

Supplement of

Measurement report: The importance of biomass burning in light extinction and direct radiative effect of urban aerosol during the COVID-19 lockdown in Xi'an, China

Jie Tian et al.

Correspondence to: Qiyuan Wang (wangqy@ieecas.cn) and Junji Cao (jjcao@mail.iap.ac.cn)

The copyright of individual parts of the supplement might differ from the article licence.

16 Text S1. Absorption Ångström exponent method

17 In this study, aerosol light absorption coefficient (b_{abs}) values at wavelengths of $\lambda = 370$ nm, 470 nm, 18 520 nm, 590 nm, 660 nm, and 880 nm were measured by a newly developed Aethalometer (Model 19 AE33, Magee Scientific, Berkeley, CA, USA). The Absorption Ångström exponent (AAE) describes 20 the wavelength dependence of aerosol light absorption and can be calculated according to power law 21 fitting b_{abs} at wavelengths of 370 nm to 880 nm (Moosmüller et al., 2011) as below:

22
$$b_{abs}(\lambda) \sim \lambda^{-AAE}$$
 (1)

Through the AAE method (Lack and Langridge, 2013), the mass absorption efficiency (MAE) of black carbon (BC) at 520 nm (in $m^2 g^{-1}$) can be obtained as follows:

25
$$b_{abs}(520 \text{ nm}) = b_{abs-BC}(520 \text{ nm}) + b_{abs-BrC}(520 \text{ nm})$$
 (2)

26
$$b_{abs-BC}(520 \text{ nm}) = b_{abs-BC}(880 \text{ nm}) \times \left(\frac{520}{880}\right)^{-AAE_{BC}}$$
 (3)

27
$$MAE_{BC}(520 \text{ nm}) = \frac{b_{abs-BC}(520 \text{ nm})}{[BC]}$$
(4)

Here, b_{abs} -BC and b_{abs} -BrC (in Mm⁻¹) are the light absorption coefficients caused by BC and brown carbon (BrC) respectively; AAE_{BC} is the AAE caused by the BC particle, which can vary from 0.8 to 1.4 due to core size, coating materials, and mixing state (Lack and Cappa, 2010; Lack and Langridge, 2013). The linear relationship between the AAEs and the mass concentration ratios of organic aerosol (OA) to BC is investigated to find the realistic AAE_{BC} during the normal and lockdown periods (Fig. S12) (Yuan et al., 2016); and [BC] is the mass concentration of BC (in μ g m⁻³).

44 **Text S2.** Uncertainty of the element concentration

45 Considering the element concentration measured by the Xact 625i ambient metals monitor with a 1-

46 hour sampling interval, the uncertainty of the element concentration (u_e) inputting into the receptor 47 model was estimated as follows (Norris et al., 2014):

(5)

48
$$u_e = \sqrt{(c_e \times 10\%)^2 + (0.5 \times \text{MDL})^2}$$
, for $c_e > \text{MDL}$

49
$$u_e = \frac{5}{6} \times \text{MDL}, \text{ for } c_e \leq \text{MDL}$$
 (6)

50 Here, c_e is the concentration of the element; 10 % is the default analytical relative error (Rai et al., 2020);

51 and MDL represents the method detection limit of the element.

52 Text S3. Diagnostics of HERM solutions

53 In this study, factor numbers from two to eight were selected to run in the HERM software. Each factor 54 solution was performed with completely unconstrained profiles at twenty different seeds to explore the 55 possible sources. Detailed information on how the most interpretable factors were selected is presented 56 below.

57 As shown in Fig. S3, the values of Q/Q_{exp} (> 1) decreased as the factor numbers increased. The large Q/Q_{exp} values in two- (21.10 \pm 0.03) and three-factor (12.29 \pm 0.01) solutions indicated too few factors 58 59 were resolved. In the four-factor solution (Fig. S4), Factor 2 identified as biomass burning was 60 characterized by high explained variations (EV) values of POA (56 %), LO-OOA (54 %), BC (43 %), 61 Cl (55 %). Factor 3 was regarded as fugitive dust due to significant EV values of Si (100 %), Ca (68 %), and Fe (35 %). For the Factor 4 assigned to the secondary source, EV values of NO_3^- , SO_4^{2-} , NH_4^+ , and 62 MO-OOA were larger than 30 %. It is noted that Factor 1 was associated with the traffic-like source 63 because b_{ext} from this source showed a moderate correlation with NO_x, a tracer of fresh motor vehicle 64 exhaust emission ($R^2 = 0.58$). However, the high EV values of some specific elements (e.g. As (44 %)) 65 66 and Se (31 %)) in this factor indicated the possible mixture of other fossil fuel sources (e.g. coal 67 combustion). When five factors were resolved, except traffic-like source (Factor 1), biomass burning 68 (Factor 2), and fugitive dust (Factor 3), the secondary source was split into the nitrate and SOA (Factor 69 4) and the sulfate and SOA (Factor 5) sources (Fig. S5). The increase to six-factor solution (Fig. S6) 70 showed well separation of traffic-related emissions (Factor 1) and coal combustion (Factor 3). A 71 stronger correlation between b_{ext} from traffic-related emissions and NO_x ($R^2 = 0.72$) was found compared to traffic-like factors resolved in four- and five- factor solutions ($R^2 = 0.58$). As shown in 72 73 Figs, S7 and S8, further investigations of unconstrained profile solutions with seven and eight factors 74 resulted in factor split. The extra split factors possibly came from biomass burning and coal combustion, 75 mainly due to high EV values of K (26 %-33 %) and As (21 %). Despite bext from coal combustion 76 factors in seven- and eight- factor solutions showed the stronger correlation with As ($R^2 = 0.63 - 0.68$), Se $(R^2 = 0.79 - 0.86)$, and Pb $(R^2 = 0.60 - 0.67)$, the profiles identified coal combustion had no POA 77 contribution. Meanwhile, the values of POA in fugitive dust profiles identified in seven- and eight-78 79 factor solutions were higher than 1 (the reference standard of $PM_{2,5}$). It is indicated that these profiles 80 did not match the real world.

