Articles | Volume 23, issue 19
https://doi.org/10.5194/acp-23-12801-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-12801-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
3D assimilation and radiative impact assessment of aerosol black carbon over the Indian region using aircraft, balloon, ground-based, and multi-satellite observations
Nair Krishnan Kala
CORRESPONDING AUTHOR
Centre for Atmospheric and Oceanic Sciences, Indian Institute of
Science, Bengaluru, India
Divecha Centre for Climate Change, Indian Institute of Science,
Bengaluru, India
Narayana Sarma Anand
School of Physics, Indian Institute of Science Education and Research
Thiruvananthapuram, Kerala, India
Mohanan R. Manoj
Divecha Centre for Climate Change, Indian Institute of Science,
Bengaluru, India
Srinivasan Prasanth
Divecha Centre for Climate Change, Indian Institute of Science,
Bengaluru, India
Harshavardhana S. Pathak
Divecha Centre for Climate Change, Indian Institute of Science,
Bengaluru, India
Thara Prabhakaran
Indian Institute of Tropical Meteorology (IITM), Ministry of Earth
Sciences, Pune, Maharashtra, India
Pramod D. Safai
Indian Institute of Tropical Meteorology (IITM), Ministry of Earth
Sciences, Pune, Maharashtra, India
Krishnaswamy K. Moorthy
Divecha Centre for Climate Change, Indian Institute of Science,
Bengaluru, India
Sreedharan K. Satheesh
Centre for Atmospheric and Oceanic Sciences, Indian Institute of
Science, Bengaluru, India
Divecha Centre for Climate Change, Indian Institute of Science,
Bengaluru, India
DST-Centre of Excellence in Climate Change, Indian Institute of
Science, Bengaluru, Karnataka, India
Related authors
Nair K. Kala, Narayana Sarma Anand, Mohanan R. Manoj, Harshavardhana S. Pathak, Krishnaswamy K. Moorthy, and Sreedharan K. Satheesh
Atmos. Chem. Phys., 22, 6067–6085, https://doi.org/10.5194/acp-22-6067-2022, https://doi.org/10.5194/acp-22-6067-2022, 2022
Short summary
Short summary
We present the 3-D distribution of atmospheric aerosols and highlight its variation with respect to longitudes over the Indian mainland and the surrounding oceans using long-term satellite observations and realistic synthesised data. The atmospheric heating due to the 3-D distribution of aerosols is estimated using radiative transfer calculations. We believe that our findings will have strong implications for aerosol–radiation interactions in regional climate simulations.
Archana Devi, Sreedharan K Satheesh, and Jayaraman Srinivasan
EGUsphere, https://doi.org/10.5194/egusphere-2025-4146, https://doi.org/10.5194/egusphere-2025-4146, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
This study compares aerosol single scattering albedo data from two algorithms, CERES-MODIS and OMI, across different regions like forests, oceans, land, and deserts. It finds that CERES-MODIS tracks aerosol absorption more accurately, especially in areas with smoke and pollution. In clean regions, both algorithms perform similarly. The study helps scientists understand which satellite gives better data in different conditions, supporting improved climate and air quality research.
K. S. Apsara, Aravindakshan Jayakumar, Theethai Jacob Anurose, Saji Mohandas, Paul R. Field, Thara Prabhakaran, Mahen Konwar, and Vijayapurapu Srinivasa Prasad
Atmos. Chem. Phys., 25, 11423–11439, https://doi.org/10.5194/acp-25-11423-2025, https://doi.org/10.5194/acp-25-11423-2025, 2025
Short summary
Short summary
Science has made significant strides in weather prediction, especially for intense tropical rainfall that can lead to floods and landslides. Our study aims to improve monsoon rainfall forecasts by analyzing raindrop sizes. Using a new approach to model raindrop growth, we achieved a more accurate depiction of large rainfall events. These improvements can be generalized to enhance early warning systems, offering reliable predictions that help reduce risks from severe tropical weather events.
Srinivasan Prasanth, Narayana Sarma Anand, Kudilil Sunilkumar, Subin Jose, Kenath Arun, Sreedharan K. Satheesh, and Krishnaswamy Krishna Moorthy
Atmos. Chem. Phys., 25, 7161–7186, https://doi.org/10.5194/acp-25-7161-2025, https://doi.org/10.5194/acp-25-7161-2025, 2025
Short summary
Short summary
We study the impact of the 2019–2020 Australian bushfires on stratospheric chemistry and polar stratospheric cloud (PSC) dynamics. Our results show that the stratospheric intrusion of bushfire aerosols significantly increases nitric acid in the lower stratosphere, thereby increasing the PSC volume during the Austral winter. Notably, rapid ice PSC nucleation on nitric acid trihydrate particles leads to unusually high ice PSC volumes, highlighting the response of PSCs to an enhanced stratospheric aerosol scenario.
Krishnakant Budhavant, Mohanan Remani Manoj, Hari Ram Chandrika Rajendran Nair, Samuel Mwaniki Gaita, Henry Holmstrand, Abdus Salam, Ahmed Muslim, Sreedharan Krishnakumari Satheesh, and Örjan Gustafsson
Atmos. Chem. Phys., 24, 11911–11925, https://doi.org/10.5194/acp-24-11911-2024, https://doi.org/10.5194/acp-24-11911-2024, 2024
Short summary
Short summary
The South Asian Pollution Experiment 2018 used access to three strategically located receptor observatories. Observational constraints revealed opposing trends in the mass absorption cross sections of black carbon (BC MAC) and brown carbon (BrC MAC) during long-range transport. Models estimating the climate effects of BC aerosols may have underestimated the ambient BC MAC over distant receptor areas, leading to discrepancies in aerosol absorption predicted by observation-constrained models.
Mahen Konwar, Benjamin Werden, Edward C. Fortner, Sudarsan Bera, Mercy Varghese, Subharthi Chowdhuri, Kurt Hibert, Philip Croteau, John Jayne, Manjula Canagaratna, Neelam Malap, Sandeep Jayakumar, Shivsai A. Dixit, Palani Murugavel, Duncan Axisa, Darrel Baumgardner, Peter F. DeCarlo, Doug R. Worsnop, and Thara Prabhakaran
Atmos. Meas. Tech., 17, 2387–2400, https://doi.org/10.5194/amt-17-2387-2024, https://doi.org/10.5194/amt-17-2387-2024, 2024
Short summary
Short summary
In a warm cloud seeding experiment hygroscopic particles are released to alter cloud processes to induce early raindrops. During the Cloud–Aerosol Interaction and Precipitation Enhancement Experiment, airborne mini aerosol mass spectrometers analyse the particles on which clouds form. The seeded clouds showed higher concentrations of chlorine and potassium, the oxidizing agents of flares. Small cloud droplet concentrations increased, and seeding particles were detected in deep cloud depths.
