Articles | Volume 23, issue 17
https://doi.org/10.5194/acp-23-10075-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-10075-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The underappreciated role of transboundary pollution in future air quality and health improvements in China
Jun-Wei Xu
Laboratory for Climate and Ocean–Atmosphere Studies, Department of
Atmospheric and Oceanic Sciences, School of Physics, Peking University,
Beijing, China
Laboratory for Climate and Ocean–Atmosphere Studies, Department of
Atmospheric and Oceanic Sciences, School of Physics, Peking University,
Beijing, China
Dan Tong
Department of Earth System Science, Ministry of Education Key
Laboratory for Earth System Modelling, Tsinghua University, Beijing, China
Lulu Chen
Laboratory for Climate and Ocean–Atmosphere Studies, Department of
Atmospheric and Oceanic Sciences, School of Physics, Peking University,
Beijing, China
Related authors
Jun-Wei Xu, Jintai Lin, Gan Luo, Jamiu Adeniran, and Hao Kong
Atmos. Chem. Phys., 23, 4149–4163, https://doi.org/10.5194/acp-23-4149-2023, https://doi.org/10.5194/acp-23-4149-2023, 2023
Short summary
Short summary
Research on the sources of Chinese PM2.5 pollution has focused on the contributions of China’s domestic emissions. However, the impact of foreign anthropogenic emissions has typically been simplified or neglected. Here we find that foreign anthropogenic emissions play an important role in Chinese PM2.5 pollution through chemical interactions between foreign-transported pollutants and China’s local emissions. Thus, foreign emission reductions are essential for improving Chinese air quality.
Chenghao Xu, Jintai Lin, Hao Kong, Junli Jin, Lulu Chen, and Xiaobin Xu
Atmos. Chem. Phys., 25, 9545–9560, https://doi.org/10.5194/acp-25-9545-2025, https://doi.org/10.5194/acp-25-9545-2025, 2025
Short summary
Short summary
We observed a strong increase in deseasonalized ozone at urban stations in the Tibetan Plateau from 2015 to 2019, far exceeding the trend at the baseline station Waliguan and the Tibetan Plateau average trend of four tropospheric ozone products. By combining multiple datasets and modeling approaches, we identified the main contributing factors as more frequent transport passing through the lower layers of high-emission regions and the increase in local and non-local anthropogenic emissions.
Ruochong Xu, Hanchen Ma, Jingxian Li, Dan Tong, Liu Yan, Lanyuan Wang, Xinying Qin, Qingyang Xiao, Xizhe Yan, Hanwen Hu, Yujia Fu, Nana Wu, Huaxuan Wang, Yuexuanzi Wang, Xiaodong Liu, Guannan Geng, Kebin He, and Qiang Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1085, https://doi.org/10.5194/egusphere-2025-1085, 2025
Short summary
Short summary
In this study, we developed a new global emission inventory for non-methane volatile organic compounds (NMVOC) for the period of 1970–2020, with a focus on improving the representation of NMVOC-emission-related technologies. Our analysis revealed that activity growth, technology advancements, and policy-driven emission controls were key driving forces of NMVOC emission changes, but their roles were different across sectors and regions.
Yuhang Zhang, Huan Yu, Isabelle De Smedt, Jintai Lin, Nicolas Theys, Michel Van Roozendael, Gaia Pinardi, Steven Compernolle, Ruijing Ni, Fangxuan Ren, Sijie Wang, Lulu Chen, Jos Van Geffen, Mengyao Liu, Alexander M. Cede, Martin Tiefengraber, Alexis Merlaud, Martina M. Friedrich, Andreas Richter, Ankie Piters, Vinod Kumar, Vinayak Sinha, Thomas Wagner, Yongjoo Choi, Hisahiro Takashima, Yugo Kanaya, Hitoshi Irie, Robert Spurr, Wenfu Sun, and Lorenzo Fabris
Atmos. Meas. Tech., 18, 1561–1589, https://doi.org/10.5194/amt-18-1561-2025, https://doi.org/10.5194/amt-18-1561-2025, 2025
Short summary
Short summary
We developed an advanced algorithm for global retrieval of TROPOspheric Monitoring Instrument (TROPOMI) HCHO and NO2 vertical column densities with much improved consistency. Sensitivity tests demonstrate the complexity and nonlinear interactions of auxiliary parameters in the air mass factor calculation. An improved agreement is found with measurements from a global ground-based instrument network. The scientific retrieval provides a useful source of information for studies combining HCHO and NO2.