- 81 Therefore, as the factor solutions described above, six factors were the most interpretable in our study,
- 82 including traffic-related emissions, biomass burning, coal combustion, fugitive dust, the nitrate and
- 83 SOA source, and the sulfate and SOA source.

Figure S1. The location of the sampling site in Xi'an, China.

87 Figure S2. Linear relationship between the measured PM_{2.5} concentration and the sum concentration of

- 88 POA, LO-OOA, MO-OOA, NH4NO3, (NH4)2SO4, BC, and fine soil (the sum is referred to as the 89
- reconstructed PM).

91 Figure S3. Values of Q/Q_{exp} for the unconstrained profile solutions with two to eight factors at twenty

92 different seeds.

94 **Figure S4.** (a) Profiles and (b) time series plots of the resolved source factors in the four-factor solution.

95 The columns in each factor are the profile that displays the relative relation of the absolute values of 96 variables. The red dot represents the explained variation in species for different factors. The

97 corresponding time trends of chemical tracers also are shown.

99 Figure S5. (a) Profiles and (b) time series plots of the resolved source factors in the five-factor solution.
100 The columns in each factor are the profile that displays the relative relation of the absolute values of
101 variables. The red dot represents the explained variation in species for different factors. The
102 corresponding time trends of chemical tracers also are shown.

103

Figure S6. (a) Profiles and (b) time series plots of the resolved source factors in the six-factor solution.
 The columns in each factor are the profile that displays the relative relation of the absolute values of
 variables. The red dot represents the explained variation in species for different factors. The
 corresponding time trends of chemical tracers also are shown.

Figure S7. (a) Profiles and (b) time series plots of the resolved source factors in the seven-factor solution.
 The columns in each factor are the profile that displays the relative relation of the absolute values of
 variables. The red dot represents the explained variation in species for different factors. The
 corresponding time trends of chemical tracers also are shown.

Figure S8. (a) Profiles and (b) time series plots of the resolved source factors in the eight-factor solution.
The columns in each factor are the profile that displays the relative relation of the absolute values of variables. The red dot represents the explained variation in species for different factors. The corresponding time trends of chemical tracers also are shown.

Figure S9. Linear relationships between the reconstructed chemical and the measured optical (a) b_{scat} ,

120 (b) b_{abs} , and (c) b_{ext} .

Figure S10. Linear relationship between the modelled source and the measured $PM_{2.5}$ mass concentrations. The modelled source $PM_{2.5}$ was strongly correlated linearly with the measured $PM_{2.5}$ $(R^2 = 0.95, \text{ slope} = 0.96)$, indicating that the six identified sources can adequately account for the variability in $PM_{2.5}$ mass concentration.

127

Figure S11. Linear relationships between the modelled source and the measured optical (a) b_{scat} , (b) b_{abs} ,

and (c) b_{ext} . The modelled source b_{scat} , b_{abs} , and b_{ext} were strongly correlated linearly with the measured

130 optical b_{scat} ($R^2 = 1.00$, slope = 1.00), b_{abs} ($R^2 = 0.99$, slope = 0.99), and b_{ext} ($R^2 = 1.00$, slope = 1.00),

- 131 indicating that the six identified sources can adequately account for the variability in aerosol optical
- 132 coefficients.

133

134 Figure S12. Linear relationships between the AAEs and the mass concentration ratios of organic aerosol

135 (OA) to BC (OA/BC) during the normal (a) and lockdown (b) periods. The intercept of the linear 136 regression represents the realistic AAE_{BC} . The points and light gray shadows represent the mean values

137 and error margins in each bin (Δ (OA/BC) = 0.5).

- **Table S1.** Summary of chemical and meteorological measurements of in Xi'an before and during the
- 139 COVID-19 lockdown period.