Nair K. Kala, Narayana Sarma Anand, Mohanan R. Manoj, Harshavardhana S. Pathak, Krishnaswamy K. Moorthy, and Sreedharan K. Satheesh
Atmos. Chem. Phys., 22, 6067–6085, https://doi.org/10.5194/acp-22-6067-2022, https://doi.org/10.5194/acp-22-6067-2022, 2022
Short summary
Short summary
We present the 3-D distribution of atmospheric aerosols and highlight its variation with respect to longitudes over the Indian mainland and the surrounding oceans using long-term satellite observations and realistic synthesised data. The atmospheric heating due to the 3-D distribution of aerosols is estimated using radiative transfer calculations. We believe that our findings will have strong implications for aerosol–radiation interactions in regional climate simulations.
Archana Devi and Sreedharan K. Satheesh
Atmos. Chem. Phys., 22, 5365–5376, https://doi.org/10.5194/acp-22-5365-2022, https://doi.org/10.5194/acp-22-5365-2022, 2022
Short summary
Short summary
Global maps of aerosol absorption were generated using a multi-satellite retrieval algorithm. The retrieved values were validated with available aircraft-based measurements and compared with other global datasets. Seasonal and spatial distributions of aerosol absorption over various regions are also presented. The global maps of single scattering albedo with improved accuracy provide important input to climate models for assessing the climatic impact of aerosols on regional and global scales.
Priyanka Banerjee, Sreedharan Krishnakumari Satheesh, and Krishnaswamy Krishna Moorthy
Atmos. Chem. Phys., 21, 17665–17685, https://doi.org/10.5194/acp-21-17665-2021, https://doi.org/10.5194/acp-21-17665-2021, 2021
Short summary
Short summary
We show that the Atlantic Ocean is the major driver of interannual variability in dust over South Asia since the second decade of the 21st century. This is a shift from the previously important role played by the Pacific Ocean in controlling dust over this region. Following the end of the recent global warming hiatus, anomalies of the North Atlantic sea surface temperature have remotely invoked a weakening of the South Asian monsoon and a strengthening of the dust-bearing northwesterlies.
S. Arora, A. V. Kulkarni, P. Ghosh, and S. K. Satheesh
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 431–436, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-431-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-431-2021, 2021
Mohanan R. Manoj, Sreedharan K. Satheesh, Krishnaswamy K. Moorthy, Jamie Trembath, and Hugh Coe
Atmos. Chem. Phys., 21, 8979–8997, https://doi.org/10.5194/acp-21-8979-2021, https://doi.org/10.5194/acp-21-8979-2021, 2021
Short summary
Short summary
Vertical distributions of atmospheric aerosols across the Indo-Gangetic Plain (IGP) and their ability to form clouds have been studied based on airborne measurements during the SWAAMI field campaign. The ability of the aerosols to act as cloud-forming nuclei exhibited large spatial variation across the IGP and strong seasonality with increase in this ability with increase in altitude prior to the onset of monsoon and decrease with increase in altitude during the active phase of the monsoon.
Harshavardhana Sunil Pathak, Sreedharan Krishnakumari Satheesh, Krishnaswamy Krishna Moorthy, and Ravi Shankar Nanjundiah
Atmos. Chem. Phys., 20, 14237–14252, https://doi.org/10.5194/acp-20-14237-2020, https://doi.org/10.5194/acp-20-14237-2020, 2020
Short summary
Short summary
We have estimated the aerosol radiative forcing (ARF) by employing the assimilated, gridded aerosol datasets over the Indian region. The present ARF estimates are more accurate and certain than those estimated using the currently available, latest satellite-retrieved aerosol products. Therefore, the present ARF estimates and corresponding assimilated aerosol products emerge as potential candidates for improving the aerosol climate impact assessment at regional, subregional and seasonal scales.
Cited articles
Ackerman, A. S., Toon, O., Stevens, D., Heymsfield, A., Ramanathan, V., and
Welton, E.: Reduction of tropical cloudiness by soot, Science, 288,
1042–1047, https://doi.org/10.1126/science.288.5468.1042, 2000.
Anenberg, S. C., Talgo, K., Arunachalam, S., Dolwick, P., Jang, C., and West, J. J.: Impacts of global, regional, and sectoral black carbon emission reductions on surface air quality and human mortality, Atmos. Chem. Phys., 11, 7253–7267, https://doi.org/10.5194/acp-11-7253-2011, 2011.
Arun, B. S., Aswini, A. R., Gogoi, M. M., Hegde, P., Kompalli, S. K.,
Sharma, P., and Babu, S. S.: Physico-chemical and optical properties of
aerosols at a background site (∼ 4 km a.s.l.) in the western
Himalayas, Atmos. Environ., 218, 117017, https://doi.org/10.1016/j.atmosenv.2019.117017, 2019.
Arun, B. S., Gogoi, M. M., Hegde, P., Borgohain, A., Boreddy, S. K., Kundu,
S. S., and Babu, S. S.: Carbonaceous Aerosols over Lachung in the Eastern
Himalayas: Primary Sources and Secondary Formation of Organic Aerosols in a
Remote High-Altitude Environment, ACS Earth and Space Chemistry, 5,
2493–2506, 2021.
Babu, S. S. and Moorthy, K. K.: Anthropogenic impact on aerosol black carbon
mass concentration at a tropical coastal station: A case study, Curr.
Sci., 81, 1208–1214,
2001.
Babu, S. S. and Moorthy, K. K.: Aerosol black carbon over a tropical coastal
station in India, Geophys. Res. Lett., 29, 1311–1314, 2002.
Babu, S. S., Moorthy, K. K., and Satheesh, S. K.: Aerosol black carbon over
Arabian Sea during intermonsoon and summer monsoon seasons, Geophys. Res. Lett., 31, L06104, https://doi.org/10.1029/2003GL018716, 2004.
Babu, S. S., Satheesh, S. K., Moorthy, K. K., Dutt, C. B. S., Nair, V. S.,
Alappattu, D. P., and Kunhikrishnan, P.: Aircraft measurements of aerosol
black carbon from a coastal location in the north-east part of peninsular
India during ICARB, J. Earth Syst. Sci., 117, 263–271,
https://doi.org/10.1007/s12040-008-0030-1, 2008.
Babu, S. S., Moorthy, K. K., and Satheesh, S. K.: Vertical and horizontal
gradients in aerosol black carbon and its mass fraction to composite
aerosols over the east coast of Peninsular India from Aircraft measurements,
Adv. Meteorol., 2010, 812075, https://doi.org/10.1155/2010/812075, 2010.
Babu, S. S., Moorthy, K. K., Manchanda, R. K., Sinha, P. R., Satheesh, S.