Wenbin Kou, Yang Gao, Dan Tong, Xiaojie Guo, Xiadong An, Wenyu Liu, Mengshi Cui, Xiuwen Guo, Shaoqing Zhang, Huiwang Gao, and Lixin Wu
Atmos. Chem. Phys., 25, 3029–3048, https://doi.org/10.5194/acp-25-3029-2025, https://doi.org/10.5194/acp-25-3029-2025, 2025
Short summary
Short summary
Unlike traditional numerical studies, we apply a high-resolution Earth system model, improving simulations of surface ozone and large-scale circulations such as atmospheric blocking. Besides local heat waves, we quantify the impact of atmospheric blocking on downstream ozone concentrations, which is closely associated with the blocking position. We identify three major pathways of Rossby wave propagation, stressing the critical role of large-scale circulation in regional air quality.
Mingrui Ma, Jiachen Cao, Dan Tong, Bo Zheng, and Yu Zhao
Atmos. Chem. Phys., 25, 2147–2166, https://doi.org/10.5194/acp-25-2147-2025, https://doi.org/10.5194/acp-25-2147-2025, 2025
Short summary
Short summary
We combined two global climate change pathways and three national emission control scenarios to analyze the future evolution of reactive nitrogen (Nr) deposition till the 2060s in China with air quality modeling. We show China’s clean air and carbon neutrality policies would overcome the adverse effects of climate change and efficiently reduce Nr deposition. The outflow of Nr fluxes from mainland China to the west Pacific would also be clearly reduced from continuous stringent emission controls.
Fangxuan Ren, Jintai Lin, Chenghao Xu, Jamiu A. Adeniran, Jingxu Wang, Randall V. Martin, Aaron van Donkelaar, Melanie S. Hammer, Larry W. Horowitz, Steven T. Turnock, Naga Oshima, Jie Zhang, Susanne Bauer, Kostas Tsigaridis, Øyvind Seland, Pierre Nabat, David Neubauer, Gary Strand, Twan van Noije, Philippe Le Sager, and Toshihiko Takemura
Geosci. Model Dev., 17, 4821–4836, https://doi.org/10.5194/gmd-17-4821-2024, https://doi.org/10.5194/gmd-17-4821-2024, 2024
Short summary
Short summary
We evaluate the performance of 14 CMIP6 ESMs in simulating total PM2.5 and its 5 components over China during 2000–2014. PM2.5 and its components are underestimated in almost all models, except that black carbon (BC) and sulfate are overestimated in two models, respectively. The underestimation is the largest for organic carbon (OC) and the smallest for BC. Models reproduce the observed spatial pattern for OC, sulfate, nitrate and ammonium well, yet the agreement is poorer for BC.
Zi Huang, Jiaoyue Wang, Longfei Bing, Yijiao Qiu, Rui Guo, Ying Yu, Mingjing Ma, Le Niu, Dan Tong, Robbie M. Andrew, Pierre Friedlingstein, Josep G. Canadell, Fengming Xi, and Zhu Liu
Earth Syst. Sci. Data, 15, 4947–4958, https://doi.org/10.5194/essd-15-4947-2023, https://doi.org/10.5194/essd-15-4947-2023, 2023
Short summary
Short summary
This is about global and regional cement process carbon emissions and CO2 uptake calculations from 1930 to 2019. The global cement production is rising to 4.4 Gt, causing processing carbon emission of 1.81 Gt (95% CI: 1.75–1.88 Gt CO2) in 2021. Plus, in 2021, cement’s carbon accumulated uptake (22.9 Gt, 95% CI: 19.6–22.6 Gt CO2) has offset 55.2% of cement process CO2 emissions (41.5 Gt, 95% CI: 38.7–47.1 Gt CO2) since 1930.
