Articles | Volume 22, issue 2
https://doi.org/10.5194/acp-22-783-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-783-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reassessment of the radiocesium resuspension flux from contaminated ground surfaces in eastern Japan
Meteorological Research Institute (MRI), Japan Meteorological Agency
(JMA), Tsukuba, Ibaraki 305–0052, Japan
Institute of Radiation Emergency Medicine (IREM), Hirosaki University,
Hirosaki, Aomori 036–8564, Japan
Faculty of Life and Environmental Sciences, University of Tsukuba,
Tsukuba, Ibaraki 305–8572, Japan
Akira Watanabe
Faculty of Symbiotic Systems Science, Fukushima University, Fukushima,
Fukushima 960–1296, Japan
Institute for Climate Change, Fukushima, Fukushima 960–0231, Japan
Masahide Ishizuka
Faculty of Engineering and Design, Kagawa University, Takamatsu,
Kagawa 761–0396, Japan
Kazuyuki Kita
Graduate School of Science and Engineering, Ibaraki University, Mito,
Ibaraki 310–8512, Japan
Yuji Zaizen
Meteorological Research Institute (MRI), Japan Meteorological Agency
(JMA), Tsukuba, Ibaraki 305–0052, Japan
Takeshi Kinase
Institute of Arctic Climate and Environmental Research (IACE), Japan
Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, Kanagawa
236–0001, Japan
Meteorological Research Institute (MRI), Japan Meteorological Agency
(JMA), Tsukuba, Ibaraki 305–0052, Japan
Rikuya Hirai
School of Life and Environmental Sciences, University of Tsukuba,
Tsukuba, Ibaraki 305–8572, Japan
Research Center for Advance Science and Technology (RCAST),
University of Tokyo, Meguro, Tokyo 153–0041, Japan
Kakeru Konnai
School of Life and Environmental Sciences, University of Tsukuba,
Tsukuba, Ibaraki 305–8572, Japan
Akane Saya
Meteorological Research Institute (MRI), Japan Meteorological Agency
(JMA), Tsukuba, Ibaraki 305–0052, Japan
Kazuki Iwaoka
National Institute of Radiological Sciences, National Institutes for
Quantum and Radiological Science and Technology, Chiba, Chiba 263–8555,
Japan
Yoshitaka Shiroma
Faculty of Education, University of the Ryukyus, Nishihara, Okinawa
903–0213, Japan
Hidenao Hasegawa
Department of Radioecology, Institute for Environmental Sciences, Rokkasho, Aomori 039–3212,
Japan
Naofumi Akata
Institute of Radiation Emergency Medicine (IREM), Hirosaki University,
Hirosaki, Aomori 036–8564, Japan
Masahiro Hosoda
Institute of Radiation Emergency Medicine (IREM), Hirosaki University,
Hirosaki, Aomori 036–8564, Japan
Shinji Tokonami
Institute of Radiation Emergency Medicine (IREM), Hirosaki University,
Hirosaki, Aomori 036–8564, Japan
Yasuhito Igarashi
Institute for Integrated Radiation and Nuclear Science (KURNS), Kyoto
University, Kumatori, Osaka 590–0494, Japan
Graduate School of Science and Engineering, Ibaraki University, Mito,
Ibaraki 310–8512, Japan
Related authors
Akira Watanabe, Mizuo Kajino, Kazuhiko Ninomiya, Yoshitaka Nagahashi, and Atsushi Shinohara
Atmos. Chem. Phys., 22, 675–692, https://doi.org/10.5194/acp-22-675-2022, https://doi.org/10.5194/acp-22-675-2022, 2022
Short summary
Short summary
This study summarizes continuous measurements of surface air concentrations and deposition of radiocesium in Fukushima city over 8 years after the Fukushima nuclear accident. The concentration in the city was high in winter and low in summer (inverse of the forest area). The decreasing trends were much faster in the earlier stage, probably because dissolved cesium discharged faster from the local environment. Biotite might play a key role in circulation of particulate cesium in Fukushima city.
Syuichi Itahashi, Baozhu Ge, Keiichi Sato, Zhe Wang, Junichi Kurokawa, Jiani Tan, Kan Huang, Joshua S. Fu, Xuemei Wang, Kazuyo Yamaji, Tatsuya Nagashima, Jie Li, Mizuo Kajino, Gregory R. Carmichael, and Zifa Wang
Atmos. Chem. Phys., 21, 8709–8734, https://doi.org/10.5194/acp-21-8709-2021, https://doi.org/10.5194/acp-21-8709-2021, 2021
Short summary
Short summary
This study presents the detailed analysis of acid deposition over southeast Asia based on the Model Inter-Comparison Study for Asia (MICS-Asia) phase III. Simulated wet deposition is evaluated with observation data from the Acid Deposition Monitoring Network in East Asia (EANET). The difficulties of models to capture observations are related to the model performance on precipitation. The precipitation-adjusted approach was applied, and the distribution of wet deposition was successfully revised.