K., Vajja, D. P., Srinivasan, S., and Kumar, V. A.: Free tropospheric black
carbon aerosol measurements using high altitude balloon: Do BC layers build
“their own homes” up in the atmosphere?, Geophys. Res. Lett., 38, L08803,
https://doi.org/10.1029/2011GL046654, 2011a.
Babu, S. S., Chaubey, J. P., Moorthy, K. K., Gogoi, M. M., Kompalli, S. K.,
Sreekanth, V., Bagare, S., Bhatt, B. C., Gaur, V. K., and Prabhu, T. P.:
High altitude (∼ 4520 m a.m.s.l.) measurements of black carbon aerosols
over western trans-Himalayas: Seasonal heterogeneity and source
apportionment, J. Geophys. Res.-Atmos., 116, D24201,
https://doi.org/10.1029/2011JD016722, 2011b.
Babu, S. S., Nair, V. S., Gogoi, M. M., and Moorthy, K. K.: Seasonal
variation of vertical distribution of aerosol single scattering albedo over
Indian sub-continent: RAWEX aircraft observations, Atmos. Environ.,
125, 312–323, https://doi.org/10.1016/j.atmosenv.2015.09.041, 2016.
Badarinath, K., Latha, K. M., Chand, T. K., Gupta, P. K., Ghosh, A., Jain,
S., Gera, B., Singh, R., Sarkar, A., and Singh, N.: Characterization of
aerosols from biomass burning – a case study from Mizoram (Northeast),
India, Chemosphere, 54, 167–175,
https://doi.org/10.1016/j.chemosphere.2003.08.032, 2004.
Bali, K., Mishra, A. K., and Singh, S.: Impact of anomalous forest fire on
aerosol radiative forcing and snow cover over Himalayan region, Atmos. Environ., 150, 264–275, https://doi.org/10.1016/J.ATMOSENV.2016.11.061,
2017.
Banerjee, P., Satheesh, S. K., Moorthy, K. K., Nanjundiah, R. S., and Nair,
V. S.: Long-range transport of mineral dust to the northeast Indian Ocean:
Regional versus remote sources and the implications, J. Climate, 32,
1525–1549, 2019.
Beegum, S. N., Moorthy, K. K., Babu, S. S., Satheesh, S. K., Vinoj, V.,
Badarinath, K., Safai, P., Devara, P., Singh, S., and Dumka, U.: Spatial
distribution of aerosol black carbon over India during pre-monsoon season,
Atmos. Environ., 43, 1071–1078,
https://doi.org/10.1016/j.atmosenv.2008.11.042, 2009.
Benedetti, A. and Fisher, M.: Background error statistics for aerosols,
Q. J. Roy. Meteor. Soc., 133,
391–405, https://doi.org/10.1002/qj.37, 2007.
Benedetti, A., Morcrette, J. J., Boucher, O., Dethof, A., Engelen, R.,
Fisher, M., Flentje, H., Huneeus, N., Jones, L., and Kaiser, J.: Aerosol
analysis and forecast in the European centre for medium-range weather
forecasts integrated forecast system: 2. Data assimilation, J. Geophys. Res.-Atmos., 114, D13205, https://doi.org/10.1029/2008JD011115, 2009.
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T.,
DeAngelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., and Koch, D.:
Bounding the role of black carbon in the climate system: A scientific
assessment, J. Geophys. Res.-Atmos., 118, 5380–5552,
https://doi.org/10.1002/jgrd.50171, 2013.
Chin, M., Diehl, T., Ginoux, P., and Malm, W.: Intercontinental transport of pollution and dust aerosols: implications for regional air quality, Atmos. Chem. Phys., 7, 5501–5517, https://doi.org/10.5194/acp-7-5501-2007, 2007.
Chinnam, N., Dey, S., Tripathi, S., and Sharma, M.: Dust events in Kanpur,
northern India: Chemical evidence for source and implications to radiative
forcing, Geophys. Res. Lett., 33, L08803, https://doi.org/10.1029/2005GL025278, 2006.
Chuang, C. C., Penner, J. E., Prospero, J. M., Grant, K. E., Rau, G. H., and
Kawamoto, K.: Cloud susceptibility and the first aerosol indirect forcing:
Sensitivity to black carbon and aerosol concentrations, J. Geophys. Res.-Atmos., 107, AAC 10-11–AAC 10-23,
https://doi.org/10.1029/2000JD000215, 2002.
Chung, C. E., Ramanathan, V., Kim, D., and Podgorny, I.: Global
anthropogenic aerosol direct forcing derived from satellite and ground-based
observations, J. Geophys. Res.-Atmos., 110, D24207,
https://doi.org/10.1029/2005JD006356, 2005.
Clarke, A., Shinozuka, Y., Kapustin, V., Howell, S., Huebert, B., Doherty,
S., Anderson, T., Covert, D., Anderson, J., and Hua, X.: Size distributions
and mixtures of dust and black carbon aerosol in Asian outflow:
Physiochemistry and optical properties, J. Geophys. Res.-Atmos., 109, D15S09, https://doi.org/10.1029/2003JD004378, 2004.
Cressman, G. P.: An operational objective analysis system, Mon. Weather
Rev., 87, 367–374,
https://doi.org/10.1175/1520-0493(1959)087{%}3C0367:AOOAS{%}3E2.0.CO;2,
1959.
De Laat, A., Stein Zweers, D. C., Boers, R., and Tuinder, O. N.: A solar
escalator: Observational evidence of the self-lifting of smoke and aerosols
by absorption of solar radiation in the February 2009 Australian Black
Saturday plume, J. Geophys. Res.-Atmos., 117, D04204, https://doi.org/10.1029/2011JD017016, 2012.
Dey, S. and Di Girolamo, L.: A climatology of aerosol optical and
microphysical properties over the Indian subcontinent from 9 years
(2000–2008) of Multiangle Imaging Spectroradiometer (MISR) data, J. Geophys. Res.-Atmos., 115, D15204,
https://doi.org/10.1029/2009JD013395, 2010.
Di Girolamo, L., Bond, T., Bramer, D., Diner, D., Fettinger, F., Kahn, R.,
Martonchik, J., Ramana, M., Ramanathan, V., and Rasch, P.: Analysis of
Multi-angle Imaging SpectroRadiometer (MISR) aerosol optical 17 depths over
greater India during winter 2001–2004, Geophys. Res. Lett., 31, L23115,
https://doi.org/10.1029/2004GL021273, 2004.
Doglioni, G., Aquila, V., Das, S., Colarco, P. R., and Zardi, D.: Dynamical perturbation of the stratosphere by a pyrocumulonimbus injection of carbonaceous aerosols, Atmos. Chem. Phys., 22, 11049–11064, https://doi.org/10.5194/acp-22-11049-2022, 2022.