Yuhang Zhang, Jintai Lin, Jhoon Kim, Hanlim Lee, Junsung Park, Hyunkee Hong, Michel Van Roozendael, Francois Hendrick, Ting Wang, Pucai Wang, Qin He, Kai Qin, Yongjoo Choi, Yugo Kanaya, Jin Xu, Pinhua Xie, Xin Tian, Sanbao Zhang, Shanshan Wang, Siyang Cheng, Xinghong Cheng, Jianzhong Ma, Thomas Wagner, Robert Spurr, Lulu Chen, Hao Kong, and Mengyao Liu
Atmos. Meas. Tech., 16, 4643–4665, https://doi.org/10.5194/amt-16-4643-2023, https://doi.org/10.5194/amt-16-4643-2023, 2023
Short summary
Short summary
Our tropospheric NO2 vertical column density product with high spatiotemporal resolution is based on the Geostationary Environment Monitoring Spectrometer (GEMS) and named POMINO–GEMS. Strong hotspot signals and NO2 diurnal variations are clearly seen. Validations with multiple satellite products and ground-based, mobile car and surface measurements exhibit the overall great performance of the POMINO–GEMS product, indicating its capability for application in environmental studies.
Jun-Wei Xu, Jintai Lin, Gan Luo, Jamiu Adeniran, and Hao Kong
Atmos. Chem. Phys., 23, 4149–4163, https://doi.org/10.5194/acp-23-4149-2023, https://doi.org/10.5194/acp-23-4149-2023, 2023
Short summary
Short summary
Research on the sources of Chinese PM2.5 pollution has focused on the contributions of China’s domestic emissions. However, the impact of foreign anthropogenic emissions has typically been simplified or neglected. Here we find that foreign anthropogenic emissions play an important role in Chinese PM2.5 pollution through chemical interactions between foreign-transported pollutants and China’s local emissions. Thus, foreign emission reductions are essential for improving Chinese air quality.
Chi Li, Randall V. Martin, Ronald C. Cohen, Liam Bindle, Dandan Zhang, Deepangsu Chatterjee, Hongjian Weng, and Jintai Lin
Atmos. Chem. Phys., 23, 3031–3049, https://doi.org/10.5194/acp-23-3031-2023, https://doi.org/10.5194/acp-23-3031-2023, 2023
Short summary
Short summary
Models are essential to diagnose the significant effects of nitrogen oxides (NOx) on air pollution. We use an air quality model to illustrate the variability of NOx resolution-dependent simulation biases; how these biases depend on specific chemical environments, driving mechanisms, and vertical variabilities; and how these biases affect the interpretation of satellite observations. High-resolution simulations are thus critical to accurately interpret NOx and its relevance to air quality.
Kelvin H. Bates, Daniel J. Jacob, Ke Li, Peter D. Ivatt, Mat J. Evans, Yingying Yan, and Jintai Lin
Atmos. Chem. Phys., 21, 18351–18374, https://doi.org/10.5194/acp-21-18351-2021, https://doi.org/10.5194/acp-21-18351-2021, 2021
Short summary
Short summary
Simple aromatic compounds (benzene, toluene, xylene) have complex gas-phase chemistry that is inconsistently represented in atmospheric models. We compile recent experimental and theoretical insights to develop a new mechanism for gas-phase aromatic oxidation that is sufficiently compact for use in multiscale models. We compare our new mechanism to chamber experiments and other mechanisms, and implement it in a global model to quantify the impacts of aromatic oxidation on tropospheric chemistry.
Liam Bindle, Randall V. Martin, Matthew J. Cooper, Elizabeth W. Lundgren, Sebastian D. Eastham, Benjamin M. Auer, Thomas L. Clune, Hongjian Weng, Jintai Lin, Lee T. Murray, Jun Meng, Christoph A. Keller, William M. Putman, Steven Pawson, and Daniel J. Jacob
Geosci. Model Dev., 14, 5977–5997, https://doi.org/10.5194/gmd-14-5977-2021, https://doi.org/10.5194/gmd-14-5977-2021, 2021
Short summary
Short summary
Atmospheric chemistry models like GEOS-Chem are versatile tools widely used in air pollution and climate studies. The simulations used in such studies can be very computationally demanding, and thus it is useful if the model can simulate a specific geographic region at a higher resolution than the rest of the globe. Here, we implement, test, and demonstrate a new variable-resolution capability in GEOS-Chem that is suitable for simulations conducted on supercomputers.
