Articles | Volume 22, issue 14
https://doi.org/10.5194/acp-22-9461-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-9461-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Iron (Fe) speciation in size-fractionated aerosol particles in the Pacific Ocean: The role of organic complexation of Fe with humic-like substances in controlling Fe solubility
Center for Global Environmental Research, National Institute for
Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
Minako Kurisu
Research Institute for Global Change, Japan Agency for Marine-Earth
Science and Technology, 2-15, Natsushima-cho, Yokosuka, Kanagawa 237-0061,
Japan
now at: Research Institute for Marine Resources Utilization, Japan Agency for Marine-Earth Science and Technology, 2-15, Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
Yasuo Takeichi
Institute of Materials Structure Science, High-Energy Accelerator
Research Organization, Tsukuba, Ibaraki 305-0801, Japan
Aya Sakaguchi
Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1
Tennodai, Tsukuba, Ibaraki 305-8577, Japan
Hiroshi Tanimoto
Center for Global Environmental Research, National Institute for
Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
Yusuke Tamenori
Japan Synchrotron Radiation Research Institute/SPring-8, 1-1-1 Kouto,
Sayo, Hyogo 679-5198, Japan
Atsushi Matsuki
Institute of Nature and Environmental Technology, Kanazawa University,
Kakuma, Kanazawa, Ishikawa 920-1192, Japan
Yoshio Takahashi
Institute of Materials Structure Science, High-Energy Accelerator
Research Organization, Tsukuba, Ibaraki 305-0801, Japan
Graduate School of Science, The University of Tokyo, 7-3-1 Hongo,
Bunkyo-ku, Tokyo 113-0033, Japan
Related authors
Kohei Sakata, Shotaro Takano, Atsushi Matsuki, Yasuo Takeichi, Hiroshi Tanimoto, Aya Sakaguchi, Minako Kurisu, and Yoshio Takahashi
Atmos. Chem. Phys., 25, 11087–11107, https://doi.org/10.5194/acp-25-11087-2025, https://doi.org/10.5194/acp-25-11087-2025, 2025
Short summary
Short summary
Deposition of aerosol iron (Fe) into the ocean stimulates primary production and influences the global carbon cycle, although the factors governing the aerosol Fe solubility remain uncertain. Our observations in Japan revealed that both mineral dust and anthropogenic aerosols are significant sources of dissolved Fe, and that atmospheric chemical weathering enhances their solubility. This finding is expected to play a crucial role in estimating the supply of dissolved iron to the ocean.
Kohei Sakata, Aya Sakaguchi, Yoshiaki Yamakawa, Chihiro Miyamoto, Minako Kurisu, and Yoshio Takahashi
Atmos. Chem. Phys., 23, 9815–9836, https://doi.org/10.5194/acp-23-9815-2023, https://doi.org/10.5194/acp-23-9815-2023, 2023
Short summary
Short summary
Anthropogenic iron is the dominant source of dissolved Fe in aerosol particles, but its contribution to dissolved Fe in aerosol particles has not been quantitatively evaluated. We established the molar concentration ratio of dissolved Fe to dissolved Al as a new indicator to evaluate the contribution of anthropogenic iron. As a result, about 10 % of dissolved Fe in aerosol particles was derived from anthropogenic iron when aerosol particles were transported from East Asia to the Pacific Ocean.
Minako Kurisu, Kohei Sakata, Mitsuo Uematsu, Akinori Ito, and Yoshio Takahashi
Atmos. Chem. Phys., 21, 16027–16050, https://doi.org/10.5194/acp-21-16027-2021, https://doi.org/10.5194/acp-21-16027-2021, 2021
Short summary
Short summary
Aerosol iron (Fe) input can enhance oceanic primary production. We analyzed Fe isotope ratios of size-fractionated aerosols over the northwestern Pacific to evaluate the contribution of natural and combustion Fe. It was found that combustion Fe was an important soluble Fe source in marine aerosols and possibly in surface seawater when air masses were from East Asia. This study shows the applicability of Fe isotope ratios for a more quantitative understanding of the Fe cycle in the surface ocean.
Kohei Sakata, Shotaro Takano, Atsushi Matsuki, Yasuo Takeichi, Hiroshi Tanimoto, Aya Sakaguchi, Minako Kurisu, and Yoshio Takahashi
Atmos. Chem. Phys., 25, 11087–11107, https://doi.org/10.5194/acp-25-11087-2025, https://doi.org/10.5194/acp-25-11087-2025, 2025
Short summary
Short summary
Deposition of aerosol iron (Fe) into the ocean stimulates primary production and influences the global carbon cycle, although the factors governing the aerosol Fe solubility remain uncertain. Our observations in Japan revealed that both mineral dust and anthropogenic aerosols are significant sources of dissolved Fe, and that atmospheric chemical weathering enhances their solubility. This finding is expected to play a crucial role in estimating the supply of dissolved iron to the ocean.
Yosuke Niwa, Yasunori Tohjima, Yukio Terao, Tazu Saeki, Akihiko Ito, Taku Umezawa, Kyohei Yamada, Motoki Sasakawa, Toshinobu Machida, Shin-Ichiro Nakaoka, Hideki Nara, Hiroshi Tanimoto, Hitoshi Mukai, Yukio Yoshida, Shinji Morimoto, Shinya Takatsuji, Kazuhiro Tsuboi, Yousuke Sawa, Hidekazu Matsueda, Kentaro Ishijima, Ryo Fujita, Daisuke Goto, Xin Lan, Kenneth Schuldt, Michal Heliasz, Tobias Biermann, Lukasz Chmura, Jarsolaw Necki, Irène Xueref-Remy, and Damiano Sferlazzo
Atmos. Chem. Phys., 25, 6757–6785, https://doi.org/10.5194/acp-25-6757-2025, https://doi.org/10.5194/acp-25-6757-2025, 2025
Short summary
Short summary
This study estimated regional and sectoral emission contributions to the unprecedented surge of atmospheric methane for 2020–2022. The methane is the second most important greenhouse gas, and its emissions reduction is urgently required to mitigate global warming. Numerical modeling-based estimates with three different sets of atmospheric observations consistently suggested large contributions of biogenic emissions from South Asia and Southeast Asia to the surge of atmospheric methane.
Johannes Heuser, Claudia Di Biagio, Jérôme Yon, Mathieu Cazaunau, Antonin Bergé, Edouard Pangui, Marco Zanatta, Laura Renzi, Angela Marinoni, Satoshi Inomata, Chenjie Yu, Vera Bernardoni, Servanne Chevaillier, Daniel Ferry, Paolo Laj, Michel Maillé, Dario Massabò, Federico Mazzei, Gael Noyalet, Hiroshi Tanimoto, Brice Temime-Roussel, Roberta Vecchi, Virginia Vernocchi, Paola Formenti, Bénédicte Picquet-Varrault, and Jean-François Doussin
Atmos. Chem. Phys., 25, 6407–6428, https://doi.org/10.5194/acp-25-6407-2025, https://doi.org/10.5194/acp-25-6407-2025, 2025
Short summary
Short summary
The spectral optical properties of combustion soot aerosols with varying black (BC) and brown carbon (BrC) content were studied in an atmospheric simulation chamber. Measurements of the mass spectral absorption cross section (MAC), supplemented by literature data, allowed us to establish a generalised exponential relationship between the spectral absorption and the elemental-to-total-carbon ratio (EC / TC) in soot. This relationship can provide a useful tool for modelling the properties of soot.
Sachiko Okamoto, Juan Cuesta, Gaëlle Dufour, Maxmim Eremenko, Kazuyuki Miyazaki, Cathy Boonne, Hiroshi Tanimoto, Jeff Peischl, and Chelsea Thompson
EGUsphere, https://doi.org/10.5194/egusphere-2024-3758, https://doi.org/10.5194/egusphere-2024-3758, 2024
Short summary
Short summary
We analyse the distribution of tropospheric ozone over the South and Tropical Atlantic during February 2017 using a multispectral satellite approach called IASI+GOME2, three chemistry reanalysis products and in situ airborne measurements. It reveals that a significant overestimation of three chemistry reanalysis products of lowermost troposphere ozone over the Atlantic in the Northern Hemisphere due to the overestimations of ozone precursors from anthropogenic sources from North America.