Dumka, U., Moorthy, K. K., Kumar, R., Hegde, P., Sagar, R., Pant, P., Singh,
N., and Babu, S. S.: Characteristics of aerosol black carbon mass
concentration over a high altitude location in the Central Himalayas from
multiyear measurements, Atmos. Res., 96, 510–521,
https://doi.org/10.1016/j.atmosres.2009.12.010, 2010.
Eswaran, K., Satheesh, S. K., and Srinivasan, J.: Multi-satellite retrieval of single scattering albedo using the OMI–MODIS algorithm, Atmos. Chem. Phys., 19, 3307–3324, https://doi.org/10.5194/acp-19-3307-2019, 2019.
Evan, A., Kossin, J., Chung, C., and Ramanathan, V.: Strengthening of
Arabian Sea tropical cyclones and the South Asian atmospheric brown cloud,
Nature, 479, 94–97, 2011.
Fadnavis, S., Kalita, G., Kumar, K. R., Gasparini, B., and Li, J.-L. F.: Potential impact of carbonaceous aerosol on the upper troposphere and lower stratosphere (UTLS) and precipitation during Asian summer monsoon in a global model simulation, Atmos. Chem. Phys., 17, 11637–11654, https://doi.org/10.5194/acp-17-11637-2017, 2017.
Fadnavis, S., Chavan, P., Joshi, A., Sonbawne, S. M., Acharya, A., Devara, P. C. S., Rap, A., Ploeger, F., and Müller, R.: Tropospheric warming over the northern Indian Ocean caused by South Asian anthropogenic aerosols: possible impact on the upper troposphere and lower stratosphere, Atmos. Chem. Phys., 22, 7179–7191, https://doi.org/10.5194/acp-22-7179-2022, 2022.
Forbes, M. S., Raison, R. J., and Skjemstad, J.: Formation, transformation
and transport of black carbon (charcoal) in terrestrial and aquatic
ecosystems, Sci. Total Environ., 370, 190–206,
https://doi.org/10.1016/j.scitotenv.2006.06.007, 2006.
Gautam, R., Hsu, N. C., Tsay, S. C., Lau, K. M., Holben, B., Bell, S., Smirnov, A., Li, C., Hansell, R., Ji, Q., Payra, S., Aryal, D., Kayastha, R., and Kim, K. M.: Accumulation of aerosols over the Indo-Gangetic plains and southern slopes of the Himalayas: distribution, properties and radiative effects during the 2009 pre-monsoon season, Atmos. Chem. Phys., 11, 12841–12863, https://doi.org/10.5194/acp-11-12841-2011, 2011.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs,
L., Randles, C. A., Darmenov, A., Bosilovich, M. G., and Reichle, R.: The
modern-era retrospective analysis for research and applications, version 2
(MERRA-2), J. Climate, 30, 5419–5454, 2017.
Gogoi, M. M., Babu, S. S., Moorthy, K. K., Thakur, R. C., Chaubey, J. P.,
and Nair, V. S.: Aerosol black carbon over Svalbard regions of Arctic, Polar
Sci., 10, 60–70, 2016.
Gogoi, M. M., Babu, S. S., Arun, B. S., Krishna Moorthy, K., Ajay, A., Ajay, P., Suryavanshi, A., Borgohain, A., Guha, A., Shaikh, A., and Pathak, B.: Response of ambient BC concentration across the Indian region to the nationwide lockdown: Results from the ARFINET measurements of ISRO-GBP, Curr. Sci., 120, 341–351, https://doi.org/10.18520/cs/v120/i2/341-351, 2021.
Govardhan, G., Satheesh, S. K., Nanjundiah, R., Moorthy, K. K., and Babu, S. S.: Possible climatic implications of high-altitude black carbon emissions, Atmos. Chem. Phys., 17, 9623–9644, https://doi.org/10.5194/acp-17-9623-2017, 2017.
Grieshop, A. P., Reynolds, C. C., Kandlikar, M., and Dowlatabadi, H.: A
black-carbon mitigation wedge, Nat. Geosci., 2, 533–534,
http://https://doi.org/10.5194/acp-13-2423-2013, 2009.
Hansen, A., Rosen, H., and Novakov, T.: The aethalometer – an instrument for
the real-time measurement of optical absorption by aerosol particles,
Sci. Total Environ., 36, 191–196,
https://doi.org/10.1016/0048-9697(84)90265-1, 1984.
Hansen, A. D. A. and Novakov, T.: Real-Time Measurement of Aerosol Black
Carbon During the Carbonaceous Species Methods Comparison Study, Aerosol
Sci. Tech., 12, 194–199,
https://doi.org/10.1080/02786829008959339, 1990.
Haywood, J. and Shine, K.: Multi-spectral calculations of the direct
radiative forcing of tropospheric sulphate and soot aerosols using a column
model, Q. J. Roy. Meteor. Soc., 123, 1907,
https://doi.org/10.1002/qj.49712354307, 1997.
Hess, M., Koepke, P., and Schult, I.: Optical properties of aerosols and
clouds: The software package OPAC, B. Am. Meteorol.
Soc., 79, 831–844, https://doi.org/10.1175/1520-0477(1998)079{%}3C0831:OPOAAC{%}3E2.0.CO;2, 1998.
Jain, N., Bhatia, A., and Pathak, H.: Emission of air pollutants from CRB
in India, Aerosol Air Qual. Res., 14, 422–430, 2014.
Kahnert, M.: Variational data analysis of aerosol species in a regional CTM:
background error covariance constraint and aerosol optical observation
operators, Tellus B, 60, 753–770,
https://doi.org/10.1111/j.1600-0889.2008.00377.x, 2008.
Kala, N. K., Anand, N. S., Manoj, M. R., Pathak, H. S., Moorthy, K. K., and Satheesh, S. K.: Zonal variations in the vertical distribution of atmospheric aerosols over the Indian region and the consequent radiative effects, Atmos. Chem. Phys., 22, 6067–6085, https://doi.org/10.5194/acp-22-6067-2022, 2022.
Kalnay, E.: Atmospheric modeling, data assimilation and predictability,
Cambridge University Press, https://doi.org/10.1017/CBO9780511802270, 2003.
Kaskaoutis, D. G., Kumar, S., Sharma, D., Singh, R. P., Kharol, S.
K., and Sharma, M.: Effects of CRB on aerosol properties, plume characteristics,
and long-range transport over northern India, J. Geophys. Res.-Atmos., 119, 5424–5444, 2014.
Kaufman, Y. J., Koren, I., Remer, L. A., Rosenfeld, D., and Rudich, Y.: The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean, P. Natl. Acad. Sci., 102, 11207–11212, 2005.