Mizuo Kajino, Makoto Deushi, Tsuyoshi Thomas Sekiyama, Naga Oshima, Keiya Yumimoto, Taichu Yasumichi Tanaka, Joseph Ching, Akihiro Hashimoto, Tetsuya Yamamoto, Masaaki Ikegami, Akane Kamada, Makoto Miyashita, Yayoi Inomata, Shin-ichiro Shima, Pradeep Khatri, Atsushi Shimizu, Hitoshi Irie, Kouji Adachi, Yuji Zaizen, Yasuhito Igarashi, Hiromasa Ueda, Takashi Maki, and Masao Mikami
Geosci. Model Dev., 14, 2235–2264, https://doi.org/10.5194/gmd-14-2235-2021, https://doi.org/10.5194/gmd-14-2235-2021, 2021
Short summary
Short summary
This study compares performance of aerosol representation methods of the Japan Meteorological Agency's regional-scale nonhydrostatic meteorology–chemistry model (NHM-Chem). It indicates separate treatment of sea salt and dust in coarse mode and that of light-absorptive and non-absorptive particles in fine mode could provide accurate assessments on aerosol feedback processes.
Baozhu Ge, Syuichi Itahashi, Keiichi Sato, Danhui Xu, Junhua Wang, Fan Fan, Qixin Tan, Joshua S. Fu, Xuemei Wang, Kazuyo Yamaji, Tatsuya Nagashima, Jie Li, Mizuo Kajino, Hong Liao, Meigen Zhang, Zhe Wang, Meng Li, Jung-Hun Woo, Junichi Kurokawa, Yuepeng Pan, Qizhong Wu, Xuejun Liu, and Zifa Wang
Atmos. Chem. Phys., 20, 10587–10610, https://doi.org/10.5194/acp-20-10587-2020, https://doi.org/10.5194/acp-20-10587-2020, 2020
Short summary
Short summary
Performances of the simulated deposition for different reduced N (Nr) species in China were conducted with the Model Inter-Comparison Study for Asia. Results showed that simulated wet deposition of oxidized N was overestimated in northeastern China and underestimated in south China, but Nr was underpredicted in all regions by all models. Oxidized N has larger uncertainties than Nr, indicating that the chemical reaction process is one of the most importance factors affecting model performance.
Jiani Tan, Joshua S. Fu, Gregory R. Carmichael, Syuichi Itahashi, Zhining Tao, Kan Huang, Xinyi Dong, Kazuyo Yamaji, Tatsuya Nagashima, Xuemei Wang, Yiming Liu, Hyo-Jung Lee, Chuan-Yao Lin, Baozhu Ge, Mizuo Kajino, Jia Zhu, Meigen Zhang, Hong Liao, and Zifa Wang
Atmos. Chem. Phys., 20, 7393–7410, https://doi.org/10.5194/acp-20-7393-2020, https://doi.org/10.5194/acp-20-7393-2020, 2020
Short summary
Short summary
This study evaluated the performance of 12 chemical transport models from MICS-Asia III for predicting the particulate matter (PM) over East Asia. Four model processes were investigated as the possible reasons for model bias with measurements and the factors causing inconsistent predictions of PM from different models: (1) model inputs, (2) gas–particle conversion, (3) dust emission modules and (4) removal mechanisms (wet and dry depositions). The influence of each process was discussed.
Genki Katata, Kazuhide Matsuda, Atsuyuki Sorimachi, Mizuo Kajino, and Kentaro Takagi
Atmos. Chem. Phys., 20, 4933–4949, https://doi.org/10.5194/acp-20-4933-2020, https://doi.org/10.5194/acp-20-4933-2020, 2020
Short summary
Short summary
This work quantified the role of aerosol dynamics and gas–particle conversion processes in the dry deposition of inorganic reactive nitrogen using a new multilayer land surface model. It also revealed a potential impact of the above processes on improving the predictive accuracy of chemical transport models.
Syuichi Itahashi, Baozhu Ge, Keiichi Sato, Joshua S. Fu, Xuemei Wang, Kazuyo Yamaji, Tatsuya Nagashima, Jie Li, Mizuo Kajino, Hong Liao, Meigen Zhang, Zhe Wang, Meng Li, Junichi Kurokawa, Gregory R. Carmichael, and Zifa Wang
Atmos. Chem. Phys., 20, 2667–2693, https://doi.org/10.5194/acp-20-2667-2020, https://doi.org/10.5194/acp-20-2667-2020, 2020
Short summary
Short summary
This study gives an overview of acid deposition from the Model Inter-Comparison Study for Asia (MICS-Asia) phase III. Wet deposition simulated by a total of nine models is evaluated with observation data from the Acid Deposition Monitoring Network in East Asia (EANET). The total deposition maps comparing to emissions over Asia are presented. To seek a way to improve the model performance, ensemble approaches and the precipitation-adjusted method are discussed.
