Articles | Volume 22, issue 12
https://doi.org/10.5194/acp-22-8369-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-8369-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Measurement report: The importance of biomass burning in light extinction and direct radiative effect of urban aerosol during the COVID-19 lockdown in Xi'an, China
Jie Tian
Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
CAS Center for Excellence in Quaternary Science and Global Change,
Xi'an 710061, China
Qiyuan Wang
CORRESPONDING AUTHOR
Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
CAS Center for Excellence in Quaternary Science and Global Change,
Xi'an 710061, China
National Observation and Research Station of Regional Ecological
Environment Change and Comprehensive Management in the Guanzhong Plain,
Shaanxi, Xi'an 710061, China
Huikun Liu
Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
Yongyong Ma
Meteorological Institute of Shaanxi Province, Xi'an 710015, China
Suixin Liu
Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
CAS Center for Excellence in Quaternary Science and Global Change,
Xi'an 710061, China
Yong Zhang
Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
Weikang Ran
Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
Yongming Han
Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
CAS Center for Excellence in Quaternary Science and Global Change,
Xi'an 710061, China
National Observation and Research Station of Regional Ecological
Environment Change and Comprehensive Management in the Guanzhong Plain,
Shaanxi, Xi'an 710061, China
Junji Cao
CORRESPONDING AUTHOR
Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing
100029, China
Related authors
Zheng Yang, Qiaoqiao Wang, Qiyuan Wang, Nan Ma, Jie Tian, Yaqing Zhou, Ge Xu, Miao Gao, Xiaoxian Zhou, Yang Zhang, Weikang Ran, Ning Yang, Jiangchuan Tao, Juan Hong, Yunfei Wu, Junji Cao, Hang Su, and Yafang Cheng
EGUsphere, https://doi.org/10.5194/egusphere-2025-1020, https://doi.org/10.5194/egusphere-2025-1020, 2025
Short summary
Short summary
Our results demonstrate that the reduction in mass absorption efficiency from biomass burning is mainly driven by the decline in the imaginary part, with particle size playing a minor role. And light absorption of oxygenated BrC increases significantly with aging, but hydrocarbon-like BrC decrease over time. These results emphasize the necessity to classify BrC into different groups based on their mass absorption efficiency and atmospheric behavior in climate models.
Meng Wang, Qiyuan Wang, Steven Sai Hang Ho, Jie Tian, Yong Zhang, Shun-cheng Lee, and Junji Cao
Atmos. Chem. Phys., 24, 11175–11189, https://doi.org/10.5194/acp-24-11175-2024, https://doi.org/10.5194/acp-24-11175-2024, 2024
Short summary
Short summary
We studied nitrogen-containing organic compounds (NOCs) in particulate matter <2.5 µm particles on the southeastern Tibetan Plateau. We found that biomass burning and transboundary transport are the main sources of NOCs in the high-altitude area. Understanding these aerosol sources informs how they add to regional and potentially global climate changes. Our findings could help shape effective environmental policies to enhance air quality and address climate impacts in this sensitive region.
Xuehong Gong, Zeyu Liu, Jie Tian, Qiyuan Wang, Guohui Li, Zhisheng An, and Yongming Han
EGUsphere, https://doi.org/10.5194/egusphere-2024-1684, https://doi.org/10.5194/egusphere-2024-1684, 2024
Short summary
Short summary
Our study analyzed CO2 emissions from wildfires in China from 2001 to 2022. Cropland and forest fires contributed the most, while grassland fires were the least. Emissions from forest and shrub fires decreased significantly, while cropland fires increased. The highest emissions were in Heilongjiang and Inner Mongolia. China's effective policy management has reduced wildfire-related CO2 emissions, aiding global climate change efforts.
Li Li, Qiyuan Wang, Jie Tian, Huikun Liu, Yong Zhang, Steven Sai Hang Ho, Weikang Ran, and Junji Cao
Atmos. Chem. Phys., 23, 9597–9612, https://doi.org/10.5194/acp-23-9597-2023, https://doi.org/10.5194/acp-23-9597-2023, 2023
Short summary
Short summary
The Tibetan Plateau has a unique geographical location, but there is a lack of detailed research on the real-time characteristics of full aerosol composition. This study elaborates the changes in chemical characteristics between transport and local fine particles during the pre-monsoon, reveals the size distribution and the mixing states of different individual particles, and highlights the contributions of photooxidation and aqueous reaction to the formation of the secondary species.
Yong Zhang, Jie Tian, Qiyuan Wang, Lu Qi, Manousos Ioannis Manousakas, Yuemei Han, Weikang Ran, Yele Sun, Huikun Liu, Renjian Zhang, Yunfei Wu, Tianqu Cui, Kaspar Rudolf Daellenbach, Jay Gates Slowik, André S. H. Prévôt, and Junji Cao
Atmos. Chem. Phys., 23, 9455–9471, https://doi.org/10.5194/acp-23-9455-2023, https://doi.org/10.5194/acp-23-9455-2023, 2023
Short summary
Short summary
PM2.5 pollution still frequently occurs in northern China during winter, and it is necessary to figure out the causes of air pollution based on intensive real-time measurement. The findings elaborate the chemical characteristics and source contributions of PM2.5 in three pilot cities, reveal potential formation mechanisms of secondary aerosols, and highlight the importance of controlling biomass burning and inhibiting generation of secondary aerosol for air quality improvement.
Jie Tian, Qiyuan Wang, Yongyong Ma, Jin Wang, Yongming Han, and Junji Cao
Atmos. Chem. Phys., 23, 1879–1892, https://doi.org/10.5194/acp-23-1879-2023, https://doi.org/10.5194/acp-23-1879-2023, 2023
Short summary
Short summary
We investigated the light absorption properties of brown carbon (BrC) in the Tibetan Plateau (TP). BrC made a substantial contribution to the submicron aerosol absorption, which is related to the cross-border transport of biomass burning emission and secondary aerosol from Southeast Asia. The radiative effect of BrC was half that of black carbon, which can remarkably affect the radiative balance of the TP.
Huikun Liu, Qiyuan Wang, Suixin Liu, Bianhong Zhou, Yao Qu, Jie Tian, Ting Zhang, Yongming Han, and Junji Cao
Atmos. Chem. Phys., 22, 11739–11757, https://doi.org/10.5194/acp-22-11739-2022, https://doi.org/10.5194/acp-22-11739-2022, 2022
Short summary
Short summary
Atmospheric motions play an important role in the mass concentration and the direct radiative effect (DRE) of black carbon (BC). The finding from this study elaborated the impacts of different scales of atmospheric motion on source-specific BC and its DREs, which revealed the nonlinear change between BC mass concentration and its DREs and emphasizes the importance of regionally transported BC for potential climatic effects.
Sihong Zhu, Mengchu Tao, Zhaonan Cai, Yi Liu, Liang Feng, Pubu Sangmu, Zhongshui Yu, and Junji Cao
Atmos. Chem. Phys., 25, 9843–9857, https://doi.org/10.5194/acp-25-9843-2025, https://doi.org/10.5194/acp-25-9843-2025, 2025
Short summary
Short summary
Methane (CH4) emissions can be transported into the upper troposphere (UT) via the Asian monsoon anticyclone (AMA), driving CH4 enhancements. Whether emissions or upward transport is the dominant factor remains debated. We analyzed UT CH4 variability with AMA dynamics, finding strong ties between CH4 distribution and the AMA's east–west oscillation. When centered near 80° E, vertical transport largely enhances CH4 anomalies, with circulation effects 1–2 times greater than those of emissions.
Minxia Shen, Weining Qi, Yali Liu, Yifan Zhang, Wenting Dai, Lu Li, Xiao Guo, Yue Cao, Yingkun Jiang, Qian Wang, Shicong Li, Qiyuan Wang, and Jianjun Li
EGUsphere, https://doi.org/10.5194/egusphere-2025-3094, https://doi.org/10.5194/egusphere-2025-3094, 2025
Short summary
Short summary
This study examines how dust transport modulates oxalic acid formation pathways in aerosols across different elevations of Mount Hua. During dust events, oxalic acid and precursors shift from fine to coarse particles, with concurrent heterogeneous reactions on coarse particle surfaces. The characteristic isotopic fractionation signatures accompanying these transformations yield novel theoretical frameworks for elucidating aerosol aging mechanisms in mountainous environments.