Parameters	Sampling interval	Instruments and online source	Operation and calibration						
Chemical variables									
NO ₃ ⁻ , SO4 ²⁻ , NH4 ⁺ , Cl ⁻ , and OA	15-min	Quadrupole aerosol chemical speciation monitor (Q-ACSM, Aerodyne Research Inc., Billerica, Massachusetts, USA)	The relative ionization efficiencies (RIEs) for OA, nitrate, and chloride were set to 1.4, 1.1, and 1.3 by default respectively. The RIE for ammonium (5.8) was determined from the ammonium nitrate aerosol calibration, while the RIE for sulfate (1.9) was estimated by fitting the measured sulfate versus predicted sulfate values. The collection efficiency was set to 0.45.						
Si, K, Ca, Cr, Mn, Fe, Zn, As, Se, Ba, Hg, and Pb	1-hour	Xact 625i ambient metals monitor (Xact 625i, Cooper Environmental Services, Beaverton, OR, USA)	Daily advanced quality assurance checks were performed during 30 min after midnight to monitor shifts in the calibration.						
PM _{2.5} and NO _x	5-min	The Department of Ecology and Environment of Shaanxi Province (http://sthjt.shaanxi.gov.cn, in Chinese)							
Meteorological van	riables [*]								
WS, WD, T, P, and DP	1-hour	Integrated automatic weather station (MAWS201, Vaisala, Helsinki, Finland)							
PBLH	3-hour	Global Data Assimilation System (ftp://arlftp.arlhq.noaa.gov/pub/ar chives/gdas1)	PBLH at the sampling site was obtained using linear interpolation method.						

^{*}WS, WD, T, P, DP, and PBLH represent wind speed, wind direction, temperature, pressure, dew point,

141 and planetary boundary layer height respectively.

Intercept	6.64			
Adjusted R ²	0.54			
Smoothed parameters*	F value	<i>p</i> value		
f(WS)	3.402	0.002331		
f(WD)	5.820	0.000134		
f(T)	2.707	0.012809		
$f(\mathbf{P})$	3.209	0.001757		
f(DP)	13.325	$< 2.00 \times 10^{-16}$		
<i>f</i> (PBLH)	3.656	0.026822		

Table S2. Summary of output indices from the constructed b_{ext} GAM.

^{*}WS, WD, T, P, DP, and PBLH represent wind speed, wind direction, temperature, pressure, dew point,

and planetary boundary layer height respectively.

Smoothed parameters*	f(WS)	f(WD)	<i>f</i> (T)	<i>f</i> (P)	f(DP)	<i>f</i> (PBLH)
<i>f</i> (WS)	1.00	0.28	0.03	0.09	0.07	0.23
<i>f</i> (WD)	0.15	1.00	0.08	0.09	0.03	0.07
<i>f</i> (T)	0.06	0.07	1.00	0.11	0.25	0.22
<i>f</i> (P)	0.08	0.24	0.08	1.00	0.06	0.09
<i>f</i> (DP)	0.05	0.06	0.08	0.07	1.00	0.05
<i>f</i> (PBLH)	0.13	0.07	0.05	0.04	0.06	1.00

145 **Table S3.** Concurvity indices between each independent smoothed parameter in the constructed GAM.

146 *WS, WD, T, P, DP, and PBLH represent wind speed, wind direction, temperature, pressure, dew point,

147 and planetary boundary layer height respectively.

148 **References**

- Lack, D. A. and Cappa, C. D.: Impact of brown and clear carbon on light absorption enhancement,
 single scatter albedo and absorption wavelength dependence of black carbon, Atmos. Chem.
 Phys., 10, 4207–4220, https://doi.org/10.5194/acp-10-4207-2010, 2010.
- Lack, D. A. and Langridge, J. M.: On the attribution of black and brown carbon light absorption
 using the Ångström exponent, Atmos. Chem. Phys., 13, 10535–10543,
 https://doi.org/10.5194/acp-13-10535-2013, 2013.
- Moosmüller, H., Chakrabarty, R. K., Ehlers, K. M., and Arnott, W. P.: Absorption Ångström
 coefficient, brown carbon, and aerosols: basic concepts, bulk matter, and spherical particles,
 Atmos. Chem. Phys., 11, 1217–1225, https://doi.org/10.5194/acp-11-1217-2011, 2011.
- Norris, G., Duvall, R., Brown, S., and Bai, S.: EPA positive matrix factorization (PMF) 5.0
 fundamentals and user guide, U.S. Environmental Protection Agency, Washington, DC,
 EPA/600/R-14/108 (NTIS PB 2015-105147),
 https://cfpub.epa.gov/si/si public record report.cfm?Lab=NERL&direntryid=308292, 2014.
- Rai, P., Furger, M., Slowik, J. G., Canonaco, F., Fröhlich, R., Hüglin, C., Minguillón, M. C., Petterson,
 K., Baltensperger, U., and Prévôt, A. S. H.: Source apportionment of highly time-resolved elements
 during a firework episode from a rural freeway site in Switzerland, Atmos. Chem. Phys., 20, 1657–
 1674, https://doi.org/10.5194/acp-20-1657-2020, 2020.
- 166 Yuan, J. F., Huang, X. F., Cao, L. M., Cui, J., Zhu, Q., Huang, C. N., Lan, Z. J., and He, L. Y.:
- 167 Light absorption of brown carbon aerosol in the PRD region of China, Atmos. Chem. Phys.,
- 168 16, 1433–1443, https://doi.org/10.5194/acp-16-1433-2016, 2016.