Keil, A., Wendisch, M., and Brüggemann, E.: Measured profiles of aerosol
particle absorption and its influence on clear-sky solar radiative forcing,
J. Geophys. Res.-Atmos., 106, 1237–1247,
https://doi.org/10.1029/2002JD002315, 2001.
Kharol, S. K. and Badarinath, K.: Impact of biomass burning on aerosol
properties over tropical urban region of Hyderabad, India, Geophys. Res. Lett., 33, L20801, https://doi.org/10.1029/2006GL026759, 2006.
Khaykin, S., Legras, B., Bucci, S., Sellitto, P., Isaksen, L., Tence, F.,
Bekki, S., Bourassa, A., Rieger, L., and Zawada, D.: The 2019/20 Australian
wildfires generated a persistent smoke-charged vortex rising up to 35 km altitude, Communications Earth Environment, 1, 22, https://doi.org/10.1038/s43247-020-00022-5, 2020.
Kompalli, S. K., Babu, S. S., Bharatan, L. N., and Moorthy, K. K.:
Spring-time enhancement in aerosol burden over a high-altitude location in
western trans-Himalaya: results from long-term observations, Curr.
Sci. India, 111, 117–131, 2016.
Kulkarni, J. R., Maheskumar, R. S., Morwal, S. B., Kumari, B. P., Konwar, M.,
Deshpande, C. G., Joshi, R. R., Bhalwankar, R. V., Pandithurai, G., Safai, P. D.,
and Narkhedkar, S. G.:. The cloud aerosol interaction and precipitation
enhancement experiment (CAIPEEX): overview and preliminary results, Curr.
Sci., 102, 413–425, 2012.
Kumar, R. R., Soni, V. K., and Jain, M. K.: Evaluation of spatial and
temporal heterogeneity of black carbon aerosol mass concentration over India
using three year measurements from IMD BC observation network, Sci. Total Environ., 723, 138060,
https://doi.org/10.1016/j.scitotenv.2020.138060, 2020.
Lau, K., Kim, M., and Kim, K.: Asian summer monsoon anomalies induced by
aerosol direct forcing: the role of the Tibetan Plateau, Clim. Dynam.,
26, 855–864, https://doi.org/10.1007/s00382-006-0114-z, 2006.
Lau, W. K. and Kim, K. M.: Recent trends in transport of surface
carbonaceous aerosols to the upper-troposphere-lower-stratosphere linked to
expansion of the Asian Summer Monsoon Anticyclone, J. Geophys. Res.-Atmos., 127, e2022JD036460, https://doi.org/10.1029/2022JD036460 2022.
Lawrence, M. G. and Lelieveld, J.: Atmospheric pollutant outflow from southern Asia: a review, Atmos. Chem. Phys., 10, 11017–11096, https://doi.org/10.5194/acp-10-11017-2010, 2010.
Legrand, M., Plana-Fattori, A., and N'doumé, C.: Satellite detection of
dust using the IR imagery of Meteosat: 1. Infrared difference dust index,
J. Geophys. Res.-Atmos., 106, 18251–18274, 2001.
Lewis, J. M., Lakshmivarahan, S., and Dhall, S.: Dynamic data assimilation:
a least squares approach, Cambridge University Press, Cambridge: Cambridge
University Press, ISBN 0521851556, 2006.
Lin, L., Xu, Y., Wang, Z., Diao, C., Dong, W., and Xie, S. P.: Changes in extreme rainfall over India and China attributed to regional aerosol‐cloud interaction during the late 20th century rapid industrialization, Geophys. Res. Lett., 45, 7857–7865, 2018.
Liou, K.-N.: An introduction to atmospheric radiation, Elsevier, ISBN 9780124514515, 2002.
Liu, Z., Liu, Q., Lin, H. C., Schwartz, C. S., Lee, Y. H., and Wang, T.:
Three-dimensional variational assimilation of MODIS aerosol optical depth:
Implementation and application to a dust storm over East Asia, J. Geophys. Res.-Atmos., 116, D23206,
https://doi.org/10.1029/2011JD016159, 2011.
Liu, Z., Kar, J., Zeng, S., Tackett, J., Vaughan, M., Avery, M., Pelon, J., Getzewich, B., Lee, K.-P., Magill, B., Omar, A., Lucker, P., Trepte, C., and Winker, D.: Discriminating between clouds and aerosols in the CALIOP version 4.1 data products, Atmos. Meas. Tech., 12, 703–734, https://doi.org/10.5194/amt-12-703-2019, 2019.
Maloney, C. M., Portmann, R. W., Ross, M. N., and Rosenlof, K. H.: The
climate and ozone impacts of black carbon emissions from global rocket
launches, J. Geophys. Res.-Atmos., 127, e2021JD036373, https://doi.org/10.1029/2021JD036373,
2022.
Manoj, M. R., Satheesh, S. K., Moorthy, K. K., Gogoi, M. M., and Babu, S.
S.: Decreasing trend in black carbon aerosols over the Indian region,
Geophys. Res. Lett., 46, 2903–2910, 2019.
Manoj, M. R., Satheesh, S. K., Moorthy, K. K., and Coe, H.: Vertical profiles of submicron aerosol single scattering albedo over the Indian region immediately before monsoon onset and during its development: research from the SWAAMI field campaign, Atmos. Chem. Phys., 20, 4031–4046, https://doi.org/10.5194/acp-20-4031-2020, 2020.
Masiello, C. A.: New directions in black carbon organic geochemistry, Mar.
Chem., 92, 201–213, http://https://doi.org/10.1016/j.marchem.2004.06.043, 2004.
Menon, S., Hansen, J., Nazarenko, L., and Luo, Y.: Climate effects of black
carbon aerosols in China and India, Science, 297, 2250–2253,
https://doi.org/10.1126/science.1075159, 2002.
Mitra, A., Gupta, M. D., Singh, S., and Krishnamurti, T.: Daily rainfall for
the Indian monsoon region from merged satellite and rain gauge values:
Large-scale analysis from real-time data, J. Hydrometeorol., 4,
769–781, https://doi.org/10.1175/1525-7541(2003)004<0769:DRFTIM>2.0.CO;2, 2003.
Mitra, A., Dasgupta, M., and Singh, S.: Daily Indian precipitation analyses
formed from a merge of rain-gauge with TRMM TMPA satellite derived rainfall
estimates, J. Meteorol. Soc. Jpn., 87, 265–279,
https://doi.org/10.2151/jmsj.87A.265, 2009.
Moorthy, K. K., Satheesh, S. K., and Babu, S. S.: ICARB: an integrated
campaign for aerosols, gases, and radiation budget over India, P. Soc. Photo-Opt. Ins., 6408, 127–133,
https://doi.org/10.1117/12.696110, 2006.