Yange Deng, Hiroshi Tanimoto, Kohei Ikeda, Sohiko Kameyama, Sachiko Okamoto, Jinyoung Jung, Young Jun Yoon, Eun Jin Yang, and Sung-Ho Kang
Atmos. Chem. Phys., 24, 6339–6357, https://doi.org/10.5194/acp-24-6339-2024, https://doi.org/10.5194/acp-24-6339-2024, 2024
Short summary
Short summary
Black carbon (BC) aerosols play important roles in Arctic climate change, yet they are not well understood because of limited observational data. We observed BC mass concentrations (mBC) in the western Arctic Ocean during summer and early autumn 2016–2020. The mean mBC in 2019 was much higher than in other years. Biomass burning was likely the dominant BC source. Boreal fire BC transport occurring near the surface and/or in the mid-troposphere contributed to high-BC events in the Arctic Ocean.
Astrid Müller, Hiroshi Tanimoto, Takafumi Sugita, Prabir K. Patra, Shin-ichiro Nakaoka, Toshinobu Machida, Isamu Morino, André Butz, and Kei Shiomi
Atmos. Meas. Tech., 17, 1297–1316, https://doi.org/10.5194/amt-17-1297-2024, https://doi.org/10.5194/amt-17-1297-2024, 2024
Short summary
Short summary
Satellite CH4 observations with high accuracy are needed to understand changes in atmospheric CH4 concentrations. But over oceans, reference data are limited. We combine various ship and aircraft observations with the help of atmospheric chemistry models to derive observation-based column-averaged mixing ratios of CH4 (obs. XCH4). We discuss three different approaches and demonstrate the applicability of the new reference dataset for carbon cycle studies and satellite evaluation.
Kohei Sakata, Aya Sakaguchi, Yoshiaki Yamakawa, Chihiro Miyamoto, Minako Kurisu, and Yoshio Takahashi
Atmos. Chem. Phys., 23, 9815–9836, https://doi.org/10.5194/acp-23-9815-2023, https://doi.org/10.5194/acp-23-9815-2023, 2023
Short summary
Short summary
Anthropogenic iron is the dominant source of dissolved Fe in aerosol particles, but its contribution to dissolved Fe in aerosol particles has not been quantitatively evaluated. We established the molar concentration ratio of dissolved Fe to dissolved Al as a new indicator to evaluate the contribution of anthropogenic iron. As a result, about 10 % of dissolved Fe in aerosol particles was derived from anthropogenic iron when aerosol particles were transported from East Asia to the Pacific Ocean.
Adedayo R. Adedeji, Stephen J. Andrews, Matthew J. Rowlinson, Mathew J. Evans, Alastair C. Lewis, Shigeru Hashimoto, Hitoshi Mukai, Hiroshi Tanimoto, Yasunori Tohjima, and Takuya Saito
Atmos. Chem. Phys., 23, 9229–9244, https://doi.org/10.5194/acp-23-9229-2023, https://doi.org/10.5194/acp-23-9229-2023, 2023
Short summary
Short summary
We use the GEOS-Chem model to interpret observations of CO, C2H6, C3H8, NOx, NOy and O3 made from Hateruma Island in 2018. The model captures many synoptic-scale events and the seasonality of most pollutants at the site but underestimates C2H6 and C3H8 during the winter. These underestimates are unlikely to be reconciled by increases in biomass burning emissions but could be reconciled by increasing the Asian anthropogenic source of C2H6 and C3H8 by factors of around 2 and 3, respectively.
Sachiko Okamoto, Juan Cuesta, Matthias Beekmann, Gaëlle Dufour, Maxim Eremenko, Kazuyuki Miyazaki, Cathy Boonne, Hiroshi Tanimoto, and Hajime Akimoto
Atmos. Chem. Phys., 23, 7399–7423, https://doi.org/10.5194/acp-23-7399-2023, https://doi.org/10.5194/acp-23-7399-2023, 2023
Short summary
Short summary
We present a detailed analysis of the daily evolution of the lowermost tropospheric ozone documented by IASI+GOME2 multispectral satellite observations and that of its precursors from TCR-2 tropospheric chemistry reanalysis. It reveals that the ozone outbreak across Europe in July 2017 was produced during favorable condition for photochemical production of ozone and was associated with multiple sources of ozone precursors: biogenic, anthropogenic, and biomass burning emissions.
Hao Xu, Urumu Tsunogai, Fumiko Nakagawa, Keiichi Sato, and Hiroshi Tanimoto
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-1099, https://doi.org/10.5194/acp-2021-1099, 2022
Revised manuscript not accepted
Short summary
Short summary
Using triple oxygen isotopic composition (Δ17O) of ozone as a new tracer, we estimated the absolute concentrations of stratospheric ozone supplied through stratosphere-troposphere transport in the troposphere. We observed the diurnal variations in the Δ17O of ozone, which could have affected studies (field measurements, atmospheric modeling) using Δ17O to constrain atmospheric chemical paths. Our study provides an important basis for a better understanding of ozone behavior in the troposphere.
Carlos Alberti, Frank Hase, Matthias Frey, Darko Dubravica, Thomas Blumenstock, Angelika Dehn, Paolo Castracane, Gregor Surawicz, Roland Harig, Bianca C. Baier, Caroline Bès, Jianrong Bi, Hartmut Boesch, André Butz, Zhaonan Cai, Jia Chen, Sean M. Crowell, Nicholas M. Deutscher, Dragos Ene, Jonathan E. Franklin, Omaira García, David Griffith, Bruno Grouiez, Michel Grutter, Abdelhamid Hamdouni, Sander Houweling, Neil Humpage, Nicole Jacobs, Sujong Jeong, Lilian Joly, Nicholas B. Jones, Denis Jouglet, Rigel Kivi, Ralph Kleinschek, Morgan Lopez, Diogo J. Medeiros, Isamu Morino, Nasrin Mostafavipak, Astrid Müller, Hirofumi Ohyama, Paul I. Palmer, Mahesh Pathakoti, David F. Pollard, Uwe Raffalski, Michel Ramonet, Robbie Ramsay, Mahesh Kumar Sha, Kei Shiomi, William Simpson, Wolfgang Stremme, Youwen Sun, Hiroshi Tanimoto, Yao Té, Gizaw Mengistu Tsidu, Voltaire A. Velazco, Felix Vogel, Masataka Watanabe, Chong Wei, Debra Wunch, Marcia Yamasoe, Lu Zhang, and Johannes Orphal
Atmos. Meas. Tech., 15, 2433–2463, https://doi.org/10.5194/amt-15-2433-2022, https://doi.org/10.5194/amt-15-2433-2022, 2022
Short summary
Short summary
Space-borne greenhouse gas missions require ground-based validation networks capable of providing fiducial reference measurements. Here, considerable refinements of the calibration procedures for the COllaborative Carbon Column Observing Network (COCCON) are presented. Laboratory and solar side-by-side procedures for the characterization of the spectrometers have been refined and extended. Revised calibration factors for XCO2, XCO and XCH4 are provided, incorporating 47 new spectrometers.
Sonya L. Fiddes, Matthew T. Woodhouse, Steve Utembe, Robyn Schofield, Simon P. Alexander, Joel Alroe, Scott D. Chambers, Zhenyi Chen, Luke Cravigan, Erin Dunne, Ruhi S. Humphries, Graham Johnson, Melita D. Keywood, Todd P. Lane, Branka Miljevic, Yuko Omori, Alain Protat, Zoran Ristovski, Paul Selleck, Hilton B. Swan, Hiroshi Tanimoto, Jason P. Ward, and Alastair G. Williams
Atmos. Chem. Phys., 22, 2419–2445, https://doi.org/10.5194/acp-22-2419-2022, https://doi.org/10.5194/acp-22-2419-2022, 2022
Short summary
Short summary
Coral reefs have been found to produce the climatically relevant chemical compound dimethyl sulfide (DMS). It has been suggested that corals can modify their environment via the production of DMS. We use an atmospheric chemistry model to test this theory at a regional scale for the first time. We find that it is unlikely that coral-reef-derived DMS has an influence over local climate, in part due to the proximity to terrestrial and anthropogenic aerosol sources.
