Zhou, M., Cheng, Z., Yan, N., Huang, C., Qiao, L., Wang, H., Liu,
Y., Lou, S., and Guo, S.: Seasonal variation of aerosol compositions in
Shanghai, China: Insights from particle aerosol mass spectrometer
observations, Sci. Total Environ., 771, 144948,
https://doi.org/10.1016/j.scitotenv.2021.144948, 2021.
Short summary
The particle matter (PM2.5) at the top of the 632 m high Shanghai Tower was found to be higher than the surface from June to October due to unexpected larger PM2.5 levels during early to middle afternoon at Shanghai Tower. We suppose the significant chemical production of secondary species existed in the mid-upper planetary boundary layer. We found a high nitrate concentration at the tower site for both daytime and nighttime in winter, implying efficient gas-phase and heterogeneous formation.
The particle matter (PM2.5) at the top of the 632 m high Shanghai Tower was found to be higher...
Altmetrics
Final-revised paper
Preprint