Jiamao Zhou, Jiarui Wu, Xiaoli Su, Ruonan Wang, Imad EI Haddad, Xia Li, Qian Jiang, Ting Zhang, Wenting Dai, Junji Cao, Andre S. H. Prevot, Xuexi Tie, and Guohui Li
Atmos. Chem. Phys., 25, 7563–7580, https://doi.org/10.5194/acp-25-7563-2025, https://doi.org/10.5194/acp-25-7563-2025, 2025
Short summary
Short summary
Brown carbon (BrC) is a type of airborne particle produced from various combustion sources which is light absorption. Historically, climate models have categorizing organic particles as either non-absorbing or purely reflective. Our study shows that BrC can reduce the usual cooling effect of organic particles. While BrC is often linked to biomass burning, however, BrC from fossil fuels contributes significantly to atmospheric heating.
Jingnan Shi, Zhisheng Zhang, Li Li, Li Liu, Yaqing Zhou, Shuang Han, Shaobin Zhang, Minghua Liang, Linhong Xie, Weikang Ran, Shaowen Zhu, Hanbing Xu, Jiangchuan Tao, Alfred Wiedensohler, Qiaoqiao Wang, Qiyuan Wang, Nan Ma, and Juan Hong
EGUsphere, https://doi.org/10.5194/egusphere-2025-2643, https://doi.org/10.5194/egusphere-2025-2643, 2025
Short summary
Short summary
This study examines aerosol hygroscopicity and mixing states at Mt. Hua (2060 m), a key free-tropospheric site in central China. We found size-dependent hygroscopicity, source-related variations, and humidity-driven processing, distinguishing this region from other high-altitude sites, which may provide key constraints for aerosol-cloud and regional climate models.
Zheng Yang, Qiaoqiao Wang, Qiyuan Wang, Nan Ma, Jie Tian, Yaqing Zhou, Ge Xu, Miao Gao, Xiaoxian Zhou, Yang Zhang, Weikang Ran, Ning Yang, Jiangchuan Tao, Juan Hong, Yunfei Wu, Junji Cao, Hang Su, and Yafang Cheng
EGUsphere, https://doi.org/10.5194/egusphere-2025-1020, https://doi.org/10.5194/egusphere-2025-1020, 2025
Short summary
Short summary
Our results demonstrate that the reduction in mass absorption efficiency from biomass burning is mainly driven by the decline in the imaginary part, with particle size playing a minor role. And light absorption of oxygenated BrC increases significantly with aging, but hydrocarbon-like BrC decrease over time. These results emphasize the necessity to classify BrC into different groups based on their mass absorption efficiency and atmospheric behavior in climate models.
Xin Zhang, Lijuan Li, Jianjun Li, Yue Lin, Yan Cheng, Rui Wang, Shuyan Xing, Chongshu Zhu, Junji Cao, and Yuemei Han
EGUsphere, https://doi.org/10.5194/egusphere-2025-519, https://doi.org/10.5194/egusphere-2025-519, 2025
Short summary
Short summary
The influence of anthropogenic pollution on atmospheric organic composition was studied to explore the chemical processes of anthropogenic–biogenic interactions in the Qinling Mountains region of central China using advanced Orbitrap mass spectrometry. Organic molecular species exhibited distinct seasonal variabilities and were more abundant and chemically diverse in winter. Anthropogenic pollution played key roles in altering their composition and related properties under various conditions.
Naifang Bei, Bo Xiao, Ruonan Wang, Yuning Yang, Lang Liu, Yongming Han, and Guohui Li
EGUsphere, https://doi.org/10.5194/egusphere-2024-3558, https://doi.org/10.5194/egusphere-2024-3558, 2025
Short summary
Short summary
This study uses a cloud-resolving model to examine how aerosols influence a mesoscale convective system (MCS) in central China via aerosol-radiation (ARIs) and aerosol-cloud interactions (ACIs). Without ARIs, added aerosols don’t significantly affect precipitation due to cloud competition for moisture. ARIs can stabilize or enhance convection. High aerosol levels lead to a combined ARI and ACI effect that greatly reduces precipitation.
Yueming Cheng, Tie Dai, Junji Cao, Daisuke Goto, Jianbing Jin, Teruyuki Nakajima, and Guangyu Shi
Atmos. Chem. Phys., 24, 12643–12659, https://doi.org/10.5194/acp-24-12643-2024, https://doi.org/10.5194/acp-24-12643-2024, 2024
Short summary
Short summary
In March 2021, east Asia experienced an outbreak of severe dust storms after an absence of 1.5 decades. Here, we innovatively used the time-lagged ground-based aerosol size information with the fixed-lag ensemble Kalman smoother to optimize dust emission and reproduce the dust storm. This work is valuable for not only the quantification of health damage, aviation risks, and profound impacts on the Earth's system but also revealing the climatic driving force and the process of desertification.
Meng Wang, Qiyuan Wang, Steven Sai Hang Ho, Jie Tian, Yong Zhang, Shun-cheng Lee, and Junji Cao
Atmos. Chem. Phys., 24, 11175–11189, https://doi.org/10.5194/acp-24-11175-2024, https://doi.org/10.5194/acp-24-11175-2024, 2024
Short summary
Short summary
We studied nitrogen-containing organic compounds (NOCs) in particulate matter <2.5 µm particles on the southeastern Tibetan Plateau. We found that biomass burning and transboundary transport are the main sources of NOCs in the high-altitude area. Understanding these aerosol sources informs how they add to regional and potentially global climate changes. Our findings could help shape effective environmental policies to enhance air quality and address climate impacts in this sensitive region.
Xuehong Gong, Zeyu Liu, Jie Tian, Qiyuan Wang, Guohui Li, Zhisheng An, and Yongming Han
EGUsphere, https://doi.org/10.5194/egusphere-2024-1684, https://doi.org/10.5194/egusphere-2024-1684, 2024
Short summary
Short summary
Our study analyzed CO2 emissions from wildfires in China from 2001 to 2022. Cropland and forest fires contributed the most, while grassland fires were the least. Emissions from forest and shrub fires decreased significantly, while cropland fires increased. The highest emissions were in Heilongjiang and Inner Mongolia. China's effective policy management has reduced wildfire-related CO2 emissions, aiding global climate change efforts.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Meng Wang, Yusen Duan, Zhuozhi Zhang, Qi Yuan, Xinwei Li, Shuwen Han, Juntao Huo, Jia Chen, Yanfen Lin, Qingyan Fu, Tao Wang, Junji Cao, and Shun-cheng Lee
Atmos. Chem. Phys., 23, 10313–10324, https://doi.org/10.5194/acp-23-10313-2023, https://doi.org/10.5194/acp-23-10313-2023, 2023
Short summary
Short summary
Hourly elemental carbon (EC) and NOx were continuously measured for 5 years (2016–2020) at a sampling site near a highway in western Shanghai. We use a machine learning model to rebuild the measured EC and NOx, and a business-as-usual (BAU) scenario was assumed in 2020 and compared with the measured EC and NOx.
Li Li, Qiyuan Wang, Jie Tian, Huikun Liu, Yong Zhang, Steven Sai Hang Ho, Weikang Ran, and Junji Cao
Atmos. Chem. Phys., 23, 9597–9612, https://doi.org/10.5194/acp-23-9597-2023, https://doi.org/10.5194/acp-23-9597-2023, 2023
Short summary
Short summary
The Tibetan Plateau has a unique geographical location, but there is a lack of detailed research on the real-time characteristics of full aerosol composition. This study elaborates the changes in chemical characteristics between transport and local fine particles during the pre-monsoon, reveals the size distribution and the mixing states of different individual particles, and highlights the contributions of photooxidation and aqueous reaction to the formation of the secondary species.