Minako Kurisu, Kohei Sakata, Mitsuo Uematsu, Akinori Ito, and Yoshio Takahashi
Atmos. Chem. Phys., 21, 16027–16050, https://doi.org/10.5194/acp-21-16027-2021, https://doi.org/10.5194/acp-21-16027-2021, 2021
Short summary
Short summary
Aerosol iron (Fe) input can enhance oceanic primary production. We analyzed Fe isotope ratios of size-fractionated aerosols over the northwestern Pacific to evaluate the contribution of natural and combustion Fe. It was found that combustion Fe was an important soluble Fe source in marine aerosols and possibly in surface seawater when air masses were from East Asia. This study shows the applicability of Fe isotope ratios for a more quantitative understanding of the Fe cycle in the surface ocean.
Yosuke Niwa, Yousuke Sawa, Hideki Nara, Toshinobu Machida, Hidekazu Matsueda, Taku Umezawa, Akihiko Ito, Shin-Ichiro Nakaoka, Hiroshi Tanimoto, and Yasunori Tohjima
Atmos. Chem. Phys., 21, 9455–9473, https://doi.org/10.5194/acp-21-9455-2021, https://doi.org/10.5194/acp-21-9455-2021, 2021
Short summary
Short summary
Fires in Equatorial Asia release a large amount of carbon into the atmosphere. Extensively using high-precision atmospheric carbon dioxide (CO2) data from a commercial aircraft observation project, we estimated fire carbon emissions in Equatorial Asia induced by the big El Niño event in 2015. Additional shipboard measurement data elucidated the validity of the analysis and the best estimate indicated 273 Tg C for fire emissions during September–October 2015.
Astrid Müller, Hiroshi Tanimoto, Takafumi Sugita, Toshinobu Machida, Shin-ichiro Nakaoka, Prabir K. Patra, Joshua Laughner, and David Crisp
Atmos. Chem. Phys., 21, 8255–8271, https://doi.org/10.5194/acp-21-8255-2021, https://doi.org/10.5194/acp-21-8255-2021, 2021
Short summary
Short summary
Over oceans, high uncertainties in satellite CO2 retrievals exist due to limited reference data. We combine commercial ship and aircraft observations and, with the aid of model calculations, obtain column-averaged mixing ratios of CO2 (XCO2) data over the Pacific Ocean. This new dataset has great potential as a robust reference for XCO2 measured from space and can help to better understand changes in the carbon cycle in response to climate change using satellite observations.
Yange Deng, Satoshi Inomata, Kei Sato, Sathiyamurthi Ramasamy, Yu Morino, Shinichi Enami, and Hiroshi Tanimoto
Atmos. Chem. Phys., 21, 5983–6003, https://doi.org/10.5194/acp-21-5983-2021, https://doi.org/10.5194/acp-21-5983-2021, 2021
Short summary
Short summary
The temperature and acidity dependence of yields and chemical compositions of the α-pinene ozonolysis SOA were systematically investigated using a newly developed compact chamber system. Increases in SOA yields were observed with the decrease in temperature and under acidic seed conditions. The differences in chemical compositions between acidic and neutral seed conditions were characterized and explained from the viewpoints of acid-catalyzed reactions. Some organosulfates were newly detected.
Yongjoo Choi, Yugo Kanaya, Masayuki Takigawa, Chunmao Zhu, Seung-Myung Park, Atsushi Matsuki, Yasuhiro Sadanaga, Sang-Woo Kim, Xiaole Pan, and Ignacio Pisso
Atmos. Chem. Phys., 20, 13655–13670, https://doi.org/10.5194/acp-20-13655-2020, https://doi.org/10.5194/acp-20-13655-2020, 2020
Cited articles
Abualhaija, M. M., Whitby, H., and van den Berg, C. M. G.: Competition
between copper and iron for humic ligands in estuarine waters, Mar. Chem.,
172, 46–56, https://doi.org/10.1016/j.marchem.2015.03.010,
2015.
Adachi, K., Oshima, N., Gong, Z., de Sá, S., Bateman, A. P., Martin, S. T., de Brito, J. F., Artaxo, P., Cirino, G. G., Sedlacek III, A. J., and Buseck, P. R.: Mixing states of Amazon basin aerosol particles transported over long distances using transmission electron microscopy, Atmos. Chem. Phys., 20, 11923–11939, https://doi.org/10.5194/acp-20-11923-2020, 2020.
Adachi, K., Oshima, N., Ohata, S., Yoshida, A., Moteki, N., and Koike, M.: Compositions and mixing states of aerosol particles by aircraft observations in the Arctic springtime, 2018, Atmos. Chem. Phys., 21, 3607–3626, https://doi.org/10.5194/acp-21-3607-2021, 2021.
Al-Abadleh, H. A.: Review of the bulk and surface chemistry of iron in
atmospherically relevant systemns containing humic-like substances, RSC
Adv., 5, 45785, https://doi.org/10.1039/C5RA03132J, 2015.
Amrani, A., Said-Ahmad, W., Shaked, Y., and Kiene, R. P.: Sulfur isotope
homogeneity of oceanic DMSP and DMS, P. Natl. Acad. Sci. USA, 110,
18413–18418, https://doi.org/10.1073/pnas.1312956110, 2013.
Angle, K. J., Crocker, D. R., Simpson, R. M. C., Mayer, J. J., Garofalo, L.
A., Moore, A. N., Mora Garcia, S. L., Or, V. W., Srinivasan, S., Farhan, M.,
Sauer, J. S., Lee, C., Pothier, M. A., Farmer, D. K., Martz, T. R., Bertram,
T. H., Cappa, C. D., Prather, K. A., and Grassian, V. H.: Acidity across the
interface from the ocean surface to sea spray aerosol, P. Natl. Acad.
Sci. USA, 118, e2018397118, https://doi.org/10.1073/pnas.2018397118, 2021.
Baker, A. R. and Jickells, T. D.: Mineral particle size as a control n
aerosol iron solubility, Geophys. Res. Lett., 33, L17608, https://doi.org/10.1029/2006GL026557, 2006.
Baker, A. R., Landing, W. M., Bucciarelli, E., Cheize, M., Fietz, S., Hayes,
C. T., Kadko, D., Morton, P. L., Rogan, N., Sarthou, G., Shelley, R. U.,
Shi, Z., Shiller, A., and van Hulten, M. M. P.: Trace element and isotope
deposition across the air–sea interface: progress and research needs, Philos.
T. R. Soc. A, 374, 20160190, https://doi.org/10.1098/rsta.2016.0190, 2016.
Baker, A. R., Li, M., and Chance, R.: Trace metal fractional solubility in
size-segregated aerosols from the tropical eastern Atlantic Ocean, Global
Biogeochem. Cy., 34, e2019GB006510, https://doi.org/10.1029/2019GB006510, 2020.
Baker, A. R., Kanakidou, M., Nenes, A., Myriokefalitakis, S., Croot, P. L.,
Duce, R. A., Gao, Y., Guieu, C., Ito, A., Jickells, T. D., Mahowald, N. M.,
Middag, R., Perron, M. M. G., Sarin, M. M., Shelley, R., and Turner, D. R.:
Changing atmospheric acidity as a modulator of nutrient deposition and ocean
biogeochemistry, Sci. Adv., 7, eabd8800, https://doi.org/10.1126/sciadv.abd8800, 2021.
Baldo, C., Ito, A., Krom, M. D., Li, W., Jones, T., Drake, N., Ignatyev, K., Davidson, N., and Shi, Z.: Iron from coal combustion particles dissolves much faster than mineral dust under simulated atmospheric acidic conditions, Atmos. Chem. Phys., 22, 6045–6066, https://doi.org/10.5194/acp-22-6045-2022, 2022.
Bethke, C. M.: Geochemical Reaction Modeling: Concepts and Applications,
Oxford University Press, https://doi.org/10.1093/oso/9780195094756.001.0001, 1996.
Bian, Q., Huang, X. H. H., and Yu, J. Z.: One-year observations of size distribution characteristics of major aerosol constituents at a coastal receptor site in Hong Kong – Part 1: Inorganic ions and oxalate, Atmos. Chem. Phys., 14, 9013–9027, https://doi.org/10.5194/acp-14-9013-2014, 2014.