Moorthy, K. K., Satheesh, S. K., and Kotamarthi, V.: Evolution of aerosol
research in India and the RAWEX – GVAX: an overview, Curr. Sci., 111, 53–75,
2016.
Moorthy, K. K., Satheesh, S. K., and Murthy, B. V. K.: Investigations of
marine aerosols over the tropical Indian Ocean, J. Geophys. Res.-Atmos., 102, 18827–18842, 1997.
Moorthy, K. K., Babu, S. S., Sunilkumar, S., Gupta, P. K., and Gera, B.:
Altitude profiles of aerosol BC, derived from aircraft measurements over an
inland urban location in India, Geophys. Res. Lett., 31, L22103,
https://doi.org/10.1029/2004GL021336, 2004.
Moorthy, K. K., Nair, V. S., Babu, S. S., and Satheesh, S. K.: Spatial and
vertical heterogeneities in aerosol properties over oceanic regions around
India: Implications for radiative forcing, Q. J. Roy. Meteor. Soc., 135, 2131–2145,
https://doi.org/10.1002/qj.525, 2009.
Moorthy, K. K., Beegum, S. N., Babu, S. S., Smirnov, A., John, S. R., Kumar,
K. R., Narasimhulu, K., Dutt, C. B. S., and Nair, V. S.: Optical and
physical characteristics of Bay of Bengal aerosols during W-ICARB: Spatial
and vertical heterogeneities in the marine atmospheric boundary layer and in
the vertical column, J. Geophys. Res.-Atmos., 115, D24213,
https://doi.org/10.1029/2010JD014094, 2010.
Moorthy, K. K., Babu, S. S., Manoj, M. R., and Satheesh, S. K.: Buildup of
aerosols over the Indian Region, Geophys. Res. Lett., 40,
1011–1014, https://doi.org/10.1002/grl.50165, 2013.
Mor, V., Dhankhar, R., Attri, S., Soni, V., Sateesh, M., and Taneja, K.:
Assessment of aerosols optical properties and radiative forcing over an
Urban site in North-Western India, Environ. Technol., 38, 1232–1244,
2017.
Morcrette, J., Boucher, O., Jones, L., Salmond, D., and Bechtold, P.:
Aerosol analysis and forecast in the European Centre for Medium-Range
Weather Forecasts integrated forecast system: forward modelling, J.
Geophys. Res., 114, D06206, https://doi.org/10.1029/2008JD011235,
2009.
Nair, V. S., Babu, S. S., Gogoi, M. M., and Moorthy, K. K.: Large-scale
enhancement in aerosol absorption in the lower free troposphere over
continental India during spring, Geophys. Res. Lett., 43,
11453–11461, https://doi.org/10.1002/2016GL070669, 2016.
Negi, P. S., Pandey, C. P., and Singh, N.: Black carbon aerosols in the
ambient air of Gangotri Glacier valley of north-western Himalaya in
India, Atmos. Environ., 214, 116879, https://doi.org/10.1016/j.atmosenv.2019.116879, 2019.
Niu, T., Gong, S. L., Zhu, G. F., Liu, H. L., Hu, X. Q., Zhou, C. H., and Wang, Y. Q.: Data assimilation of dust aerosol observations for the CUACE/dust forecasting system, Atmos. Chem. Phys., 8, 3473–3482, https://doi.org/10.5194/acp-8-3473-2008, 2008.
Ogren, J. A. and Charlson, R. J.: Elemental carbon in the atmosphere: cycle and lifetime, Tellus B, 35, 241–254, 1983
Ohneiser, K., Ansmann, A., Witthuhn, J., Deneke, H., Chudnovsky, A., Walter, G., and Senf, F.: Self-lofting of wildfire smoke in the troposphere and stratosphere: simulations and space lidar observations, Atmos. Chem. Phys., 23, 2901–2925, https://doi.org/10.5194/acp-23-2901-2023, 2023.
Padmakumari, B., Maheskumar, R., Harikishan, G., Morwal, S., Prabha, T., and
Kulkarni, J.: In situ measurements of aerosol vertical and spatial
distributions over continental India during the major drought year 2009,
Atmos. Environ., 80, 107–121,
https://doi.org/10.1016/j.atmosenv.2013.07.064, 2013.
Pagowski, M. and Grell, G. A.: Experiments with the assimilation of fine
aerosols using an ensemble Kalman filter, J. Geophys. Res.-Atmos., 117, D21302, https://doi.org/10.1029/2012JD018333, 2012.
Pagowski, M., Grell, G., McKeen, S., Peckham, S., and Devenyi, D.:
Three-dimensional variational data assimilation of ozone and fine
particulate matter observations: some results using the Weather Research and
Forecasting – Chemistry model and Grid-point Statistical Interpolation,
Q. J. Roy. Meteor. Soc., 136, 2013–2024,
https://doi.org/10.1002/qj.700, 2010.
Pathak, H. S., Satheesh, S. K., Nanjundiah, R. S., Moorthy, K. K., Lakshmivarahan, S., and Babu, S. N. S.: Assessment of regional aerosol radiative effects under the SWAAMI campaign – Part 1: Quality-enhanced estimation of columnar aerosol extinction and absorption over the Indian subcontinent, Atmos. Chem. Phys., 19, 11865–11886, https://doi.org/10.5194/acp-19-11865-2019, 2019.
Penner, J. E., Dong, X. Q., and Chen, Y.: Observational evidence of a
change in radiative forcing due to the indirect aerosol effect, Nature,
427, 231–234, https://doi.org/10.1038/nature02234, 2004.
Prasad, A. K., Singh, R. P., and Kafatos, M.: Influence of coal based
thermal power plants on aerosol optical properties in the Indo-Gangetic
basin, Geophys. Res. Lett., 33, L05805, https://doi.org/10.1029/2005GL023801,
2006.
Pusechel, R., Blake, D., Snetsinger, K., Hansen, A., Verma, S., and Kato,
K.: Black carbon (soot) aerosol in the lower stratosphere and upper
troposphere, Geophys. Res. Lett., 19, 1659–1662, 1992.
Rahul, P., Bhawar, R., Ayantika, D., Panicker, A., Safai, P.,
Tharaprabhakaran, V., Padmakumari, B., and Raju, M.: Double blanket effect
caused by two layers of black carbon aerosols escalates warming in the
Brahmaputra River Valley, Sci. Rep., 4, 3670,
https://doi.org/10.1038/srep03670, 2014.
Ratnam, M. V., Prasad, P., Raj, S. A., Raman, M. R., and Basha, G.: Changing
patterns in aerosol vertical distribution over South and East Asia,
Sci. Rep., 11, 308, https://doi.org/10.1038/s41598-020-79361-4, 2021.