Yong Zhang, Jie Tian, Qiyuan Wang, Lu Qi, Manousos Ioannis Manousakas, Yuemei Han, Weikang Ran, Yele Sun, Huikun Liu, Renjian Zhang, Yunfei Wu, Tianqu Cui, Kaspar Rudolf Daellenbach, Jay Gates Slowik, André S. H. Prévôt, and Junji Cao
Atmos. Chem. Phys., 23, 9455–9471, https://doi.org/10.5194/acp-23-9455-2023, https://doi.org/10.5194/acp-23-9455-2023, 2023
Short summary
Short summary
PM2.5 pollution still frequently occurs in northern China during winter, and it is necessary to figure out the causes of air pollution based on intensive real-time measurement. The findings elaborate the chemical characteristics and source contributions of PM2.5 in three pilot cities, reveal potential formation mechanisms of secondary aerosols, and highlight the importance of controlling biomass burning and inhibiting generation of secondary aerosol for air quality improvement.
Hang Liu, Xiaole Pan, Shandong Lei, Yuting Zhang, Aodong Du, Weijie Yao, Guiqian Tang, Tao Wang, Jinyuan Xin, Jie Li, Yele Sun, Junji Cao, and Zifa Wang
Atmos. Chem. Phys., 23, 7225–7239, https://doi.org/10.5194/acp-23-7225-2023, https://doi.org/10.5194/acp-23-7225-2023, 2023
Short summary
Short summary
We provide the average vertical profiles of black carbon (BC) concentration, size distribution and coating thickness at different times of the day in an urban area based on 112 vertical profiles. In addition, it is found that BC in the residual layer generally has a thicker coating, higher absorption enhancement and hygroscopicity than on the surface. Such aged BC could enter into the boundary layer and influence the BC properties in the early morning.
Jie Tian, Qiyuan Wang, Yongyong Ma, Jin Wang, Yongming Han, and Junji Cao
Atmos. Chem. Phys., 23, 1879–1892, https://doi.org/10.5194/acp-23-1879-2023, https://doi.org/10.5194/acp-23-1879-2023, 2023
Short summary
Short summary
We investigated the light absorption properties of brown carbon (BrC) in the Tibetan Plateau (TP). BrC made a substantial contribution to the submicron aerosol absorption, which is related to the cross-border transport of biomass burning emission and secondary aerosol from Southeast Asia. The radiative effect of BrC was half that of black carbon, which can remarkably affect the radiative balance of the TP.
Qian Zhang, Yujie Zhang, Zhichun Wu, Bin Zhang, Yaling Zeng, Jian Sun, Hongmei Xu, Qiyuan Wang, Zhihua Li, Junji Cao, and Zhenxing Shen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-801, https://doi.org/10.5194/acp-2022-801, 2022
Revised manuscript not accepted
Short summary
Short summary
We identified the brown carbon (BrC) molecules and their absorbing abilities on a molecular level from animal dung fuel combustion over the Tibetan Plateau region in China. The ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometer coupled with the partial least squares regression were precisely applied to characterize the molecular absorptions, key molecular markers, and radiative effects of BrC from household combustion scenarios at the high-altitude area.
Meng Wang, Yusen Duan, Wei Xu, Qiyuan Wang, Zhuozhi Zhang, Qi Yuan, Xinwei Li, Shuwen Han, Haijie Tong, Juntao Huo, Jia Chen, Shan Gao, Zhongbiao Wu, Long Cui, Yu Huang, Guangli Xiu, Junji Cao, Qingyan Fu, and Shun-cheng Lee
Atmos. Chem. Phys., 22, 12789–12802, https://doi.org/10.5194/acp-22-12789-2022, https://doi.org/10.5194/acp-22-12789-2022, 2022
Short summary
Short summary
In this study, we report the long-term measurement of organic carbon (OC) and elementary carbon (EC) in PM2.5 with hourly time resolution conducted at a regional site in Shanghai from 2016 to 2020. The results from this study provide critical information about the long-term trend of carbonaceous aerosol, in particular secondary OC, in one of the largest megacities in the world and are helpful for developing pollution control measures from a long-term planning perspective.
Huikun Liu, Qiyuan Wang, Suixin Liu, Bianhong Zhou, Yao Qu, Jie Tian, Ting Zhang, Yongming Han, and Junji Cao
Atmos. Chem. Phys., 22, 11739–11757, https://doi.org/10.5194/acp-22-11739-2022, https://doi.org/10.5194/acp-22-11739-2022, 2022
Short summary
Short summary
Atmospheric motions play an important role in the mass concentration and the direct radiative effect (DRE) of black carbon (BC). The finding from this study elaborated the impacts of different scales of atmospheric motion on source-specific BC and its DREs, which revealed the nonlinear change between BC mass concentration and its DREs and emphasizes the importance of regionally transported BC for potential climatic effects.
Minxia Shen, Kin Fai Ho, Wenting Dai, Suixin Liu, Ting Zhang, Qiyuan Wang, Jingjing Meng, Judith C. Chow, John G. Watson, Junji Cao, and Jianjun Li
Atmos. Chem. Phys., 22, 7489–7504, https://doi.org/10.5194/acp-22-7489-2022, https://doi.org/10.5194/acp-22-7489-2022, 2022
Short summary
Short summary
Looking at characteristics and δ13C compositions of dicarboxylic acids and related compounds in BB aerosols, we used a combined combustion and aging system to generate fresh and aged aerosols from burning straw. The results showed the emission factors (EFaged) of total diacids of aging experiments were around an order of magnitude higher than EFfresh. This meant that dicarboxylic acids are involved with secondary photochemical processes in the atmosphere rather than primary emissions from BB.
Yuting Zhang, Hang Liu, Shandong Lei, Wanyun Xu, Yu Tian, Weijie Yao, Xiaoyong Liu, Qi Liao, Jie Li, Chun Chen, Yele Sun, Pingqing Fu, Jinyuan Xin, Junji Cao, Xiaole Pan, and Zifa Wang
Atmos. Chem. Phys., 21, 17631–17648, https://doi.org/10.5194/acp-21-17631-2021, https://doi.org/10.5194/acp-21-17631-2021, 2021
Short summary
Short summary
In this study, the authors used a single-particle soot photometer (SP2) to characterize the particle size, mixing state, and optical properties of black carbon aerosols in rural areas of the North China Plain in winter. Relatively warm and high-RH environments (RH > 50 %, −4° < T < 4 °) were more favorable to rBC aging than dry and cold environments (RH < 60 %, T < −8°). The paper emphasizes the importance of meteorological parameters in the mixing state of black carbon.
Jiarui Wu, Naifang Bei, Yuan Wang, Xia Li, Suixin Liu, Lang Liu, Ruonan Wang, Jiaoyang Yu, Tianhao Le, Min Zuo, Zhenxing Shen, Junji Cao, Xuexi Tie, and Guohui Li
Atmos. Chem. Phys., 21, 2229–2249, https://doi.org/10.5194/acp-21-2229-2021, https://doi.org/10.5194/acp-21-2229-2021, 2021
Short summary
Short summary
A source-oriented version of the WRF-Chem model is developed to conduct source identification of wintertime PM2.5 in the North China Plain. Trans-boundary transport of air pollutants generally dominates the haze pollution in Beijing and Tianjin. The air quality in Hebei, Shandong, and Shanxi is generally controlled by local emissions. Primary aerosol species, such as EC and POA, are generally controlled by local emissions, while secondary aerosol shows evident regional characteristics.
Huikun Liu, Qiyuan Wang, Li Xing, Yong Zhang, Ting Zhang, Weikang Ran, and Junji Cao
Atmos. Chem. Phys., 21, 973–987, https://doi.org/10.5194/acp-21-973-2021, https://doi.org/10.5194/acp-21-973-2021, 2021
Short summary
Short summary
We conducted black carbon (BC) source apportionment on the southeastern Tibetan Plateau (TP) by an improved aethalometer model with the site-dependent Ångström exponent and BC mass absorption cross section (MAC). The result shows that the biomass-burning BC on the TP is slightly higher than fossil fuel BC, mainly from cross-border transportation instead of the local region, and the BC radiative effect is lower than that in the southwestern Himalaya but higher than that on the northeastern TP.
Qiyuan Wang, Huikun Liu, Ping Wang, Wenting Dai, Ting Zhang, Youzhi Zhao, Jie Tian, Wenyan Zhang, Yongming Han, and Junji Cao
Atmos. Chem. Phys., 20, 15537–15549, https://doi.org/10.5194/acp-20-15537-2020, https://doi.org/10.5194/acp-20-15537-2020, 2020
Short summary
Short summary
Light-absorbing carbonaceous (LAC) aerosol is an important influencing factor for global climate forcing. In this study, we used a receptor model coupling multi-wavelength absorption with chemical species to explore the source-specific LAC optical properties at a tropical marine monsoon climate zone. The results can improve our understanding of the LAC radiative effects caused by ship emissions.