Yingying Yan, Yue Zhou, Shaofei Kong, Jintai Lin, Jian Wu, Huang Zheng, Zexuan Zhang, Aili Song, Yongqing Bai, Zhang Ling, Dantong Liu, and Tianliang Zhao
Atmos. Chem. Phys., 21, 3143–3162, https://doi.org/10.5194/acp-21-3143-2021, https://doi.org/10.5194/acp-21-3143-2021, 2021
Short summary
Short summary
We analyze the effectiveness of emission reduction for local and upwind regions during winter haze episodes controlled by the main potential synoptic patterns over central China, a regional pollutant transport hub with sub-basin topography. Our results provide an opportunity to effectively mitigate haze pollution via local emission control actions in coordination with regional collaborative actions according to different synoptic patterns.
Cited articles
Ascensão, F., Fahrig, L., Clevenger, A. P., Corlett, R. T., Jaeger, J.
A. G., Laurance, W. F., and Pereira, H. M.: Environmental challenges for the
Belt and Road Initiative, Nat. Sustain., 1, 206–209,
https://doi.org/10.1038/s41893-018-0059-3, 2018.
Burnett, R., Chen, H., Szyszkowicz, M., Fann, N., Hubbell, B., Pope, C. A.,
Apte, J. S., Brauer, M., Cohen, A., Weichenthal, S., Coggins, J., Di, Q.,
Brunekreef, B., Frostad, J., Lim, S. S., Kan, H., Walker, K. D., Thurston,
G. D., Hayes, R. B., Lim, C. C., Turner, M. C., Jerrett, M., Krewski, D.,
Gapstur, S. M., Diver, W. R., Ostro, B., Goldberg, D., Crouse, D. L.,
Martin, R. V., Peters, P., Pinault, L., Tjepkema, M., Van Donkelaar, A.,
Villeneuve, P. J., Miller, A. B., Yin, P., Zhou, M., Wang, L., Janssen, N.
A. H., Marra, M., Atkinson, R. W., Tsang, H., Thach, T. Q., Cannon, J. B.,
Allen, R. T., Hart, J. E., Laden, F., Cesaroni, G., Forastiere, F.,
Weinmayr, G., Jaensch, A., Nagel, G., Concin, H., and Spadaro, J. V.: Global
estimates of mortality associated with longterm exposure to outdoor fine
particulate matter, P. Natl. Acad. Sci. USA, 115, 9592–9597,
https://doi.org/10.1073/pnas.1803222115, 2018.
Burtraw, D., Domeshek, M., Shih, J. S., Villanueva, S., and Lambert, K. F.: The Distribution of Air Quality Health Benefits from Meeting US 2030, Resources for the Future, https://media.rff.org/documents/Air_Quality_Two-pager_-_Burtraw_et_al..pdf (last access: 6 September 2023), 2022.
Cheng, J., Tong, D., Liu, Y., Yu, S., Yan, L., Zheng, B., Geng, G., He, K., and Zhang, Q.: Comparison of Current and Future PM2.5 Air Quality in China Under CMIP6 and DPEC Emission Scenarios, Geophys. Res. Lett., 48, 1–11, https://doi.org/10.1029/2021GL093197, 2021a.
Cheng, J., Tong, D., Zhang, Q., Liu, Y., Lei, Y., Yan, G., Yan, L., Yu, S.,
Cui, R. Y., Clarke, L., Geng, G., Zheng, B., Zhang, X., Davis, S. J., and He,
K.: Pathways of China's PM2.5 air quality 2015–2060 in the context of
carbon neutrality, Natl. Sci. Rev., 8, nwab078, https://doi.org/10.1093/nsr/nwab078, 2021b.
Dür, A., Eckhardt, J., and Poletti, A.: Global value chains, the
anti-globalization backlash, and EU trade policy: a research agenda, J. Eur.
Public Policy, 27, 944–956, https://doi.org/10.1080/13501763.2019.1619802, 2020.
European Commission: The Third Clean Air Outlook, European Commission, Report No. 52022DC0673, https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2022%3A673%3AFIN&qid=1670510444610#document1 (last access: 6 September 2023), 2022.
GBD 2019 Risk Factors Collaborators: Global
burden of 87 risk factors in 204 countries and territories, 1990–2019: a
systematic analysis for the Global Burden of Disease Study 2019, Lancet,
396, 1223–1249, https://doi.org/10.1016/S0140-6736(20)30752-2, 2020.