Bibi, I., Singh, B., and Silvester, E.: Dissolution of illite in
saline-acidic solutions at 25 ∘C, Geochim. Cosmochim. Ac.,
75, 3237–3249, https://doi.org/10.1016/j.gca.2011.03.022,
2011.
Bikkina, P., Kawamura, K., Bikkina, S., Kunwar, B., Tanaka, K., and Suzuki,
K.: Hydroxy fatty acids in remote marine aerosols over the Pacific Ocean:
Impact of biological activity and wind speed, ACS Earth Space Chem., 3,
366–379, https://doi.org/10.1021/acsearthspacechem.8b00161,
2019.
Bikkina, S., Kawamura, K., and Miyazaki, Y.: Latitudinal distributions of
atmospheric dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls over the western North Pacific: sources and formation pathways,
J. Geophys. Res.-Atmos., 120, 5010–5035, https://doi.org/10.1002/2014JD022235, 2015.
Boris, A. J., Lee, T., Park, T., Choi, J., Seo, S. J., and Collett Jr., J. L.: Fog composition at Baengnyeong Island in the eastern Yellow Sea: detecting markers of aqueous atmospheric oxidations, Atmos. Chem. Phys., 16, 437–453, https://doi.org/10.5194/acp-16-437-2016, 2016.
Boyd, P. W., Jickells, T., Law, C. S., Blain, S., Boyle, E. A., Buesseler,
K. O., Coale, K. H., Cullen, J. J., de Beear, H. J. W., Follows, M., Harvey,
M., Lancelot, C., Levasseur, M., Owens, N. P. J., Pollard, R., Rivkin, R.
B., Sarmiento, J., Schoemann, V., Smetacek, V., Takeda, S., Tsuda, A.,
Turner, S., and Watson, A. J.: Mesoscale iron enrichment experiments
1993–2005: Synthesis, and future directions, Science, 315, 612–617,
https://doi.org/10.1126/science.1131669, 2007.
Bray, A. W., Oelkers, E. H., Bonneville, S., Wolff-Boenisch, D., Potts, N.
J., Fones, G., and Benning, L. G.: The effect of pH, grain size, and organic
ligands on biotite weathering rates, Geochim. Cosmochim. Ac., 164,
127–145, https://doi.org/10.1016/j.gca.2015.04.048, 2015.
Buck, C. S., Landing, W. M., Resing, J. A., and Lebon, G. T.: Aerosol iron
and aluminum solubility in the northwest Pacific Ocean: Results from the
2002 IOC cruise, Geochem. Geophy. Geosy., 7, Q04M07, https://doi.org/10.1029/2005GC000977, 2006.
Buck, C. S., Landing, W. M., and Resing, J.: Particle size and aerosol iron
solubility: A high-resolution analysis of Atlantic aerosols, Mar. Chem.,
120, 14–24, https://doi.org/10.1016/j.marchem.2008.11.002,
2010.
Buck, C. S., Landing, W. M., and Resing, J.: Pacific Ocean aerosols:
Deposition and solubility of iron, aluminum, and other trace elements, Mar.
Chem., 157, 117–130, https://doi.org/10.1016/j.marchem.2013.09.005, 2013.
Calhoun, J. A., Bates, T. S., and Charlson, R. J.: Sulfur isotope
measurements of submicrometer sulfate aerosol particles over the Pacific
Ocean, Geophys. Res. Lett., 18, 1877–1880, https://doi.org/10.1029/91GL02304, 1991.
Chance, R., Jickells, T. D., and Baker, A. R.: Atmospheric trace metal
concentrations, solubility and deposition fluxes in remote marine air over
the south-east Atlantic, Mar. Chem., 177, 45–56, https://doi.org/10.1016/j.marchem.2015.06.028, 2015.
Cheize, M., Sarthou, G., Croot, P. L., Bucciarelli, E., Baudoux, A. C., and
Baker, A. R.: Iron organic speciation determination in rainwater using
cathodic stripping voltammetry, Anal. Chim. Acta, 736, 45–54, https://doi.org/10.1016/j.aca.2012.05.011, 2012.
Chen, H. and Grassian, V. H.: Iron dissolution of dust source materials
during simulated acidic processing: The effect of sulfuric, acetic, and
oxalic acids, Environ. Sci. Technol., 47, 10312–10321, https://doi.org/10.1021/es401285s, 2013.
Chen, Q., Miyazaki, Y., Kawamura, K., Matsumoto, K., Coburn, S., Volkamer,
R., Iwamoto, Y., Kgami, S., Deng, Y., Ogawa, S., Ramasamy, S., Kato, S.,
Ida, A., Kajii, Y., and Mochida, M.: Characterization of chromophoric
water-soluble organic matter in urban, forest, and marine aerosols by
HR-ToF-MS analysis and excitation–emission matrix spectroscopy, Environ.
Sci. Technol., 50, 10351–10360, https://doi.org/10.1021/acs.est.6b01643, 2016.
Chung, C. H., You, C. F., Hsu, S. C., and Liang, M. C.: Sulfur isotope analysis
for representative regional background atmospheric aerosols collected at Mt.
Luing, Taiwan, Sci. Rep.-UK, 9, 19707, https://doi.org/10.1038/s41598-019-56048-z, 2019.
Clegg, S. L., Pitzer, K. S., and Brimblecombe, P.: Thermodynamics of
multicomponent, miscible, ionic solutions. II. Mixtures including
unsymmetrical electrolyte, J. Phys. Chem., 96, 9470–9479,
https://doi.org/10.1021/j100202a074, 1992.
Cochran, R. E., Laskina, O., Hayarathne, T., Laskin, A., Laskin, J., Lin,
P., Sultana, C., Lee, C., Moore, K. A., Cappa, C. D., Bertram, T. H.,
Prather, K. A., Grassian, V. H., and Stone, E. A.: Analysis of organic
anionic surfactants in fine and coarse fractions of fershly emitted sea
spray aeorsol, Environ. Sci. Technol., 50, 2477–2486, https://doi.org/10.1021/acs.est.5b04053, 2016.
Conway, T. M., Hamilton D. S., Shelley, R. U., Aguilar-Islas, A. M.,
Landing, W. M., Mahowald, N., and John, S. G.: Tracing and constraining
anthropogenic aerosol iron fluxes to the North Atlantic Ocean using iron
isotopes, Nat. Commun., 10, 2628, https://doi.org/10.1038/s41467-019-10457-w, 2019.
Cwiertny, D. M., Baltrusaitis, J., Hunter, G. J., Laskin, A., Scherer, M.
M., and Grassian, V. H.: Characterization and acid-mobilization study of
iron-containing mineral dust source materials, J. Geophys. Res., 113, D05202,
https://doi.org/10.1029/2007JD009332, 2008.
Deng, C., Brooks, S. D., Vidaurre, G., and Thornton, D. C. O.: Using Raman
microspectoscopy to determine chemical composition and mixing state of
airborne marine aerosols over the Pacific Ocean, Aerosol Sci. Tech., 48,
193–206, https://doi.org/10.1080/02786826.2013.867297, 2014.
Desboeufs, K. V., Losno, R., Vimeux, F., and Cholbi, S.: THe pH-dependent
dissolution of wind-transported Saharan dust, J. Geophys. Res.-Atmos., 104,
21287–21299, https://doi.org/10.1029/1999JD900236, 1999.
Desboeufs, K. V., Sofikitis, A., Lonso, R., Colin, J. L., and Ausset, P.:
Dissolution and solubility of trace metals from natural and anthropogenic
aerosol particulate matter, Chemosphere, 58, 195–203, https://doi.org/10.1016/j.chemosphere.2004.02.025, 2005.
Engelhart, G. J., Hildebrandt, L., Kostenidou, E., Mihalopoulos, N., Donahue, N. M., and Pandis, S. N.: Water content of aged aerosol, Atmos. Chem. Phys., 11, 911–920, https://doi.org/10.5194/acp-11-911-2011, 2011.
Fang, T., Guo, H., Verma, V., Peltier, R. E., and Weber, R. J.: PM2.5 water-soluble elements in the southeastern United States: automated analytical method development, spatiotemporal distributions, source apportionment, and implications for heath studies, Atmos. Chem. Phys., 15, 11667–11682, https://doi.org/10.5194/acp-15-11667-2015, 2015.