Qiyuan Wang, Li Li, Jiamao Zhou, Jianhuai Ye, Wenting Dai, Huikun Liu, Yong Zhang, Renjian Zhang, Jie Tian, Yang Chen, Yunfei Wu, Weikang Ran, and Junji Cao
Atmos. Chem. Phys., 20, 15427–15442, https://doi.org/10.5194/acp-20-15427-2020, https://doi.org/10.5194/acp-20-15427-2020, 2020
Short summary
Short summary
Recently, China has promulgated a series of regulations to reduce air pollutants. The decreased black carbon (BC) and co-emitted pollutants could affect the interactions between BC and other aerosols, which in turn results in changes in BC. Herein, we re-assessed the characteristics of BC of a representative pollution site in northern China in the final year of the Chinese
Action Plan for the Prevention and Control of Air Pollution.
Cited articles
Ålander, T., Antikainen, E., Raunemaa, T., Elonen, E., Rautiola, A., and
Torkkell, K.: Particle emissions from a small two-stroke engine: Effects of
fuel, lubricating oil, and exhaust aftertreatment on particle
characteristics, Aerosol Sci. Tech., 39, 151–161, https://doi.org/10.1080/027868290910224, 2005.
Andreae, M. O. and Gelencsér, A.: Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols, Atmos. Chem. Phys., 6, 3131–3148, https://doi.org/10.5194/acp-6-3131-2006, 2006.
Bellouin, N., Quaas, J., Morcrette, J.-J., and Boucher, O.: Estimates of aerosol radiative forcing from the MACC re-analysis, Atmos. Chem. Phys., 13, 2045–2062, https://doi.org/10.5194/acp-13-2045-2013, 2013.
Cao, J. J., Wang, Q. Y., Chow, J. C., Watson, J. G., Tie, X. X., Shen, Z.
X., Wang, P., and An, Z. S.: Impacts of aerosol compositions on visibility
impairment in Xi'an, China, Atmos. Environ., 59, 559–566,
https://doi.org/10.1016/j.atmosenv.2012.05.036, 2012.
Chamberlain-Ward, S. and Sharp, F.: Advances in Nephelometry through the
Ecotech Aurora Nephelometer, Sci. World J., 11, 2530–2535,
https://doi.org/10.1100/2011/310769, 2011.
Chen, L. W. and Cao, J.: PM2.5 source apportionment using a Hybrid
Environmental Receptor Model, Environ. Sci. Technol., 52, 6357–6369,
https://doi.org/10.1021/acs.est.8b00131, 2018.
Chen, Y., Zhang, S. M., Peng, C., Shi, G. M., Tian, M., Huang, R. J., Guo,
D. M., Wang, H. B., Yao, X. J., and Yang, F. M.: Impact of the COVID-19
pandemic and control measures on air quality and aerosol light absorption in
southwestern China, Sci. Total Environ., 749, 141419,
https://doi.org/10.1016/j.scitotenv.2020.141419, 2020.
Cheng, M. T., Tang, G. Q., Lv, B., Li, X. R., Wu, X. R., Wang, Y. M., and
Wang, Y. S.: Source apportionment of PM2.5 and visibility in Jinan,
China, J. Environ. Sci., 102, 207–215,
https://doi.org/10.1016/j.jes.2020.09.012, 2021.
Cheng, Z., Jiang, J. K., Chen, C. H., Gao, J., Wang, S. X., Watson, J. G.,
Wang, H. L., Deng, J. G., Wang, B. Y., Zhou, M., Chow, J. C., Pitchford, M.
L., and Hao, J. M.: Estimation of aerosol mass scattering efficiencies under
high mass loading: Case study for the megacity of Shanghai, China, Environ.
Sci. Technol., 49, 831–838, https://doi.org/10.1021/es504567q, 2015.
Chow, J. C., Watson, J. G., Kuhns, H., Etyemezian, V., Lowenthal, D. H.,
Crow, D., Kohl, S. D., Engelbrecht, J. P., and Green, M. C.: Source profiles
for industrial, mobile, and area sources in the Big Bend Regional Aerosol
Visibility and Observational study, Chemosphere, 54, 185–208,
https://doi.org/10.1016/j.chemosphere.2003.07.004, 2004.
Chow, J. C., Lowenthal, D. H., Chen, L. W. A., Wang, X. L., and Watson, J.
G.: Mass reconstruction methods for PM2.5: a review, Air Qual. Atmos.
Hlth., 8, 243–263, https://doi.org/10.1007/s11869-015-0338-3, 2015.
CNEMC (China National Environmental Monitoring Centre): Background values of soil elements in China, edited by: Wu, S. D., Chinese Environmental Press, Beijing, ISBN 7-80010-772-8/X⋅417, 1990 (in Chinese).
Crippa, M., DeCarlo, P. F., Slowik, J. G., Mohr, C., Heringa, M. F., Chirico, R., Poulain, L., Freutel, F., Sciare, J., Cozic, J., Di Marco, C. F., Elsasser, M., Nicolas, J. B., Marchand, N., Abidi, E., Wiedensohler, A., Drewnick, F., Schneider, J., Borrmann, S., Nemitz, E., Zimmermann, R., Jaffrezo, J.-L., Prévôt, A. S. H., and Baltensperger, U.: Wintertime aerosol chemical composition and source apportionment of the organic fraction in the metropolitan area of Paris, Atmos. Chem. Phys., 13, 961–981, https://doi.org/10.5194/acp-13-961-2013, 2013.
Cubison, M. J., Ortega, A. M., Hayes, P. L., Farmer, D. K., Day, D., Lechner, M. J., Brune, W. H., Apel, E., Diskin, G. S., Fisher, J. A., Fuelberg, H. E., Hecobian, A., Knapp, D. J., Mikoviny, T., Riemer, D., Sachse, G. W., Sessions, W., Weber, R. J., Weinheimer, A. J., Wisthaler, A., and Jimenez, J. L.: Effects of aging on organic aerosol from open biomass burning smoke in aircraft and laboratory studies, Atmos. Chem. Phys., 11, 12049–12064, https://doi.org/10.5194/acp-11-12049-2011, 2011.
Deng, J. J., Zhang, Y. R., Hong, Y. W., Xu, L. L., Chen, Y. T., Du, W. J.,
and Chen, J. S.: Optical properties of PM2.5 and the impacts of
chemical compositions in the coastal city Xiamen in China, Sci. Total
Environ., 557–558, 665–675,
https://doi.org/10.1016/j.scitotenv.2016.03.143, 2016.
Drinovec, L., Močnik, G., Zotter, P., Prévôt, A. S. H., Ruckstuhl, C., Coz, E., Rupakheti, M., Sciare, J., Müller, T., Wiedensohler, A., and Hansen, A. D. A.: The “dual-spot” Aethalometer: an improved measurement of aerosol black carbon with real-time loading compensation, Atmos. Meas. Tech., 8, 1965–1979, https://doi.org/10.5194/amt-8-1965-2015, 2015.
Feng, Y., Ramanathan, V., and Kotamarthi, V. R.: Brown carbon: a significant atmospheric absorber of solar radiation?, Atmos. Chem. Phys., 13, 8607–8621, https://doi.org/10.5194/acp-13-8607-2013, 2013.
Forello, A. C., Bernardoni, V., Calzolai, G., Lucarelli, F., Massabò, D., Nava, S., Pileci, R. E., Prati, P., Valentini, S., Valli, G., and Vecchi, R.: Exploiting multi-wavelength aerosol absorption coefficients in a multi-time resolution source apportionment study to retrieve source-dependent absorption parameters, Atmos. Chem. Phys., 19, 11235–11252, https://doi.org/10.5194/acp-19-11235-2019, 2019.
Furger, M., Rai, P., Slowik, J. G., Cao, J. J., Visser, S., Baltensperger,
U., and Prévôt, A. S. H.: Automated alternating sampling of
PM10 and PM2.5 with an online XRF spectrometer, Atmos. Environ.