Geng, G., Zheng, Y., Zhang, Q., Xue, T., Zhao, H., Tong, D., Zheng, B., Li,
M., Liu, F., Hong, C., He, K., and Davis, S. J.: Drivers of PM2.5 air
pollution deaths in China 2002–2017, Nat. Geosci., 14, 645–650,
https://doi.org/10.1038/s41561-021-00792-3, 2021.
Gidden, M.: Aneris: Harmonization for Integrated Assessment Models, International Institute for Applied Systems Analysis (IIASA) [code], http://software.ene.iiasa.ac.at/aneris/, last access: 6 September 2023.
Gidden, M. J., Riahi, K., Smith, S. J., Fujimori, S., Luderer, G., Kriegler, E., van Vuuren, D. P., van den Berg, M., Feng, L., Klein, D., Calvin, K., Doelman, J. C., Frank, S., Fricko, O., Harmsen, M., Hasegawa, T., Havlik, P., Hilaire, J., Hoesly, R., Horing, J., Popp, A., Stehfest, E., and Takahashi, K.: Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century, Geosci. Model Dev., 12, 1443–1475, https://doi.org/10.5194/gmd-12-1443-2019, 2019.
Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen, T., Seibert, J. J., Vu, L., Andres, R. J., Bolt, R. M., Bond, T. C., Dawidowski, L., Kholod, N., Kurokawa, J.-I., Li, M., Liu, L., Lu, Z., Moura, M. C. P., O'Rourke, P. R., and Zhang, Q.: Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS), Geosci. Model Dev., 11, 369–408, https://doi.org/10.5194/gmd-11-369-2018, 2018.
Hong, C., Zhang, Q., Zhang, Y., Davis, S. J., Tong, D., Zheng, Y., Liu, Z.,
Guan, D., He, K., and Schellnhuber, H. J.: Impacts of climate change on
future air quality and human health in China, P. Natl. Acad. Sci. USA, 116, 17193–17200, https://doi.org/10.1073/pnas.1812881116, 2019.
Huang, J., Qin, D., Jiang, T., Wang, Y., Feng, Z., Zhai, J., Cao, L., Chao,
Q., Xu, X., Wang, G., and Su, B.: Effect of Fertility Policy Changes on the
Population Structure and Economy of China: From the Perspective of the
Shared Socioeconomic Pathways, Earth's Futur., 7, 250–265,
https://doi.org/10.1029/2018EF000964, 2019.
Hughes, B. B., Kuhn, R., Peterson, C. M., Rothman, D. S., Solórzano, J.
R., Mathers, C. D., and Dickson, J. R.: Projections of global health outcomes
from 2005 to 2060 using the International Futures integrated forecasting
model, Bull. World Health Organ., 89, 478–486,
https://doi.org/10.2471/BLT.10.083766, 2011.
Institute for Health Metrics and Evaluation: Findings from the Global Burden of Disease Study 2017, Institute for Health Metrics and Evaluation (IHME), Seattle, WA, https://www.healthdata.org/sites/default/files/files/policy_report/2019/GBD_2017_Booklet.pdf (last access: 6 September 2023), 2018.
Institute for Health Metrics and Evaluation: Global Burden of Disease 2017, University of Washington [data set], https://gbd2017.healthdata.org/gbd-results/, last access: 6 September 2023.
International Energy Agency (IEA): World Energy Outlook, IEA/OECD, https://www.iea.org/reports/world-energy-outlook-2021 (last access: 21 November 2022), 2021.
International Futures: Future baseline mortality rate projection, International Futures (IFs) [data set], https://www.ifs.du.edu/ifs/frm_MainMenu.aspx, last access: 6 September 2023.
Jiang, H., Liao, H., Pye, H. O. T., Wu, S., Mickley, L. J., Seinfeld, J. H., and Zhang, X. Y.: Projected effect of 2000–2050 changes in climate and emissions on aerosol levels in China and associated transboundary transport, Atmos. Chem. Phys., 13, 7937–7960, https://doi.org/10.5194/acp-13-7937-2013, 2013.
Jiang, T., Su, B., Wang, Y., Huang, J., Jing, C., Gao, M., Wang, G., Lin, Q., Jiang, S., Liu, S., and Luo, Y.: Gridded datasets for population and economy under Shared Socioeconomic Pathways, Science Data Bank [data set], https://doi.org/10.57760/sciencedb.01683, 2022.