Fang, T., Guo, H., Zeng, L., Verma, V., Nenes, A., and Weber, R.: Highly
Acidic Ambient Particles, Soluble Metals, and Oxidative Potential: A Link
between Sulfate and Aerosol Toxicity, Environ. Sci. Technol., 51,
2611–2620, https://doi.org/10.1021/acs.est.6b06151, 2017.
Fitzgerald, E., Ault, A. P., Zauscher, M. D., Mayol-Bracero, O. L., and
Prather, K. A.: Comparison of the mixing state of long-range transported
Asian and African mineral dust, Atmos. Environ., 115, 19–25, https://doi.org/10.1016/j.atmosenv.2015.04.031, 2015.
Formenti, P., Schütz, L., Balkanski, Y., Desboeufs, K., Ebert, M., Kandler, K., Petzold, A., Scheuvens, D., Weinbruch, S., and Zhang, D.: Recent progress in understanding physical and chemical properties of African and Asian mineral dust, Atmos. Chem. Phys., 11, 8231–8256, https://doi.org/10.5194/acp-11-8231-2011, 2011.
Friese, E. and Ebel, A.: Temperature dependent thermodynamic model of the
system
H+–NH –Na+–SO –NO –Cl−–H2O, J. Phys. Chem. A,
114, 11595–11631, https://doi.org/10.1021/jp101041j,
2010.
Gledhill, M. and Buck, K. N.: The organic complexation of iron in the
marine environment: a review, Front. Microbiol., 3, 69, https://doi.org/10.3389/fmicb.2012.00069, 2012.
Graber, E. R. and Rudich, Y.: Atmospheric HULIS: How humic-like are they? A comprehensive and critical review, Atmos. Chem. Phys., 6, 729–753, https://doi.org/10.5194/acp-6-729-2006, 2006.
Guo, H., Nenes, A., and Weber, R. J.: The underappreciated role of nonvolatile cations in aerosol ammonium-sulfate molar ratios, Atmos. Chem. Phys., 18, 17307–17323, https://doi.org/10.5194/acp-18-17307-2018, 2018.
Hagvall, K., Persson, P., and Karlsson, T.: Speciation of aluminum in soils
and stream waters: The impaortance of organic matter, Chem. Geol., 417,
32–43, https://doi.org/10.1016/j.chemgeo.2015.09.012, 2015.
Hamilton, D. S., Scanza, R. A., Feng, Y., Guinness, J., Kok, J. F., Li, L., Liu, X., Rathod, S. D., Wan, J. S., Wu, M., and Mahowald, N. M.: Improved methodologies for Earth system modelling of atmospheric soluble iron and observation comparisons using the Mechanism of Intermediate complexity for Modelling Iron (MIMI v1.0), Geosci. Model Dev., 12, 3835–3862, https://doi.org/10.5194/gmd-12-3835-2019, 2019.
Herrmann, H., Schaefer, T., Tilgner, A., Styler, S. A., Weller, C., Teich,
M., and Otto, T.: Tropospheric aqueous-phase chemistry: Kinetics,
mechanisms, and its coupling to changing gas phase, Chem. Rev., 115,
4259–4334, https://doi.org/10.1021/cr500447k, 2015.
Hsieh, C. C., Chen, H. Y., and Ho, T. Y.: The effect of aerosol size on Fe
solubility and deposition flux: A case study in the East China Sea, Mar.
Chem., 241, 104106, https://doi.org/10.1016/j.marchem.2022.104106, 2022.
Ildefonse, P., Cabaret, D., Sainctavit, P., Calas, G., Flank, A. M., and
Lagarde, P.: Aluminum X-ray absorption near edge structure in model
compounds and Earth's surface minerals, Phys. Chem. Miner., 25, 112–121,
https://doi.org/10.1007/s002690050093, 1998.
Inomata, Y., Ohizumi, T., Take, N., Sato, K., and Nishikawa, M.: Transboundary
transport of anthropogenic sulfur PM2.5 at a coastal site in the Sea of
Japan as studied by sulfur isotopic ration measurement, Sci. Total.
Environ., 553, 617–625, https://doi.org/10.1016/j.scitotenv.2016.02.139, 2016.
Ito, A.: Atmospheric processing of combustion aerosols as source of
bioavailable iron, Environ. Sci. Tech. Let., 2, 70–75, https://doi.org/10.1021/acs.estlett.5b00007, 2015.
Ito, A. and Shi, Z.: Delivery of anthropogenic bioavailable iron from mineral dust and combustion aerosols to the ocean, Atmos. Chem. Phys., 16, 85–99, https://doi.org/10.5194/acp-16-85-2016, 2016.
Jeong, G. Y. and Nousiainen, T.: TEM analysis of the internal structures and mineralogy of Asian dust particles and the implications for optical modeling, Atmos. Chem. Phys., 14, 7233–7254, https://doi.org/10.5194/acp-14-7233-2014, 2014.
Jickells, T. D., An, Z. S., Andersen, K. K., Baker, A. R., Bergametti, G.,
Brooks, N., Cao, J. J., Boyd, P. W., Duce, R. A., Hunter, K. A., Kawahata,
H., Kubilay, N., laRoche, J., Liss, P. S., Mahowald, N., Prospero, J. M.,
Ridgwell, A. J., Tegen, I., and Torres, R.: Global iron connections between
desert dust, ocean biogeochemistry, and climate, Science, 308, 67–71,
https://doi.org/10.1126/science.1105959, 2005.
Kawamura, K. and Bikkina, S.: A review of dicarboxylic acids and related
compounds in atmospheric aerosols: Molecular distributions, sources, and
transformation, Atmos. Res., 170, 140–160, https://doi.org/10.1016/j.atmosres.2015.11.018, 2016.
Kim, H. J., Lee, T., Park, T., Park, G., Collett Jr., J. L., Park, K., Ahn,
J. Y., Ban, J., Kang, S., Kim, K., Park, S. M., Jho, E. H., and Choi, Y.:
Ship-borne observations of sea fog and rain chemistry over the North and
South Pacific Ocean, J. Atmos. Chem. 76, 315–326, https://doi.org/10.1007/s10874-020-09403-8, 2019.
Kandler, K., Lieke, K., Benker, N., Emmel, C., Küpper, M.,
Müller-Ebert, D., Ebert, M., Scheuvens, D., Scladitz, A., Schütz,
L., and Weinbrunch, S.: Electron microscopy of particles collected at Praia,
Cape Verde, during the Saharan mineral dust experiment: particle chemistry,
shape, mixing state and complex refractive index, Tellus B, 63, 475–496,
https://doi.org/10.1111/j.1600-0889.2011.00550.x, 2017.
Knopf, D. A., Charnawskas, J. C., Wang, P., Wong, B., Tomlin, J. M., Jankowski, K. A., Fraund, M., Veghte, D. P., China, S., Laskin, A., Moffet, R. C., Gilles, M. K., Aller, J. Y., Marcus, M. A., Raveh-Rubin, S., and Wang, J.: Micro-spectroscopic and freezing characterization of ice-nucleating particles collected in the marine boundary layer in the eastern North Atlantic, Atmos. Chem. Phys., 22, 5377–5398, https://doi.org/10.5194/acp-22-5377-2022, 2022.
Kurisu, M., Takahashi, Y., Iizuka, T., and Uematsu, M.: Very low isotope
ratio of iron in fien aerosols related to its contribution to the surface
ocean, J. Geophys. Res.-Atmos., 121, 11119–11136, https://doi.org/10.1002/2016JD024957, 2016.
Kurisu, M., Adachi, K., Sakata, K., and Takahashi, Y.: Stable isotope ratios
of combustion iron produced by evaporation in a steel plant, ACS Earth Space
Chem., 3, 588–598, https://doi.org/10.1021/acsearthspacechem.8b00171, 2019.
Kurisu, M., Sakata, K., Uematsu, M., Ito, A., and Takahashi, Y.: Contribution of combustion Fe in marine aerosols over the northwestern Pacific estimated by Fe stable isotope ratios, Atmos. Chem. Phys., 21, 16027–16050, https://doi.org/10.5194/acp-21-16027-2021, 2021.