X, 5, 100065, https://doi.org/10.1016/j.aeaoa.2020.100065, 2020.
Geivanidis, S., Pistikopoulos, P., and Samaras, Z.: Effect on exhaust
emissions by the use of methylcyclopentadienyl manganese tricarbonyl (MMT)
fuel additive and other lead replacement gasolines, Sci. Total Environ.,
305, 129–141, https://doi.org/10.1016/S0048-9697(02)00476-X, 2003.
Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., Donahue, N. M., George, C., Goldstein, A. H., Hamilton, J. F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M. E., Jimenez, J. L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel, Th. F., Monod, A., Prévôt, A. S. H., Seinfeld, J. H., Surratt, J. D., Szmigielski, R., and Wildt, J.: The formation, properties and impact of secondary organic aerosol: current and emerging issues, Atmos. Chem. Phys., 9, 5155–5236, https://doi.org/10.5194/acp-9-5155-2009, 2009.
Han, T. T., Xu, W. Q., Chen, C., Liu, X. G., Wang, Q. Q., Li, J., Zhao, X.
J., Du, W., Wang, Z. F., and Sun, Y. L.: Chemical apportionment of aerosol
optical properties during the Asia-Pacific Economic Cooperation summit in
Beijing, China, J. Geophys. Res.-Atmos., 120, 12281–12295,
https://doi.org/10.1002/2015JD023918, 2015.
Herich, H., Hueglin, C., and Buchmann, B.: A 2.5 year's source apportionment
study of black carbon from wood burning and fossil fuel combustion at urban
and rural sites in Switzerland, Atmos. Meas. Tech., 4, 1409–1420,
https://doi.org/10.5194/amt-4-1409-2011, 2011.
Hess, M., Koepke, P., and Schult, I.: Optical properties of aerosols and
clouds: The software package OPAC, B. Am. Meteorol. Soc., 79, 831–844,
https://doi.org/10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2, 1998.
Hu, W., Hu, M., Hu, W.-W., Zheng, J., Chen, C., Wu, Y., and Guo, S.: Seasonal variations in high time-resolved chemical compositions, sources, and evolution of atmospheric submicron aerosols in the megacity Beijing, Atmos. Chem. Phys., 17, 9979–10000, https://doi.org/10.5194/acp-17-9979-2017, 2017.
Hu, W. W., Hu, M., Hu, W., Jimenez, J. L., Yuan, B., Chen, W. T., Wang, M.,
Wu, Y. S., Chen, C., Wang, Z. B., Peng, J. F., Zeng, L. M., and Shao, M.:
Chemical composition, sources, and aging process of submicron aerosols in
Beijing: Contrast between summer and winter, J. Geophys. Res.-Atmos., 121,
1955–1977, https://doi.org/10.1002/2015JD024020, 2016.
Huang, X., Liu, Z., Liu, J., Hu, B., Wen, T., Tang, G., Zhang, J., Wu, F., Ji, D., Wang, L., and Wang, Y.: Chemical characterization and source identification of PM2.5 at multiple sites in the Beijing–Tianjin–Hebei region, China, Atmos. Chem. Phys., 17, 12941–12962, https://doi.org/10.5194/acp-17-12941-2017, 2017.
Huang, X., Ding, A. J., Gao, J., Zheng, B., Zhou, D. R., Qi, X. M., Tang,
R., Wang, J. P., Ren, C. H., Nie, W., Chi, X. G., Xu, Z., Chen, L. D., Li,
Y. Y., Che, F., Pang, N. N., Wang, H. K., Tong, D., Qin, W., Cheng, W., Liu,
W. J., Fu, Q. Y., Liu, B. X., Chai, F., Davis, J. S., Zhang, Q., and He, K.
B.: Enhanced secondary pollution offset reduction of primary emissions
during COVID-19 lockdown in China, Natl. Sci. Rev., 8, nwaa137,
https://doi.org/10.1093/nsr/nwaa137, 2020.
Huang, X.-F., Zou, B.-B., He, L.-Y., Hu, M., Prévôt, A. S. H., and Zhang, Y.-H.: Exploration of PM2.5 sources on the regional scale in the Pearl River Delta based on ME-2 modeling, Atmos. Chem. Phys., 18, 11563–11580, https://doi.org/10.5194/acp-18-11563-2018, 2018.
Ibrahim, S., Landa, M., Pešek, O., Pavelka, K., and Halounova, L.:
Space-time machine learning models to analyze COVID-19 pandemic lockdown
effects on aerosol optical depth over Europe, Remote Sens., 13, 3027,
https://doi.org/10.3390/rs13153027, 2021.
IPCC: Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp., ISBN 978-1-107-66182-0, 2013.
Khan, J. Z., Sun, L., Tian, Y. Z., Shi, G. L., and Feng, Y. C.: Chemical
characterization and source apportionment of PM1 and PM2.5 in
Tianjin, China: Impacts of biomass burning and primary biogenic sources, J.
Environ. Sci., 99, 196–209, https://doi.org/10.1016/j.jes.2020.06.027,
2021.
Kim, H., Zhang, Q., Bae, G.-N., Kim, J. Y., and Lee, S. B.: Sources and atmospheric processing of winter aerosols in Seoul, Korea: insights from real-time measurements using a high-resolution aerosol mass spectrometer, Atmos. Chem. Phys., 17, 2009–2033, https://doi.org/10.5194/acp-17-2009-2017, 2017.
Kirchstetter, T. W., Novakov, T., and Hobbs, P. V.: Evidence that the
spectral dependence of light absorption by aerosols is affected by organic
carbon, J. Geophys. Res.-Atmos., 109, D21208, https://doi.org/10.1029/2004JD004999,
2004.
Kumar, D., Singh, A. K., Kumar, V., Poyoja, R., Ghosh, A., and Singh, B.:
COVID-19 driven changes in the air quality; a study of major cities in the
Indian state of Uttar Pradesh, Environ. Pollut., 274, 116512,
https://doi.org/10.1016/j.envpol.2021.116512, 2021.
Laskin, A., Laskin, J., and Nizkorodov, S. A.: Chemistry of atmospheric
brown carbon, Chem. Rev., 115, 10, 4335–4382,
https://doi.org/10.1021/cr5006167, 2015.
Le, T. H., Wang, Y., Liu, L., Yang, J. N., Yung, Y., Li, G. H., and
Seinfeld, J. H.: Unexpected air pollution with marked emission reductions
during the COVID-19 outbreak in China, Science, 369, 702–706,
https://doi.org/10.1126/science.abb7431, 2020.
Lee, H. J., Aiona, P. K., Laskin, A., Laskin, J., and Nizkorodov, S. A.:
Effect of solar radiation on the optical properties and molecular
composition of laboratory proxies of atmospheric brown carbon, Environ. Sci.
Technol., 48, 10217–10226, https://doi.org/10.1021/es502515r, 2014.
Li, H., Zhang, Q., Zhang, Q., Chen, C., Wang, L., Wei, Z., Zhou, S., Parworth, C., Zheng, B., Canonaco, F., Prévôt, A. S. H., Chen, P., Zhang, H., Wallington, T. J., and He, K.: Wintertime aerosol chemistry and haze evolution in an extremely polluted city of the North China Plain: significant contribution from coal and biomass combustion, Atmos. Chem. Phys., 17, 4751–4768, https://doi.org/10.5194/acp-17-4751-2017, 2017.
Li, L., Li, Q., Huang, L., Wang, Q., Zhu, A. S., Xu, J., Liu, Z. Y., Li, H.
L., Shi, L. S., Li, R., Azari, M., Wang, Y. J., Zhang, X. J., Liu, Z. Q.,
Zhu, Y. H., Zhang, K., Xue, S. H., Ooi, M. C. G., Zhang, D. P., and Chan,
A.: Air quality changes during the COVID-19 lockdown over the Yangtze River
Delta Region: An insight into the impact of human activity pattern changes
on air pollution variation, Sci. Total Environ., 732, 139282,
https://doi.org/10.1016/j.scitotenv.2020.139282, 2020.
Li, L. L, Tan, Q. W., Zhang, Y. H., Feng, M., Qu, Y., An, J. L., and Liu, X.