Reddy, M. S. and Venkataraman, C.: Inventory of aerosol and sulphur dioxide
emissions from India: I – Fossil fuel combustion, Atmos. Environ.,
36, 677–697, https://doi.org/10.1016/S1352-2310(01)00463-0, 2002.
Rehman, I. H., Ahmed, T., Praveen, P. S., Kar, A., and Ramanathan, V.: Black carbon emissions from biomass and fossil fuels in rural India, Atmos. Chem. Phys., 11, 7289–7299, https://doi.org/10.5194/acp-11-7289-2011, 2011.
Ricchiazzi, P., Yang, S., Gautier, C., and Sowle, D.: SBDART: A research and
teaching software tool for plane- parallel radiative transfer in the Earth's
atmosphere, B. Am. Meteorol. Soc., 79, 2101–2114,
1998.
Rosenfeld, D.: Suppression of rain and snow by urban and industrial air
pollution, Science, 287, 1793–1796,
https://doi.org/10.1126/science.287.5459.1793, 2000.
Rouïl, L., Honore, C., Vautard, R., Beekmann, M., Bessagnet, B.,
Malherbe, L., Meleux, F., Dufour, A., Elichegaray, C., and Flaud, J.:
PREV'AIR An Operational Forecasting and Mapping System for Air Quality in
Europe, B. Am. Meteorol. Soc., 90, 73–83,
https://doi.org/10.1175/2008BAMS2390.1, 2009.
Safai, P., Raju, M., Maheshkumar, R., Kulkarni, J., Rao, P., and Devara, P.:
Vertical profiles of black carbon aerosols over the urban locations in South
India, Sci. Total Environ., 431, 323–331,
https://doi.org/10.1016/j.scitotenv.2012.05.058, 2012.
Saide, P. E., Carmichael, G. R., Liu, Z., Schwartz, C. S., Lin, H. C., da Silva, A. M., and Hyer, E.: Aerosol optical depth assimilation for a size-resolved sectional model: impacts of observationally constrained, multi-wavelength and fine mode retrievals on regional scale analyses and forecasts, Atmos. Chem. Phys., 13, 10425–10444, https://doi.org/10.5194/acp-13-10425-2013, 2013.
Samset, B. H. and Myhre, G.: Vertical dependence of black carbon, sulphate
and biomass burning aerosol radiative forcing, Geophys. Res. Lett.,
38, L24802, https://doi.org/10.1029/2011GL049697, 2011.
Samset, B. H., Lund, M. T., Bollasina, M., Myhre, G., and Wilcox, L.:
Emerging Asian aerosol patterns, Nat. Geosci., 12, 582–584, 2019.
Satheesh, S. K.: Letter to the Editor
Aerosol radiative forcing over land: effect of surface and cloud reflection, Ann. Geophys., 20, 2105–2109, https://doi.org/10.5194/angeo-20-2105-2002, 2002.
Satheesh, S. K., Moorthy, K. K., Babu, S. S., Vinoj, V., and Dutt, C.:
Climate implications of large warming by elevated aerosol over India,
Geophys. Res. Lett., 35, L19809, https://doi.org/10.1029/2008GL034944,
2008.
Satheesh, S. K., Moorthy, K. K., Babu, S. S., Vinoj, V., Nair, V. S.,
Naseema Beegum, S., Dutt, C. B. S., Alappattu, D. P., and Kunhikrishnan, P.:
Vertical structure and horizontal gradients of aerosol extinction
coefficients over coastal India inferred from airborne lidar measurements
during the Integrated Campaign for Aerosol, Gases and Radiation Budget
(ICARB) field campaign, J. Geophys. Res.-Atmos., 114, D05204, https://doi.org/10.1029/2008JD011033,
2009.
Satheesh, S. K., Vinoj, V., and Moorthy, K. K.: Assessment of aerosol
radiative impact over oceanic regions adjacent to Indian subcontinent using
multisatellite analysis, Adv. Meteorol., 2010, 139186,
https://doi.org/10.1155/2010/139186, 2010.
Satheesh, S. K., Moorthy, K. K., and Srinivasan, J.: New Directions:
Elevated layers of anthropogenic aerosols aggravate stratospheric ozone
loss?, Atmos. Environ., 79, 879–882, 2013.
Schmidt, M. W. and Noack, A. G.: Black carbon in soils and sediments:
analysis, distribution, implications, and current challenges, Global
Biogeochem. Cy., 14, 777–793, https://doi.org/10.1029/1999GB001208,
2000.
Schutgens, N. A. J., Miyoshi, T., Takemura, T., and Nakajima, T.: Applying an ensemble Kalman filter to the assimilation of AERONET observations in a global aerosol transport model, Atmos. Chem. Phys., 10, 2561–2576, https://doi.org/10.5194/acp-10-2561-2010, 2010.
Schwartz, C. S., Liu, Z., Lin, H. C., and McKeen, S. A.: Simultaneous
three-dimensional variational assimilation of surface fine particulate
matter and MODIS aerosol optical depth, J. Geophys. Res.-Atmos., 117, D13202, https://doi.org/10.1029/2011JD017383, 2012.
Schwartz, C. S., Liu, Z., Lin, H. C., and Cetola, J. D.: Assimilating
aerosol observations with a “hybrid” variational-ensemble data
assimilation system, J. Geophys. Res.-Atmos., 119,
4043–4069, https://doi.org/10.1002/2013JD020937, 2014.
Shindell, D., Kuylenstierna, J., Vignati, E., Van Dingenen, R., Amann, M.,
Klimont, Z., Anenberg, S., Muller, N., Janssens-Maenhout, G., Raes, F.,
Schwartz, J., Faluvegi, G., Pozzoli, L., Kupiainen, K.,
Höglund-Isaksson, L., Emberson, L., Streets, D., Ramanathan, V., Hicks,
K., and Fowler, D.: Simultaneously Mitigating Near-Term Climate Change and
Improving Human Health and Food Security, Science, 335,
183–189, https://doi.org/10.1126/science.1210026, 2012.
Sheoran, R., Dumka, U. C., Hyvärinen, A. P., Sharma, V. P., Tiwari, R. K., Lihavainen, H., Virkkula, A., and Hooda, R. K.: Assessment of carbonaceous
aerosols at Mukteshwar: A high-altitude (∼ 2200 m amsl)
background site in the foothills of the Central Himalayas, Sci.
Total Environ., 866, 161334, https://doi.org/10.1016/j.scitotenv.2022.161334, 2023.
Sicard, M., Granados-Muñoz, M. J., Alados-Arboledas, L., Barragán,
R., Bedoya-Velásquez, A. E., Benavent-Oltra, J. A., Bortoli, D.,
Comerón, A., Córdoba-Jabonero, C., and Costa, M. J.: Ground/space,
passive/active remote sensing observations coupled with particle dispersion
modelling to understand the inter-continental transport of wildfire smoke
plumes, Remote Sens. Environ., 232, 111294, https://doi.org/10.1016/j.rse.2019.111294, 2019.