Kwak, N., Lee, H., Maeng, H., Seo, A., Lee, K., Kim, S., Lee, M., Cham J. W., Shin, B., and Park, K.: Morphological and chemical classification of fine particles over the Yellow Sea during spring, 2015–2018, Environ, Pollut., 305, 119286, https://doi.org/10.1016/j.envpol.2022.119286, 2022.
Li, J., Michalski, G., Davy, P., Harvey, M., Katzman, T., and Wilkins, B.:
Investigating source contributions of size-aggregated aerosols collected in
Southern Ocean and Baring Head, New Zealand using sulfur isotopes, Geophys.
Res. Lett., 45, 3717–3727, https://doi.org/10.1002/2018GL077353, 2018.
Li, W. and Shao, L.: Transmission electron microscopy study of aerosol
particles from the brown hazes in northern China, J. Geophys. Res.-Atmos.,
114, D09302, https://doi.org/10.1029/2008JD011285, 2009.
Li, W., Xu, L., Liu, X., Zhang, J., Lin, Y., Yao, X., Gao, H., Zhang, D.,
Chen, J., Wang, W., Harrison, R. M., Zhang, X., Shao, L., Fu, P., Nenes, A.,
and Shi, Z.: Air pollution-aerosol interactions produce more bioavailable
iron for ocean ecosystems, Sci. Adv., 3, e1601749, https://doi.org/10.1126/sciadv.1601749, 2017.
Longo, A. F., Feng, Y., Lai, B., Landing, W. M., Shelley, R. U., Nenes, A.,
Mihalopoulos, N., Violaki, K., and Ingall, E. D.: Influnence of atmopheric
processes on the solubiility and composition of iron in Saharan dust,
Environ. Sci. Technol., 50, 6912–6920, https://doi.org/10.1021/acs.est.6b02605, 2016.
Mackie, D. S., Boyd, P. W., Hunter, K. A., and McTainhsh, G. H.: Simulating
the cloud processing of iron in Australian dust: pH and dust concentration,
Geophys. Res. Lett., 32, L06809, https://doi.org/10.1029/2004GL022122, 2005.
Mahowald, N. M., Hamilton, D. S., Mackey, K. R. M., Moore, J. K., Baker, A.
R., Scanza, R. A., and Zhang, Y.: Aerosol trace metal leaching and impacts on
marine microorganisms, Nat. Commun., 9, 1–15, https://doi.org/10.1038/s41467-018-04970-7, 2018.
Martin, J. H. and Fitzwater, S. E.: Iron deficiency limits phytoplankton
growth in the north-west Pacific subarctic, Nature, 331, 341–343,
https://doi.org/10.1126/science.1105959, 1988.
Maters, E. C., Delmelle, P., and Bonneville, S.: Atmospheric processing of
volcanic glass: Effects on iron solubility and redox speciation, Environ.
Sci. Technol., 50, 5033–5040, https://doi.org/10.1021/acs.est.5b06281, 2016.
Matsuki, A., Iwasaka, Y., Shi, G., Zhang, D., Trochkine, D., Yamada, M.,
Kim, Y. S., Chen, B., Nagatani, T., Miyazawa, T., Nagatani, M., and Nakata,
H.: Morphological and chemical modification of mineral dust: Observational
insight into the heterogeneous uptake of acidic gases, Geophys. Res. Lett.,
32, L22806, https://doi.org/10.1029/2005GL024176, 2005.
Meskhidze, N., Hurley, D., Royalty, T. M., and Johnson, M. S.: Potential
effect of atmospheric dissolved organic carbon on the iron solubility in
seawater, Mar. Chem., 194, 124–132, https://doi.org/10.1016/j.marchem.2017.05.011, 2017.
Meskhidze, N., Völker, C.: Al-Abadleh, H. A., Barbeau, K., Bressac, M.,
Buck, C., Bundy, R. M., Croot, P., Feng, Y., Ito, A., Johansen, A. M.,
Landing, W. M., Mao, J., Myriokefalitakis, S., Ohnemus, D., Pasquier, B.,
and Ye, Y.: Perspective on identifying and characterizaing the process
controlling iron speciation and residence time at the atmisohere-ocean
interface, Mar. Chem., 217, 103704, https://doi.org/10.1016/j.marchem.2019.103704, 2019.
Miyamoto, C., Sakata, K., Yamakawa, Y., and Takahashi, Y.: Determination of
calcium and sulfate species in aerosols associated with the conversion of
its species through reaction processes in the atmosphere and its influence
on cloud condensation nuclie activation, Atmos. Environ., 223, 117193,
https://doi.org/10.1016/j.atmosenv.2019.117193, 2020.
Mochida, M., Kitamori, Y., and Kawamura, K.: Fatty acids in the marine
atmosphere: Factors governing their concentrations and evaluation of organic
films on sea-salt particles, J. Geophys. Res., 107, 4325, https://doi.org/10.1029/2001JD001278, 2002.
Moffet, R. C., Furutani, H., Rödel, T. C., Henn, T. R., Sprau, P. O.,
Laskin, A., Uematsu, M., and Gilles, M. K.: Iron speciation and mixing in
single aerosols particles from the Asian continetal outflow, J. Geophys.
Res., 117, D07204, https://doi.org/10.1029/2011JD016746, 2012.
Moore, C. M., Mills, M. M., Arrigo, K. R., Berman-Frank, I., Bopp, L., Boyd,
P. W., Galbraith, E. D., Geider, R. J., Guieu, C., Jaccard, S. L., Jickells,
T. D., La Roche, J., Lenton, T. M., Mahowald, N. M., Marañón, E.,
Marinov, I., Moore, J. K., Nakatsuka, T., Oschlies, A., Saito, M. A.,
Thingsted, T. F., Tsuda, A., and Ulloa, O.: Processes and patterns of
oceanic nutrient limitation, Nat. Geosci., 6, 701–710, https://doi.org/10.1038/ngeo1765, 2013.
Mori, I., Sun, Z., Ukachi, M., Nagano, K., McLeod, C. Q., Cox, A. G., and
Nishikawa, M.: Development and certification of the new NIES CRM 28: urban
aerosols for the determination of multielements, Anal. Bioanal. Chem., 391,
1997–2003, https://doi.org/10.1007/s00216-008-2076-y, 2008.
Nault, B. A., Campuzano-Jost, P., Day, D. A., Jo, D. S., Schroder, J. C.,
Allen, H. M., Bahreini, R., Bian, H., Blake, D. R., Chin, M., Clegg, S. L.,
Colarco, P. R., Crounse, J. D., Cubison, M. J., DeCarlo, P. F., Dibb, J. E.,
Diskin, G. S., Hodzic, A., Hu, W., Katich, J. M., Kim, M. J., Kodros, J. K.,
Kupc, A., Lopez-Hilfiker, F. D., Marais, E., Middlebrook, A. M., Neuman, J.
A., Nowak, J. B., Palm, B. B., Paulot, F., Pierce, J. R., Schill, G. P.,
Scheuer, E., Thornton, J. A., Tsigaridis, K., Wennberg, P. O., Willamson, C.
J., and Jimenez, J. L.: Chemical transport models often underestimate
inorganic aerosol acidity in remote regions of the atmosphere, Commun. Earth
Environ., 2, 93, https://doi.org/10.1038/s43247-021-00164-0,
2021.
Niimura, N., Okada, K., Fan, X. B., Lai, K., Arao, K., Shi, G. Y., and Takahashi, S.: Formation of Asian dust-storm particles mixed internally with sea salt in the atmosphere, J. Meteorol. Soc. Jpn., 76, 275–288, https://doi.org/10.2151/jmsj1965.76.2_275, 1998.
Nomura, M. and Koyama, A.: Performance of beamline with a pair of bent
conical mirrors, Nucl. Instrum. Meth. A, 467–468, 733–736,
https://doi.org/10.1016/S0168-9002(01)00482-X, 2001.
Nriagu, J. O. and Pacyna, J. M.: Quantitative assessment of worldwide
contamination of air, water and soils by trace metals, Nature, 333,
134–139, https://doi.org/10.1038/333134a0, 1988.
Oakes, M., Ingall, E. D., Lai, B., Shafer, M. M., Hays, M. D., Liu, Z. G.,
Russell, A. G., and Weber, R. J.: Iron solubility related to particle sulfur
content in source emission and ambient fine particles, Environ. Sci.