G.: Characteristics and source apportionment of PM2.5 during persistent
extreme haze events in Chengdu, southwest China, Environ. Pollut., 230,
718–729, https://doi.org/10.1016/j.envpol.2017.07.029, 2017.
Li, X. H., Wang, S. X., Duan, L., Hao, J. M., Li, C., Chen, Y. S., and Yang,
L.: Particulate and trace gas emissions from open burning of wheat straw and
corn stover in China, Environ. Sci. Technol., 41, 6052–6058,
https://doi.org/10.1021/es0705137, 2007.
Lin, G. X., Penner, J. E., Flanner, M. G., Sillman, S., Xu, L., and Zhou,
C.: Radiative forcing of organic aerosol in the atmosphere and on snow:
Effects of SOA and brown carbon, J. Geophys. Res.-Atmos., 119, 7453–7476,
https://doi.org/10.1002/2013JD021186, 2014.
Lin, Y. C., Zhang, Y. L., Xie, F., Fan, M. Y., and Liu, X.: Substantial
decreases of light absorption, concentrations and relative contributions of
fossil fuel to light-absorbing carbonaceous aerosols attributed to the
COVID-19 lockdown in east China, Environ. Pollut., 275, 116615,
https://doi.org/10.1016/j.envpol.2021.116615, 2021.
Liu, B. S., Wu, J. H., Zhang, J. Y., Wang, L., Yang, J. M., Liang, D. N.,
Dai, Q. L., Bi, X. H., Feng, Y. C., Zhang, Y. F., and Zhang, Q. X.:
Characterization and source apportionment of PM2.5 based on error
estimation from EPA PMF 5.0 model at a medium city in China, Environ.
Pollut., 222, 10–22, https://doi.org/10.1016/j.envpol.2017.01.005, 2017.
Liu, D. T., Hu, K., Zhao, D. L., Ding, S., Wu, Y. F., Zhou, C., Yu, C. J.,
Tian, P., Liu, Q., Bi, K., Wu, Y. Z., Hu, B., Ji, D. S., Kong, S. F.,
Ouyang, B., He, H., Huang, M. Y., and Ding, D. P.: Efficient vertical
transport of black carbon in the planetary boundary layer, Geophys. Res.
Lett., 47, e2020GL088858, https://doi.org/10.1029/2020GL088858, 2020.
Ma, X., Yu, F., and Luo, G.: Aerosol direct radiative forcing based on GEOS-Chem-APM and uncertainties, Atmos. Chem. Phys., 12, 5563–5581, https://doi.org/10.5194/acp-12-5563-2012, 2012.
Malm, W. C. and Hand, J. L.: An examination of the physical and optical
properties of aerosols collected in the IMPROVE program, Atmos. Environ.,
41, 3407–3427, https://doi.org/10.1016/j.atmosenv.2006.12.012, 2007.
Moise, T., Flores, J. M., and Rudich, Y.: Optical properties of secondary
organic aerosols and their changes by chemical processes, Chem. Rev., 115,
4400–4439, https://doi.org/10.1021/cr5005259, 2015.
Ng, N. L., Herndon, S. C., Trimborn, A., Canagaratna, M. R., Croteau, P. L.,
Onasch, T. B., Sueper, D., Worsnop, D. R., Zhang, Q., Sun, Y. L., and Jayne,
J. T.: An aerosol chemical speciation monitor (ACSM) for routine monitoring
of the composition and mass concentrations of ambient aerosol, Aerosol Sci.
Tech., 45, 780–794, https://doi.org/10.1080/02786826.2011.560211, 2011.
Ni, H. Y., Tian, J., Wang, X. L., Wang, Q. Y., Han, Y. M., Cao, J. J., Long,
X., Chen, L.-W. A., Chow, J. C., and Watson, J. G.: PM2.5 emissions
and source profiles from open burning of crop residues, Atmos. Environ.,
169, 229–237, https://doi.org/10.1016/j.atmosenv.2017.08.063, 2017.
Niu, X. Y., Cao, J. J., Shen, Z. X., Ho, S. S. H., Tie, X. X., Zhao, S. Y.,
Xu, H. M., Zhang, T., and Huang, R. J.: PM2.5 from the Guanzhong
Plain: Chemical composition and implications for emission reductions, Atmos.
Environ., 147, 458–469, https://doi.org/10.1016/j.atmosenv.2016.10.029,
2016.
Norris, G., Duvall, R., Brown, S., and Bai, S.: EPA positive matrix
factorization (PMF) 5.0 fundamentals and user guide, U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-14/108 (NTIS PB 2015-105147), https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NERL&direntryid=308292 (last access: 26 June 2022), 2014.
Qin, Y. M., Tan, H. B., Li, Y. J., Li, Z. J., Schurman, M. I., Liu, L., Wu, C., and Chan, C. K.: Chemical characteristics of brown carbon in atmospheric particles at a suburban site near Guangzhou, China, Atmos. Chem. Phys., 18, 16409–16418, https://doi.org/10.5194/acp-18-16409-2018, 2018.
Rai, P., Furger, M., Slowik, J. G., Canonaco, F., Fröhlich, R., Hüglin, C., Minguillón, M. C., Petterson, K., Baltensperger, U., and Prévôt, A. S. H.: Source apportionment of highly time-resolved elements during a firework episode from a rural freeway site in Switzerland, Atmos. Chem. Phys., 20, 1657–1674, https://doi.org/10.5194/acp-20-1657-2020, 2020.
Ricchiazzi, P., Yang, S. R., Gautier, C., and Sowle, D.: SBDART: A research
and teaching software tool for Plane-parallel radiative transfer in the
Earth's atmosphere, B. Am. Meteorol. Soc., 79, 2101–2114,
https://doi.org/10.1175/1520-0477(1998)079<2101:SARATS>2.0.CO;2, 1998.
Saarikoski, S., Niemi, J. V., Aurela, M., Pirjola, L., Kousa, A., Rönkkö, T., and Timonen, H.: Sources of black carbon at residential and traffic environments obtained by two source apportionment methods, Atmos. Chem. Phys., 21, 14851–14869, https://doi.org/10.5194/acp-21-14851-2021, 2021.
Sanap, S. D.: Global and regional variations in aerosol loading during
COVID-19 imposed lockdown, Atmos. Environ., 246, 118132,
https://doi.org/10.1016/j.atmosenv.2020.118132, 2021.
Sandradewi, J., Prévôt, A. S. H., Szidat, S., Perron, N., Alfarra,
M. R., Lanz, V. A., Weingartner, E., and Baltensperger, U.: Using aerosol
light absorption measurements for the quantitative determination of wood
burning and traffic emission contributions to particulate matter, Environ.
Sci. Technol., 42, 3316–3323, https://doi.org/10.1021/es702253m, 2008.
Schimek, M. G.: Semiparametric penalized generalized additive models for
environmental research and epidemiology, Environmetrics, 20, 699–717,
https://doi.org/10.1002/env.972, 2009.
Shen, G. F., Xue, M., Yuan, S. Y., Zhang, J., Zhao, Q. Y., Li, B., Wu, H.
S., and Ding, A. J.: Chemical compositions and reconstructed light
extinction coefficients of particulate matter in a mega-city in the western
Yangtze River Delta, China, Atmos. Environ., 83, 14–20,
https://doi.org/10.1016/j.atmosenv.2013.10.055, 2014.
Tan, J. H., Zhang, L. M., Zhou, X. M., Duan, J. C., Li, Y., Hu, J. N., and
He, K. B.: Chemical characteristics and source apportionment of PM2.5
in Lanzhou, China, Sci. Total Environ., 601–602, 1743–1752,
https://doi.org/10.1016/j.scitotenv.2017.06.050, 2017.
Tao, J., Zhang, L. M., Cao, J., Hsu, S. C., Xia, X. G., Zhang, Z. S., Lin,
Z. J., Cheng, T. T., and Zhang, R. J.: Characterization and source
apportionment of aerosol light extinction in Chengdu, southwest China,
Atmos. Environ., 95, 552–562,
https://doi.org/10.1016/j.atmosenv.2014.07.017, 2014.