Koplitz, S. N., Jacob, D. J., Sulprizio, M. P., Myllyvirta, L., and Reid, C.:
Burden of Disease from Rising Coal-Fired Power Plant Emissions in Southeast
Asia, Environ. Sci. Technol., 51, 1467–1476,
https://doi.org/10.1021/acs.est.6b03731, 2017.
Leibensperger, E. M., Mickley, L. J., Jacob, D. J., and Barrett, S. R. H.:
Intercontinental influence of NOx and CO emissions on particulate matter air quality, Atmos. Environ., 45, 3318–3324,
https://doi.org/10.1016/j.atmosenv.2011.02.023, 2011.
Liu, S., Xing, J., Wang, S., Ding, D., Cui, Y., and Hao, J.: Health Benefits
of Emission Reduction under 1.5 ∘C Pathways Far Outweigh
Climate-Related Variations in China, Environ. Sci. Technol., 55, 10957–10966, https://doi.org/10.1021/acs.est.1c01583, 2021.
Luo, G., Yu, F., and Moch, J. M.: Further improvement of wet process treatments in GEOS-Chem v12.6.0: impact on global distributions of aerosols and aerosol precursors, Geosci. Model Dev., 13, 2879–2903, https://doi.org/10.5194/gmd-13-2879-2020, 2020.
McDuffie, E. E., Smith, S. J., O'Rourke, P., Tibrewal, K., Venkataraman, C., Marais, E. A., Zheng, B., Crippa, M., Brauer, M., and Martin, R. V.: A global anthropogenic emission inventory of atmospheric pollutants from sector- and fuel-specific sources (1970–2017): an application of the Community Emissions Data System (CEDS), Earth Syst. Sci. Data, 12, 3413–3442, https://doi.org/10.5194/essd-12-3413-2020, 2020.
MEIC team: Multi-resolution Emission Inventory model for Climate and air pollution research, Department of Earth System Science, Tsinghua University, http://meicmodel.org.cn/?page_id=2351&lang=en#firstPage, last access: 6 September 2023.
Ni, R., Lin, J., Yan, Y., and Lin, W.: Foreign and domestic contributions to springtime ozone over China, Atmos. Chem. Phys., 18, 11447–11469, https://doi.org/10.5194/acp-18-11447-2018, 2018.
O'Neill, B. C., Kriegler, E., Riahi, K., Ebi, K. L., Hallegatte, S., Carter,
T. R., Mathur, R., and van Vuuren, D. P.: A new scenario framework for
climate change research: The concept of shared socioeconomic pathways, Clim.
Change, 122, 387–400, https://doi.org/10.1007/s10584-013-0905-2, 2014.
O'Neill, B. C., Carter, T. R., Ebi, K., Harrison, P. A., Kemp-Benedict, E.,
Kok, K., Kriegler, E., Preston, B. L., Riahi, K., Sillmann, J., van Ruijven,
B. J., van Vuuren, D., Carlisle, D., Conde, C., Fuglestvedt, J., Green, C.,
Hasegawa, T., Leininger, J., Monteith, S., and Pichs-Madruga, R.:
Achievements and needs for the climate change scenario framework, Nat. Clim.
Chang., 10, 1074–1084, https://doi.org/10.1038/s41558-020-00952-0, 2020.
Pai, S. J., Heald, C. L., Pierce, J. R., Farina, S. C., Marais, E. A., Jimenez, J. L., Campuzano-Jost, P., Nault, B. A., Middlebrook, A. M., Coe, H., Shilling, J. E., Bahreini, R., Dingle, J. H., and Vu, K.: An evaluation of global organic aerosol schemes using airborne observations, Atmos. Chem. Phys., 20, 2637–2665, https://doi.org/10.5194/acp-20-2637-2020, 2020.
Rao, S., Klimont, Z., Smith, S. J., Van Dingenen, R., Dentener, F., Bouwman,
L., Riahi, K., Amann, M., Bodirsky, B. L., van Vuuren, D. P., Aleluia Reis,
L., Calvin, K., Drouet, L., Fricko, O., Fujimori, S., Gernaat, D., Havlik,
P., Harmsen, M., Hasegawa, T., Heyes, C., Hilaire, J., Luderer, G., Masui,
T., Stehfest, E., Strefler, J., van der Sluis, S., and Tavoni, M.: Future air
pollution in the Shared Socio-economic Pathways, Glob. Environ. Chang., 42,
346–358, https://doi.org/10.1016/j.gloenvcha.2016.05.012, 2017.
Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O'Neill, B. C.,
Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W.,
Popp, A., Cuaresma, J. C., KC, S., Leimbach, M., Jiang, L., Kram, T., Rao,
S., Emmerling, J., Ebi, K., Hasegawa, T., Havlik, P., Humpenöder, F., Da
Silva, L. A., Smith, S., Stehfest, E., Bosetti, V., Eom, J., Gernaat, D.,
Masui, T., Rogelj, J., Strefler, J., Drouet, L., Krey, V., Luderer, G.,
Harmsen, M., Takahashi, K., Baumstark, L., Doelman, J. C., Kainuma, M.,
Klimont, Z., Marangoni, G., Lotze-Campen, H., Obersteiner, M., Tabeau, A., and Tavoni, M.: The Shared Socioeconomic Pathways and their energy, land
use, and greenhouse gas emissions implications: An overview, Glob. Environ.
Chang., 42, 153–168, https://doi.org/10.1016/j.gloenvcha.2016.05.009, 2017.
Samir, K. C. and Lutz, W.: The human core of the shared socioeconomic pathways: Population scenarios by age, sex and level of education for all countries to 2100, Glob. Environ. Chang., 42, 181–192, https://doi.org/10.1016/j.gloenvcha.2014.06.004, 2017.
Silva, R. A., West, J. J., Lamarque, J. F., Shindell, D. T., Collins, W. J.,
Faluvegi, G., Folberth, G. A., Horowitz, L. W., Nagashima, T., Naik, V.,
Rumbold, S. T., Sudo, K., Takemura, T., Bergmann, D., Cameron-Smith, P.,
Doherty, R. M., Josse, B., MacKenzie, I. A., Stevenson, D. S., and Zeng, G.:
Future global mortality from changes in air pollution attributable to
climate change, Nat. Clim. Chang., 7, 647–651, https://doi.org/10.1038/nclimate3354,
2017.
Smith, S. J., Ahsan, H., and Mott, A.: CEDS v_2021_04_21 gridded emissions data, DataHub [data set], https://doi.org/10.25584/PNNLDataHub/1779095, last access: 6 September 2023.
Tang, R., Zhao, J., Liu, Y., Huang, X., Nielsen, C. P., Wang, H., Zhou, D., and Ding, A.: Air quality and health co-benefits of China's carbon dioxide
emissions peaking before 2030, Nat. Commun., 13, 1008, https://doi.org/10.1038/s41467-022-28672-3, 2022.
The International GEOS-Chem User Community: geoschem/GCClassic: GEOS-Chem 13.2.1, Zenodo [code], https://doi.org/10.5281/zenodo.5500717, 2021.
The State Council of the People's Republic of China: The thirteenth Five-Year Plan, The State Council of the People's Republic of China, http://www.gov.cn/xinwen/2016-03/17/content_5054992.htm (last access: 6 September 2023), 2016 (in Chinese).
Tong, D., Cheng, J., Liu, Y., Yu, S., Yan, L., Hong, C., Qin, Y., Zhao, H., Zheng, Y., Geng, G., Li, M., Liu, F., Zhang, Y., Zheng, B., Clarke, L., and Zhang, Q.: Dynamic projection of anthropogenic emissions in China: methodology and 2015–2050 emission pathways under a range of socio-economic, climate policy, and pollution control scenarios, Atmos. Chem. Phys., 20, 5729–5757, https://doi.org/10.5194/acp-20-5729-2020, 2020.
Turnock, S. T., Allen, R. J., Andrews, M., Bauer, S. E., Deushi, M., Emmons, L., Good, P., Horowitz, L., John, J. G., Michou, M., Nabat, P., Naik, V., Neubauer, D., O'Connor, F. M., Olivié, D., Oshima, N., Schulz, M., Sellar, A., Shim, S., Takemura, T., Tilmes, S., Tsigaridis, K., Wu, T., and Zhang, J.: Historical and future changes in air pollutants from CMIP6 models, Atmos. Chem. Phys., 20, 14547–14579, https://doi.org/10.5194/acp-20-14547-2020, 2020.