Singh, A., Mahata, K. S., Rupakheti, M., Junkermann, W., Panday, A. K., and Lawrence, M. G.: An overview of airborne measurement in Nepal – Part 1: Vertical profile of aerosol size, number, spectral absorption, and meteorology, Atmos. Chem. Phys., 19, 245–258, https://doi.org/10.5194/acp-19-245-2019, 2019.
Singh, P., Sarawade, P., and Adhikary, B.: Transport of black carbon from
planetary boundary layer to free troposphere during the summer monsoon over
South Asia, Atmos. Res., 235, 104761, https://doi.org/10.1016/j.atmosres.2019.104761, 2020.
Singh, R., Singh, C., Ojha, S. P., Kumar, A. S., and Kumar, A. K.:
Development of an improved aerosol product over the Indian subcontinent:
Blending model, satellite, and ground-based estimates, J. Geophys. Res.-Atmos., 122, 367–390,
https://doi.org/10.1002/2016JD025335, 2017.
Singh, S. K., Radhakrishnan, S. R., Jaswant, Mishra, S. K., Shukla, D. K.,
Ranjan, A., and Sharma, C.: Study of variation of aerosol optical
properties over a high-altitude station in Indian Western Himalayan region,
palampur using raman lidar system, J. Atmos. Chem., 79,
117–139, 2022.
Srivastava, A., Yadav, V., Pathak, V., Singh, S., Tiwari, S., Bisht, D., and
Goloub, P.: Variability in radiative properties of major aerosol types: A
year-long study over Delhi – An urban station in Indo-Gangetic Basin,
Sci. Total Environ., 473, 659–666,
https://doi.org/10.1016/j.scitotenv.2013.12.064, 2014.
Stamnes, K., Tsay, S.-C., Wiscombe, W., and Jayaweera, K.: Numerically
stable algorithm for discrete-ordinate-method radiative transfer in multiple
scattering and emitting layered media, Appl. Opt., 27, 2502–2509, 1988.
Thakur, R. C., Arun, B. S., Gogoi, M. M., Thamban, M., Thayyen, R. J.,
Redkar, B. L., and Babu, S. S.: Multi-layer distribution of Black
Carbon and inorganic ions in the snowpacks of western Himalayas and snow
albedo forcing, Atmos. Environ., 261, 118564, https://doi.org/10.1016/j.atmosenv.2021.118564, 2021.
Torres, O., Bhartia, P., Sinyuk, A., Welton, E., and Holben, B.: Total Ozone
Mapping Spectrometer measurements of aerosol absorption from space:
Comparison to SAFARI 2000 ground-based observations, J. Geophys. Res.-Atmos., 110, D10S18, https://doi.org/10.1029/2004JD004611, 2005.
Torres, O., Bhartia, P. K., Taha, G., Jethva, H., Das, S., Colarco, P.,
Krotkov, N., Omar, A., and Ahn, C.: Stratospheric injection of massive smoke
plume from Canadian boreal fires in 2017 as seen by DSCOVR-EPIC, CALIOP, and
OMPS-LP observations, J. Geophys. Res.-Atmos., 125,
e2020JD032579, https://doi.org/10.1029/2020JD032579, 2020.
Vaishya, A., Babu, S. N. S., Jayachandran, V., Gogoi, M. M., Lakshmi, N. B., Moorthy, K. K., and Satheesh, S. K.: Large contrast in the vertical distribution of aerosol optical properties and radiative effects across the Indo-Gangetic Plain during the SWAAMI–RAWEX campaign, Atmos. Chem. Phys., 18, 17669–17685, https://doi.org/10.5194/acp-18-17669-2018, 2018.
Venkataraman, C., Habib, G., Kadamba, D., Shrivastava, M., Leon, J. F.,
Crouzille, B., Boucher, O., and Streets, D.: Emissions from open biomass
burning in India: Integrating the inventory approach with high-resolution
Moderate Resolution Imaging Spectroradiometer (MODIS) active-fire and land
cover data, Global Biogeochem. Cy., 20, GB2013,
https://doi.org/10.1029/2005GB002547, 2006.
Wang, C.: Impact of direct radiative forcing of black carbon aerosols on
tropical convective precipitation, Geophys. Res. Lett., 34, L05709,
https://doi.org/10.1029/2006GL028416, 2007.
Williams, A. I., Stier, P., Dagan, G., and Watson-Parris, D.: Strong control
of effective radiative forcing by the spatial pattern of absorbing aerosol,
Nat. Clim. Change, 12, 735–742, 2022.
Yadav, R., Sahu, L. K., Jaaffrey, S. N. A., and Beig, G.: Temporal variation
of particulate matter (PM) and potential sources at an urban site of Udaipur
in western India, Aerosol Air Qual. Res., 14, 1613–1629, https://doi.org/10.4209/aaqr.2013.10.0310, 2014.
Young, S. A., Vaughan, M. A., Garnier, A., Tackett, J. L., Lambeth, J. D., and Powell, K. A.: Extinction and optical depth retrievals for CALIPSO's Version 4 data release, Atmos. Meas. Tech., 11, 5701–5727, https://doi.org/10.5194/amt-11-5701-2018, 2018.
Zanatta, M., Mertes, S., Jourdan, O., Dupuy, R., Järvinen, E., Schnaiter, M., Eppers, O., Schneider, J., Jurányi, Z., and Herber, A.: Airborne investigation of black carbon interaction with low-level, persistent, mixed-phase clouds in the Arctic summer, Atmos. Chem. Phys., 23, 7955–7973, https://doi.org/10.5194/acp-23-7955-2023, 2023.
Zarzycki, C. M. and Bond, T. C.: How much can the vertical distribution of
black carbon affect its global direct radiative forcing?, Geophys. Res. Lett., 37, L20807, https://doi.org/10.1029/2010GL044555, 2010.
Zhang, J., Reid, J. S., Westphal, D. L., Baker, N. L., and Hyer, E. J.: A
system for operational aerosol optical depth data assimilation over global
oceans, J. Geophys. Res.-Atmos., 113, D10208,
https://doi.org/10.1029/2007JD009065, 2008.
Short summary
We present a 3D data set of aerosol black carbon over the Indian mainland by assimilating data from surface, aircraft, and balloon measurements, along with multi-satellite observations. Radiative transfer computations using height-resolved aerosol absorption show higher warming in the free troposphere and will have large implications for atmospheric stability. This data set will help reduce the uncertainty in aerosol radiative effects in climate model simulations over the Indian region.
We present a 3D data set of aerosol black carbon over the Indian mainland by assimilating data...
Altmetrics
Final-revised paper
Preprint