Tao, J., Zhang, L. M., Gao, J., Wang, H., Chai, F. H., and Wang, S. L:
Aerosol chemical composition and light scattering during a winter season in
Beijing, Atmos. Environ., 110, 36–44,
https://doi.org/10.1016/j.atmosenv.2015.03.037, 2015.
Tao, J., Zhang, L. M., Cao, J. J., Zhong, L. J., Chen, D. S., Yang, Y. H.,
Chen, D. H., Chen, L. G., Zhang, Z. S., Wu, Y., Xia, Y. J., Ye, S. Q., and
Zhang, R. J.: Source apportionment of PM2.5 at urban and suburban areas
of the Pearl River Delta region, south China – With emphasis on ship
emissions, Sci. Total Environ., 574, 1559–1570,
https://doi.org/10.1016/j.scitotenv.2016.08.175, 2017.
Tian, H. Z., Lu, L., Hao, J. M., Gao, J. J., Cheng, K., Liu, K. Y., Qiu, P.
P., and Zhu, C. Y.: A review of key hazardous trace elements in Chinese
coals: Abundance, occurrence, behavior during coal combustion and their
environmental impacts, Energ. Fuel., 27, 601–614,
https://doi.org/10.1021/ef3017305, 2013.
Tian, J., Wang, Q. Y., Ni, H. Y., Wang, M., Zhou, Y. Q., Han, Y. M., Shen,
Z. X., Pongpiachan, S., Zhang, N. N., Zhao, Z. Z., Zhang, Q., Zhang, Y.,
Long, X., and Cao, J. J.: Emission characteristics of primary brown carbon
absorption from biomass and coal burning: Development of an optical emission
inventory for China, J. Geophys. Res.-Atmos., 124, 1879–1893,
https://doi.org/10.1029/2018JD029352, 2019.
Tian, J., Wang, Q. Y., Han, Y. M., Ye, J. H., Wang, P., Pongpiachan, S., Ni,
H. Y., Zhou, Y. Q., Wang, M., Zhao, Y. Z., and Cao, J. J.: Contributions of
aerosol composition and sources to particulate optical properties in a
southern coastal city of China, Atmos. Res., 235, 104744, doi10.1016/j.atmosres.2019.104744, 2020.
Tian, J., Wang, Q. Y., Zhang, Y., Yan, M. Y., Liu, H. K., Zhang, N. N., Ran,
W. K., and Cao, J. J.: Impacts of primary emissions and secondary aerosol
formation on air pollution in an urban area of China during the COVID-19
lockdown, Environ. Int., 150, 106426,
https://doi.org/10.1016/j.envint.2021.106426, 2021.
Tian, J., Wang, Q., Liu, H., Ma, Y., Liu, S., Zhang, Y., Ran, W., Han, Y., and Cao, J.: Data for “Measurement report: The importance of biomass burning in light extinction and direct radiative effect of urban aerosol during the COVID-19 lockdown in Xi'an, China”, Zenodo [data set], https://doi.org/10.5281/zenodo.6457841, 2022.
Ulbrich, I. M., Canagaratna, M. R., Zhang, Q., Worsnop, D. R., and Jimenez, J. L.: Interpretation of organic components from Positive Matrix Factorization of aerosol mass spectrometric data, Atmos. Chem. Phys., 9, 2891–2918, https://doi.org/10.5194/acp-9-2891-2009, 2009.
Wang, J. F., Ye, J. H., Zhang, Q., Zhao, J., Wu, Y. Z., Li, J. Y., Liu, D.
T., Li, W. J., Zhang, Y. G., Wu, C., Xie, C. H., Qin, Y. M., Lei, Y. L.,
Huang, X. P., Guo, J. P., Liu, P. F., Fu, P. Q., Li, Y. J., Lee, H. C.,
Choi, H., Zhang, J., Liao, H., Chen, M. D., Sun, Y. L., Ge, X. L., Martin,
S. T., and Jacob, D. J.: Aqueous production of secondary organic aerosol
from fossil-fuel emissions in winter Beijing haze, P. Natl. Acad. Sci. USA,
118, e2022179118, https://doi.org/10.1073/pnas.2022179118, 2021.
Wang, P., Cao, J. J., Shen, Z. X., Han, Y. M., Lee, S. C., Huang, Y., Zhu,
C. S., Wang, Q. Y., Xu, H. M., and Huang, R. J.: Spatial and seasonal
variations of PM2.5 mass and species during 2010 in Xi'an, China, Sci.
Total Environ., 508, 477–487,
https://doi.org/10.1016/j.scitotenv.2014.11.007, 2015.
Wang, P. F., Chen, K. Y., Zhu, S. Q., Wang, P., and Zhang, H. L.: Severe air
pollution events not avoided by reduced anthropogenic activities during
COVID-19 outbreak, Resour. Conserv. Recy., 158, 104814,
https://doi.org/10.1016/j.resconrec.2020.104814, 2020.
Wang, Q., Liu, H., Wang, P., Dai, W., Zhang, T., Zhao, Y., Tian, J., Zhang, W., Han, Y., and Cao, J.: Optical source apportionment and radiative effect of light-absorbing carbonaceous aerosols in a tropical marine monsoon climate zone: the importance of ship emissions, Atmos. Chem. Phys., 20, 15537–15549, https://doi.org/10.5194/acp-20-15537-2020, 2020.
Wang, X., Heald, C. L., Ridley, D. A., Schwarz, J. P., Spackman, J. R., Perring, A. E., Coe, H., Liu, D., and Clarke, A. D.: Exploiting simultaneous observational constraints on mass and absorption to estimate the global direct radiative forcing of black carbon and brown carbon, Atmos. Chem. Phys., 14, 10989–11010, https://doi.org/10.5194/acp-14-10989-2014, 2014.
Wang, Y. C., Yuan, Y., Wang, Q. Y., Liu, C. G., Zhi, Q., and Cao, J. J.:
Changes in air quality related to the control of coronavirus in China:
Implications for traffic and industrial emissions, Sci. Total Environ., 731,
139133, https://doi.org/10.1016/j.scitotenv.2020.139133, 2020.
Weber, J., Shin, Y. M., Staunton Sykes, J., Archer-Nicholls, S., Abraham, N.
L., and Archibald, A. T.: Minimal climate impacts from short-lived climate
forcers following emission reductions related to the COVID-19 pandemic,
Geophys. Res. Lett., 47, e2020GL090326.
https://doi.org/10.1029/2020GL090326, 2020.
Wood, S. N.: Stable and efficient multiple smoothing parameter estimation for
generalized additive models, J. Am. Stat. Assoc., 99, 673–686,
https://doi.org/10.1198/016214504000000980, 2004.
Wood, S. N.: Generalized additive models: An introduction with R (second edition), edited by: Blitzstein, J. K., Faraway, J. J., Tanner, M., and Zidek, J., CRC press, 496 pp., https://doi.org/10.1201/9781315370279, 2017.
Wu, J., Bei, N., Li, X., Cao, J., Feng, T., Wang, Y., Tie, X., and Li, G.: Widespread air pollutants of the North China Plain during the Asian summer monsoon season: a case study, Atmos. Chem. Phys., 18, 8491–8504, https://doi.org/10.5194/acp-18-8491-2018, 2018.
Xie, M. J., Chen, X., Holder, A. L., Hays, M. D., Lewandowski, M.,
Offenberg, J. H., Kleindienst, T. E., Jaoui, M., and Hannigan, M. P.: Light
absorption of organic carbon and its sources at a southeastern U.S. location
in summer, Environ. Pollut., 244, 38–46,
https://doi.org/10.1016/j.envpol.2018.09.125, 2019.
Xu, H. M., Cao, J. J., Ho, K. F., Ding, H., Han, Y. M., Wang, G. H., Chow,
J. C., Watson, J. G., Khol, S. D., Qiang, J., and Li, W. T.: Lead concentrations
in fine particulate matter after the phasing out of leaded gasoline in
Xi'an, China, Atmos. Environ., 46, 217–224,
https://doi.org/10.1016/j.atmosenv.2011.09.078, 2012.
Xu, L., Zhang, J., Sun, X., Xu, S. C., Shan, M., Yuan, Q., Liu, L., Du, Z.