Technol., 46, 6637–6644, https://doi.org/10.1021/es300701c,
2012a.
Oakes, M., Weber, R. J., Lai, B., Russell, A., and Ingall, E. D.: Characterization of iron speciation in urban and rural single particles using XANES spectroscopy and micro X-ray fluorescence measurements: investigating the relationship between speciation and fractional iron solubility, Atmos. Chem. Phys., 12, 745–756, https://doi.org/10.5194/acp-12-745-2012, 2012b.
Okada, K., Naruse, H., Tanaka, T., Nemoto, O., Iwasaka, Y., Wu, P. M., Ono, A., Duce, R. A., Uematsu, M., and Merrill, J. T.: X-ray spectrometry of individual Asian dust-storm particles over the Japanese islands and the North https://doi.org/10.1016/0960-1686(90)90043-M, 1990.
Paris, R. and Desboeufs, K. V.: Effect of atmospheric organic complexation on iron-bearing dust solubility, Atmos. Chem. Phys., 13, 4895–4905, https://doi.org/10.5194/acp-13-4895-2013, 2013.
Paulot, F., Jacob, D. J., Johnson, M. T., Bell, T. G., Baker, A. R., Keene,
W. C., Lima, I. D., Doney, S. C., and Stock, C. A.: Global oceanic emission
of ammonia: Constraints from seawater and atmospheric observations, Global
Biogeochem. Cy., 29, 1165–1178, https://doi.org/10.1002/2015GB005106, 2015.
Prather, K. A., Bertram, T. H., Grassian, V. H., Deane, G. B., Stokes, M.
D., DeMott, P. J., Aluwihare, L. I., Palenik, B. P., Azam, F., Seinfeld, J.
H., Moffet, R. C., Molina, M. J., Cappa, C. D., Geiger, F. M., Roberts, G.
C., Russell, L. M., Ault, A. P., Baltrusaitis, J., Collings, D. B.,
Corrigan, C. E., Cuadra-Rodriguez, L. A., Ebben, C. J., Forestieri, S. D.,
Guasco, T. J., Hersey, S. P., Kim, M. J., Lambert, W. F., Modini, R. L.,
Mui, W., Pedler, B. E., Ruppel, M. J., Ryder, O. S., Schoepp, N. G.,
Sullivan, R. C., and Zhao, D.: Bringing the ocean into the laboratory to
probe the chemical complexity of sea spray aerosol, P. Natl. Acad. Sci.
USA, 110, 7550–7555, https://doi.org/10.1073/pnas.1300262110, 2013.
Pruppacher, H. R. and Jaenicke, R.: The processing of water vapor and
aerosols by atmospheric clouds, a global estimate, Atmos. Res., 28, 283–295, https://doi.org/10.1016/0169-8095(94)00098-X, 1995.
Sakata, K., Sakaguhci, A., Tanimizu, M., Takaku, Y., Yokoyama, Y., and
Takahashi, Y.: Identification of sources of lead in the atmosphere using
X-ray absorption near-edge structure (XANES) spectroscopy, J. Environ. Sci.,
26, 343–352, https://doi.org/10.1016/S1001-0742(13)60430-1,
2014.
Sakata, K., Kurisu, M., Tanimoto, H., Sakaguchi, A., Uematsu, M., Miyamoto,
C., and Takahashi, Y.: Custom-made PTFE filters for ultra-clean
size-fractionated aerosol sampling for trace metals, Mar. Chem., 206,
100–108, https://doi.org/10.1016/j.marchem.2018.09.009, 2018.
Sakata, K., Takahashi, Y., Takano, S., Matsuki, A., Sakaguchi, A., and Tanimoto,
H.: First X-ray spectroscopic observations of atmospheric titanium species:
size dependence and the emission source, Environ. Sci. Technol., 55,
10975–10986, https://doi.org/10.1021/acs.est.1c02000, 2021.
Sakata, M., Kurata, M., and Tanaka, N.: Estimating contribution from
municipal solid waste incineration to trace metal concentrations in Japanese
urban atmosphere using lead as a marker element, Geochem. J., 34, 23–32,
https://doi.org/10.2343/geochemj.34.23, 2000.
Salazar, J. R., Pfotenhauer, D. J., Leresche, F., Rosario-Ortiz, F. L.,
Hannigan, M. P., Fakra, S. C., and Majestic, B. J.: Iron speciation in
PM2.5 from urban, agriculture, and mixed environments in Colorado, USA,
Earth Space Sci., 7, e2020EA001262, https://doi.org/10.1029/2020EA001262, 2020.
Salma, I. and Láng, G. G.: How many carboxyl groups does an average molecule of humic-like substances contain?, Atmos. Chem. Phys., 8, 5997–6002, https://doi.org/10.5194/acp-8-5997-2008, 2008.
Samburova, V., Didenko, T., Kunenkov, E., Emmenegger, C., Zenobi, R., and
Kalbere, M.: Functional group analysis of high-molecular weight compounds in
the water-soluble fraction of organic aerosols, Atmos. Environ., 41,
4703–4710, https://doi.org/10.1016/j.atmosenv.2007.03.033,
2007.
Santander, M. V., Mitts, B. A., Pendergraft, M. A., Dinasquet, J., Lee, C.,
Moore, A. N., Cancelada, L. B., Kimble, K. A., Malfatti, F., and Prather, K. A.:
Tandem fluorescence measurements of organic matter and bacteria released in
sea spray aerosols, Environ. Sci. Technol., 55, 5171–5179, https://doi.org/10.1021/acs.est.0c05493, 2021.
Schlitzer, R.: Ocean Data View, https://odv.awi.de (last access: 19 July 2022), 2021.
Schroth, A. W., Crusius, J., Sholkovitz, E. R., and Bostick, B. C.: Iron
solubility driven by speciation in dust sources to the ocean, Nat.
Geosci., 2, 337–340, https://doi.org/10.1038/ngeo501, 2009.
Sedwick, P. N., Sholkovitz, E. R., and Chirch, T. M.: Impact of
anthropogenic combustion emissions on the fractional solubility of aerosol
iron: Evidence from the Sargasso Sea, Geochem. Geophy. Geosy., 8,
Q10Q06, https://doi.org/10.1029/2007GC001586, 2007.
Shah, V., Jacob, D. J., Moch, J. M., Wang, X., and Zhai, S.: Global modeling of cloud water acidity, precipitation acidity, and acid inputs to ecosystems, Atmos. Chem. Phys., 20, 12223–12245, https://doi.org/10.5194/acp-20-12223-2020, 2020.
Shaw, S. A., Peak, D., and Hendry, M. J.: Investigation of acidic dissolution of
mixed clays between pH 1.0 and −3.0 using Si and Al X-ray absorption near
edge structure, Geochim. Comochim. Ac., 73, 4151–4165, https://doi.org/10.1016/j.gca.2009.04.004, 2009.
Shelley, R. U., Landing, W. M., Ussher, S. J., Planquette, H., and Sarthou, G.: Regional trends in the fractional solubility of Fe and other metals from North Atlantic aerosols (GEOTRACES cruises GA01 and GA03) following a two-stage leach, Biogeosciences, 15, 2271–2288, https://doi.org/10.5194/bg-15-2271-2018, 2018.
Shi, Z., Krom, M. D., and Bonneville, S.: Formation of iron nanoparticles
and increases in iron reactivity in mineral dust during simulated cloud
processing, Envrion. Sci. Technol., 43, 6592–6596, https://doi.org/10.1021/es901294g, 2009.
Shi, Z., Bonneville, S., Krom, M. D., Carslaw, K. S., Jickells, T. D., Baker, A. R., and Benning, L. G.: Iron dissolution kinetics of mineral dust at low pH during simulated atmospheric processing, Atmos. Chem. Phys., 11, 995–1007, https://doi.org/10.5194/acp-11-995-2011, 2011.
Shi, Z., Krom, M. D., Bonneville, S., and Benning, L. G.: Atmospheric
processing outside clouds increases solubile iron in mineral dust, Environ.
Sci. Technol., 49, 1472–1477, https://doi.org/10.1021/es504623x, 2015.