van Vuuren, D. P., Kriegler, E., O'Neill, B. C., Ebi, K. L., Riahi, K.,
Carter, T. R., Edmonds, J., Hallegatte, S., Kram, T., Mathur, R., and
Winkler, H.: A new scenario framework for Climate Change Research: Scenario
matrix architecture, Clim. Change, 122, 373–386,
https://doi.org/10.1007/s10584-013-0906-1, 2014.
van Vuuren, D. P., Stehfest, E., Gernaat, D. E. H. J., Doelman, J. C., van
den Berg, M., Harmsen, M., de Boer, H. S., Bouwman, L. F., Daioglou, V.,
Edelenbosch, O. Y., Girod, B., Kram, T., Lassaletta, L., Lucas, P. L., van
Meijl, H., Müller, C., van Ruijven, B. J., van der Sluis, S., and Tabeau,
A.: Energy, land-use and greenhouse gas emissions trajectories under a green
growth paradigm, Glob. Environ. Chang., 42, 237–250,
https://doi.org/10.1016/j.gloenvcha.2016.05.008, 2017.
WHO: WHO Global Air Quality Guidelines: Particulate Matter
(PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide, World Health Organization, Geneva, ISBN 978924003422, 2021.
Xing, J., Lu, X., Wang, S., Wang, T., Ding, D., Yu, S., Shindell, D., Ou,
Y., Morawska, L., Li, S., Ren, L., Zhang, Y., Loughlin, D., Zheng, H., Zhao,
B., Liu, S., Smith, K. R., and Hao, J.: The quest for improved air quality
may push China to continue its CO2 reduction beyond the Paris Commitment, P. Natl. Acad. Sci. USA, 117, 29535–29542,
https://doi.org/10.1073/pnas.2013297117, 2020.
Xu, J.-W., Lin, J., Luo, G., Adeniran, J., and Kong, H.: Foreign emissions exacerbate PM2.5 pollution in China through nitrate chemistry, Atmos. Chem. Phys., 23, 4149–4163, https://doi.org/10.5194/acp-23-4149-2023, 2023.
Yang, H., Huang, X., Westervelt, D. M., Horowitz, L., and Peng, W.:
Socio-demographic factors shaping the future global health burden from air
pollution, Nat. Sustain., 11, 58–68 https://doi.org/10.1038/s41893-022-00976-8, 2022.
Zhang, Q., Zheng, Y., Tong, D., Shao, M., Wang, S., Zhang, Y., Xu, X., Wang,
J., He, H., Liu, W., Ding, Y., Lei, Y., Li, J., Wang, Z., Zhang, X., Wang,
Y., Cheng, J., Liu, Y., Shi, Q., Yan, L., Geng, G., Hong, C., Li, M., Liu,
F., Zheng, B., Cao, J., Ding, A., Gao, J., Fu, Q., Huo, J., Liu, B., Liu,
Z., Yang, F., He, K., and Hao, J.: Drivers of improved PM2.5 air quality in China from 2013 to 2017, P. Natl. Acad. Sci. USA, 116, 24463–24469,
https://doi.org/10.1073/pnas.1907956116, 2019.
Zhang, Y.-L. and Cao, F.: Fine particulate matter (PM2.5) in China at a city level, Sci. Rep., 5, 14884, https://doi.org/10.1038/srep14884, 2015.
Zheng, B., Chevallier, F., Ciais, P., Yin, Y., Deeter, M. N., Worden, H. M.,
Wang, Y., Zhang, Q., and He, K.: Rapid decline in carbon monoxide emissions
and export from East Asia between years 2005 and 2016, Environ. Res. Lett.,
13, 044007, https://doi.org/10.1088/1748-9326/aab2b3, 2018a.
Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K., and Zhang, Q.: Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions, Atmos. Chem. Phys., 18, 14095–14111, https://doi.org/10.5194/acp-18-14095-2018, 2018b.
Short summary
This study highlights the necessity of a low-carbon pathway in foreign countries for China to achieve air quality goals and to protect public health. We find that adopting the low-carbon instead of the fossil-fuel-intensive pathway in foreign countries would prevent 63 000–270 000 transboundary PM2.5-associated mortalities in China in 2060. Our study provides direct evidence of the necessity of inter-regional cooperation for air quality improvement.
This study highlights the necessity of a low-carbon pathway in foreign countries for China to...
Altmetrics
Final-revised paper
Preprint