H., Liu, D. T., Xu, D., Song, C. B., Liu, B. W., Lu, G. D., Shi, Z. B., and
Li, W. J.: Variation in concentration and sources of black carbon in a
megacity of China during the COVID-19 pandemic, Geophys. Res. Lett., 47,
e2020GL090444, https://doi.org/10.1029/2020GL090444, 2020.
Xu, W. Q., Sun, Y. L., Chen, C., Du, W., Han, T. T., Wang, Q. Q., Fu, P. Q., Wang, Z. F., Zhao, X. J., Zhou, L. B., Ji, D. S., Wang, P. C., and Worsnop, D. R.: Aerosol composition, oxidation properties, and sources in Beijing: results from the 2014 Asia-Pacific Economic Cooperation summit study, Atmos. Chem. Phys., 15, 13681–13698, https://doi.org/10.5194/acp-15-13681-2015, 2015.
Xu, W. Y., Kuang, Y., Bian, Y. X., Liu, L., Li, F., Wang, Y. Q., Xue, B.,
Luo, B., Huang, S., Yuan, B., Zhao, P. S., and Shao, M.: Current challenges
in visibility improvement in southern China, Environ. Sci. Tech. Let.,
7, 395–401, https://doi.org/10.1021/acs.estlett.0c00274, 2020.
Yao, H., Song, Y., Liu, M., Archer-Nicholls, S., Lowe, D., McFiggans, G., Xu, T., Du, P., Li, J., Wu, Y., Hu, M., Zhao, C., and Zhu, T.: Direct radiative effect of carbonaceous aerosols from crop residue burning during the summer harvest season in East China, Atmos. Chem. Phys., 17, 5205–5219, https://doi.org/10.5194/acp-17-5205-2017, 2017.
Yao, L. Q., Kong, S. F., Zheng, H., Chen, N., Zhu, B., Xu, K., Cao, W. X.,
Zhang, Y., Zheng, M. M., Cheng, Y., Hu, Y., Zhang, Z. X., Yan, Y. Y., Liu,
D. T., Zhao, T. L., Bai, Y. Q., and Qi, S. H.: Co-benefits of reducing
PM2.5 and improving visibility by COVID-19 lockdown in Wuhan, NPJ Clim.
Atmos. Sci., 4, 40, https://doi.org/10.1038/s41612-021-00195-6, 2021.
Yao, M. S., Zhang, L., Ma, J. X., and Zhou, L.: On airborne transmission and
control of SARS-Cov-2, Sci. Total Environ., 731, 139178,
https://doi.org/10.1016/j.scitotenv.2020.139178, 2020.
Yu, Y. Y., He, S. Y., Wu, X. L., Zhang, C., Yao, Y., Liao, H., Wang, Q. G.,
and Xie, M. J.: PM2.5 elements at an urban site in Yangtze River Delta,
China: High time-resolved measurement and the application in source
apportionment, Environ. Pollut., 253, 1089–1099,
https://doi.org/10.1016/j.envpol.2019.07.096, 2019.
Zhang, R., Jing, J., Tao, J., Hsu, S.-C., Wang, G., Cao, J., Lee, C. S. L., Zhu, L., Chen, Z., Zhao, Y., and Shen, Z.: Chemical characterization and source apportionment of PM2.5 in Beijing: seasonal perspective, Atmos. Chem. Phys., 13, 7053–7074, https://doi.org/10.5194/acp-13-7053-2013, 2013.
Zhang, R. Y., Wang, G. H., Guo, S., Zamora, M. L., Ying, Q., Lin, Y., Wang,
W. G., Hu, M., and Wang, Y.: Formation of urban fine particulate matter,
Chem. Rev., 115, 3803–3855, https://doi.org/10.1021/acs.chemrev.5b00067,
2015.
Zhang, Q., Shen, Z. X., Zhang, L. M., Zeng, Y. L., Ning, Z., Zhang, T., Lei,
Y. L., Wang, Q. Y., Li, G. H., Sun, J., Westerdahl, D., Xu, H. M., and Cao,
J. J.: Investigation of primary and secondary particulate brown carbon in
two Chinese cities of Xi'an and Hong Kong in wintertime, Environ. Sci.
Technol., 54, 3803–3813, https://doi.org/10.1021/acs.est.9b05332, 2020.
Zhang, Y. M., Sun, J. Y., Zhang, X. Y., Shen, X. J., Wang, T. T., and Qin,
M. K.: Seasonal characterization of components and size distributions for
submicron aerosols in Beijing, Sci. China-Earth Sci., 56, 890–900,
https://doi.org/10.1007/s11430-012-4515-z, 2013.
Zhao, P. S., Feng, Y. C., Tan, Z., and Wu, J. H.: Characterizations of
resuspended dust in six cities of North China, Atmos. Environ., 40,
5807–5814, https://doi.org/10.1016/j.atmosenv.2006.05.026, 2006.
Zhao, Y. B., Zhang, K., Xu, X. T., Shen, H. Z., Zhu, X., Zhang, Y. X., Hu,
Y. T., and Shen, G. F.: Substantial changes in nitrogen dioxide and ozone
after excluding meteorological impacts during the COVID-19 outbreak in
mainland China, Environ. Sci. Tech. Let., 7, 402–408,
https://doi.org/10.1021/acs.estlett.0c00304, 2020.
Zheng, B., Huo, H., Zhang, Q., Yao, Z. L., Wang, X. T., Yang, X. F., Liu, H., and He, K. B.: High-resolution mapping of vehicle emissions in China in 2008, Atmos. Chem. Phys., 14, 9787–9805, https://doi.org/10.5194/acp-14-9787-2014, 2014.
Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K., and Zhang, Q.: Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions, Atmos. Chem. Phys., 18, 14095–14111, https://doi.org/10.5194/acp-18-14095-2018, 2018.
Zheng, H., Kong, S. F., Chen, N., Yan, Y. Y., Liu, D. T., Zhu, B., Xu, K.,
Cao, W. X., Ding, Q. Q., Lan, B., Zhang, Z. X., Zheng, M. M., Fan, Z. W.,
Cheng, Y., Zheng, S. R., Yao, L. Q., Bai, Y. Q., Zhao, T. L., and Qi, S. H.:
Significant changes in the chemical compositions and sources of PM2.5
in Wuhan since the city lockdown as COVID-19. Sci. Total Environ., 739,
140000, https://doi.org/10.1016/j.scitotenv.2020.140000, 2020.
Zhou, Y. Q., Wang, Q. Y., Huang, R. J., Liu, S. X., Tie, X. X., Su, X. L.,
Niu, X. Y., Zhao, Z. Z., Ni, H. Y., Wang, M., Zhang, Y. G., and Cao, J. J.:
Optical properties of aerosols and implications for radiative effects in
Beijing during the Asia-Pacific Economic Cooperation (APEC) Summit 2014, J.
Geophys. Res.-Atmos., 122, 10119–10132,
https://doi.org/10.1002/2017jd026997, 2017.
Zhu, W. F., Zhou, M., Cheng, Z., Yan, N. Q., Huang, C., Qiao, L. P., Wang,
H. L., Liu, Y, C., Lou, S. R., and Guo, S.: Seasonal variation of aerosol
compositions in Shanghai, China: Insights from particle aerosol mass
spectrometer observations, Sci. Total Environ., 771, 144948,
https://doi.org/10.1016/j.scitotenv.2021.144948, 2021.
Zotter, P., Herich, H., Gysel, M., El-Haddad, I., Zhang, Y., Močnik, G., Hüglin, C., Baltensperger, U., Szidat, S., and Prévôt, A. S. H.: Evaluation of the absorption Ångström exponents for traffic and wood burning in the Aethalometer-based source apportionment using radiocarbon measurements of ambient aerosol, Atmos. Chem. Phys., 17, 4229–4249, https://doi.org/10.5194/acp-17-4229-2017, 2017.
Short summary
We investigated aerosol optical properties and the direct radiative effect (DRE) at an urban site in China before and during the COVID-19 lockdown. The total light extinction coefficient (bext) decreased under emission control measures; however, bext from biomass burning increased due to the undiminished need for residential cooking and heating. Biomass burning, rather than traffic-related emissions, became the largest positive effect contributor to aerosol DRE in the lockdown.
We investigated aerosol optical properties and the direct radiative effect (DRE) at an urban...
Altmetrics
Final-revised paper
Preprint