Sholkovitz, E. R., Sedwick, P. N., and Chrch, T. M.: Influence of
anthropogenic combustion emissions on the deposition of soluble aerosol iron
to the ocean: Empirical estimates for island sites in the North Atlantic,
Geochim. Cosmochim. Ac., 73, 3981–4003, https://doi.org/10.1016/j.gca.2009.04.029, 2009.
Spokes, L., Jickells, T. D., and Lim, B.: Solubilisation of aerosol trace
metals by cloud processing: A laboratory study, Geochim. Cosmochim. Ac.,
58, 3281–3287, https://doi.org/10.1016/0016-7037(94)90056-6, 1994.
Spranger, T., van Pinxteren, D., and Herrman, H.: Atmospheric “HULIS” in
different environments: Polarities, molecular sizes, and sources suggest
more then 50 % are not “humic-like”, ACS Earth Space Chem., 4, 272–282, https://doi.org/10.1021/acsearthspacechem.9b00299, 2020.
Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D.,
and Ngan, F.: Noaa's hysplit atmospheric transport and dispersion modeling
system, B. Am. Meteorol. Soc., 96, 2059–2077, https://doi.org/10.1175/BAMS-D-14-00110.1, 2015.
Straub, D. J., Lee, T., and Collett, J. L.: Chemical composition of marine
stratocumulus clouds over the eastern Pacific Ocean, J. Geophys. Res.-Atmos.,
112, D04307, https://doi.org/10.1029/2006JD007439, 2007.
Sullivan, R. C., Guazzotti, S. A., Sodeman, D. A., and Prather, K. A.: Direct observations of the atmospheric processing of Asian mineral dust, Atmos. Chem. Phys., 7, 1213–1236, https://doi.org/10.5194/acp-7-1213-2007, 2007.
Sullivan, T. S., Ramkissoon, S., Garrison, V. H., Ramsubhag, A., and Thies,
J. E.: Siderohore production of African dust microorganisms over Trinidad
and Tobago, Aerobiologia, 28, 391–401, https://doi.org/10.1007/s10453-011-9243-x, 2012.
Takahashi, Y., Miyoshi, T., Yabuki, S., Inada, Y., and Shimizu, H.:
Observation of transformation of calcite to gypsum in mineral aerosols by Ca
K-edge X-ray absorption near-edge structure (XANES), Atmos. Environ., 42,
6535–6541, https://doi.org/10.1016/j.atmosenv.2008.04.012,
2008.
Takahashi, Y., Higashi, M., Furukawa, T., and Mitsunobu, S.: Change of iron species and iron solubility in Asian dust during the long-range transport from western China to Japan, Atmos. Chem. Phys., 11, 11237–11252, https://doi.org/10.5194/acp-11-11237-2011, 2011.
Takahashi, Y., Furukawa, T., Kanai, Y., Uematsu, M., Zheng, G., and Marcus, M. A.: Seasonal changes in Fe species and soluble Fe concentration in the atmosphere in the Northwest Pacific region based on the analysis of aerosols collected in Tsukuba, Japan, Atmos. Chem. Phys., 13, 7695–7710, https://doi.org/10.5194/acp-13-7695-2013, 2013.
Takeichi, Y., Inami, N., Suga, H., Miyamoto, C., Ueno, T., Mases, K.,
Takahashi, Y., and Ono, K.: Design and performance of a compact scanning
transmission X-ray microscope at the Photon Factory, Rev. Sci. Instrum., 87,
013704, https://doi.org/10.1063/1.4940409, 2016.
Tao, Y. and Murphy, J. G.: The mechanisms responsible for the interactions
among oxalate, pH and Fe dissolution in PM2.5, ACS Earth Space Chem.,
3, 2259–2265, https://doi.org/10.1021/acsearthspacechem.9b00172, 2019.
Taylor, S. R.: Abundance of chemical elements in the continental crust: a
new table,
Geochim. Cosmochim. Ac., 28, 1273–1285, https://doi.org/10.1016/0016-7037(64)90129-2, 1964.
Vinatier, V., Wirgot, N., Joly, M., Sancelme, M., Abrantes, M., Deguillaume,
L., and Delort, A. M.: Sidreophore in cloud waters and potential impact on
atmospheric chemistry: Production by microorganisms isolated at the Puy de
Dôme station, Environ. Sci. Technol., 50, 9315–9323, https://doi.org/10.1021/acs.est.6b02335, 2016.
Wagner, T., Guieu, C., Losno, R., Bonnet, S., and Mahowald, N.: Revisiting
atmospheric dust export to the Southern Hemisphere ocecan: biogeochemical
implications, Global Biogeochem. Cy., 22, GB2006, https://doi.org/10.1029/2007GB002984, 2008.
Wang, Z., Fu, H., Zhang, L., Song, W., and Chen, J.: Ligand-promoted
photoreductive dissolution of goethite by atmospheric low-molecular
dicarboxylates, J. Phys. Chem. A, 121, 1647–1656, https://doi.org/10.1021/acs.jpca.6b09160, 2017.
Wilson, T. W., Ladino, L. A., Alpert, P. A., Breckels, M. N., Brooks, I. M.,
Browse, J., Burrows, S. M., Carslaw, K. S., Huffman, J. A., Judd, C.,
Kilthau, W. P., Mason, R. H., McFiggans, G., Miller, L. A., Nájera, J.
J., Polishchuk, E., Rae, S., Schiller, C. L., Si, M., Temprado, J. V.,
Whale, T. F., Wong, J. P. S., Wurl, O., Yakobi-Hancock, J. D., Abbatt, J. P.
D., Aller, J. Y., Bertram, A. K., Knopf, D. A., and Murray, B. J.: A marine
biogenic source of atmospheric ice-nucleating particles, Nature, 525,
234–238, https://doi.org/10.1038/nature14986, 2015.
Wong, J. P. S., Yang, Y., Fang, T., Mulholland, J. A., Russell, A. G.,
Ebelt, S., Nenes, A., and Weber, R. J.: Fine paticle iron in soils and road dust
is modulated by coal-fired power plant sulfur, Environ. Sci. Technol., 54,
7088–7096, https://doi.org/10.1021/acs.est.0c00483, 2020.
Wozniak, A. S., Shelley, R. U., Sleighter, R. L., Abdulla, H. A. N., Morton,
P. L., Landing, W. M., and Hatcher, P. G.: Relationships among aerosol water
soluble organic matter, iron and aluminum in European, North African, and
marine air masses from the 2010 US GEOTRACES cruise, Mar. Chem., 154,
24–33, https://doi.org/10.1016/j.marchem.2013.04.011, 2013.
Wozniak, A. S., Shelley, R. U., McElhenie, S. D., Landing, W. M., and
Hatcher, P. G.: Aerosol water soluble organic matter characteristics over
the North Atlantic Ocean: Implications for iron-binding ligands and iron
solubility, Mar. Chem., 173, 162–172, https://doi.org/10.1016/j.marchem.2014.11.002, 2015.
Yao, X., Fang, M., and Chan, C. K.: Size distributions and formation of
dicarboxylic acids in atmospheric particles, Atmos. Environ., 36,
2099–2107, https://doi.org/10.1016/S1352-2310(02)00230-3,
2002.
Zhang, H., Li, R., Dong, S., Wang, F., Zhu, Y., Meng, H., Huang, C., Ren,
Y., Wang, X., Hu, X., Li, T., Peng, C., Zhang, G., Xue, L., Wang, X., and
Tang, M.: Abundance and fractional solubility of aerosol iron during winter
at a coastal city in northern China: Similarities and contrasts between fine
and coarse particles, J. Geophys. Res.-Atmos., 127, e2021JD036070, https://doi.org/10.1029/2021JD036070, 2022.
Short summary
Iron (Fe) species in size-fractionated aerosol particles collected in the western Pacific Ocean were determined to identify factors controlling fractional Fe solubility. We found that labile Fe was mainly present in submicron aerosol particles, and the Fe species were ferric organic complexes combined with humic-like substances (Fe(III)-HULIS). The Fe(III)-HULIS was formed by atmospheric processes. Thus, atmospheric processes play a significant role in controlling Fe solubility.
Iron (Fe) species in size-fractionated aerosol particles collected in the western Pacific Ocean...
Altmetrics
Final-revised paper
Preprint