Lei Kong, Xiao Tang, Jiang Zhu, Zifa Wang, Joshua S. Fu, Xuemei Wang, Syuichi Itahashi, Kazuyo Yamaji, Tatsuya Nagashima, Hyo-Jung Lee, Cheol-Hee Kim, Chuan-Yao Lin, Lei Chen, Meigen Zhang, Zhining Tao, Jie Li, Mizuo Kajino, Hong Liao, Zhe Wang, Kengo Sudo, Yuesi Wang, Yuepeng Pan, Guiqian Tang, Meng Li, Qizhong Wu, Baozhu Ge, and Gregory R. Carmichael
Atmos. Chem. Phys., 20, 181–202, https://doi.org/10.5194/acp-20-181-2020, https://doi.org/10.5194/acp-20-181-2020, 2020
Short summary
Short summary
Evaluation and uncertainty investigation of NO2, CO and NH3 modeling over China were conducted in this study using 14 chemical transport model results from MICS-Asia III. All models largely underestimated CO concentrations and showed very poor performance in reproducing the observed monthly variations of NH3 concentrations. Potential factors related to such deficiencies are investigated and discussed in this paper.
Jie Li, Tatsuya Nagashima, Lei Kong, Baozhu Ge, Kazuyo Yamaji, Joshua S. Fu, Xuemei Wang, Qi Fan, Syuichi Itahashi, Hyo-Jung Lee, Cheol-Hee Kim, Chuan-Yao Lin, Meigen Zhang, Zhining Tao, Mizuo Kajino, Hong Liao, Meng Li, Jung-Hun Woo, Jun-ichi Kurokawa, Zhe Wang, Qizhong Wu, Hajime Akimoto, Gregory R. Carmichael, and Zifa Wang
Atmos. Chem. Phys., 19, 12993–13015, https://doi.org/10.5194/acp-19-12993-2019, https://doi.org/10.5194/acp-19-12993-2019, 2019
Short summary
Short summary
This study evaluated and intercompared 14 CTMs with ozone observations in East Asia, within the framework of the Model Inter-Comparison Study for ASIA Phase III (MICS-Asia III). Potential causes of the discrepancies between model results and observation were investigated by assessing the planetary boundary layer heights, emission fluxes, dry deposition, chemistry and vertical transport among models. Finally, a multi-model estimate of pollution distributions was provided.
Lei Chen, Yi Gao, Meigen Zhang, Joshua S. Fu, Jia Zhu, Hong Liao, Jialin Li, Kan Huang, Baozhu Ge, Xuemei Wang, Yun Fat Lam, Chuan-Yao Lin, Syuichi Itahashi, Tatsuya Nagashima, Mizuo Kajino, Kazuyo Yamaji, Zifa Wang, and Jun-ichi Kurokawa
Atmos. Chem. Phys., 19, 11911–11937, https://doi.org/10.5194/acp-19-11911-2019, https://doi.org/10.5194/acp-19-11911-2019, 2019
Short summary
Short summary
Simulated aerosol concentrations from 14 CTMs within the framework of MICS-Asia III are detailedly evaluated with an extensive set of measurements in East Asia. Similarities and differences among model performances are also analyzed. Although more considerable capacities for reproducing the aerosol concentrations and their variations are shown in current CTMs than those in MICS-Asia II, more efforts are needed to reduce diversities of simulated aerosol concentrations among air quality models.
Mizuo Kajino, Makoto Deushi, Tsuyoshi Thomas Sekiyama, Naga Oshima, Keiya Yumimoto, Taichu Yasumichi Tanaka, Joseph Ching, Akihiro Hashimoto, Tetsuya Yamamoto, Masaaki Ikegami, Akane Kamada, Makoto Miyashita, Yayoi Inomata, Shin-ichiro Shima, Kouji Adachi, Yuji Zaizen, Yasuhito Igarashi, Hiromasa Ueda, Takashi Maki, and Masao Mikami
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-128, https://doi.org/10.5194/gmd-2018-128, 2018
Revised manuscript not accepted
Mizuo Kajino, Masahide Ishizuka, Yasuhito Igarashi, Kazuyuki Kita, Chisato Yoshikawa, and Masaru Inatsu
Atmos. Chem. Phys., 16, 13149–13172, https://doi.org/10.5194/acp-16-13149-2016, https://doi.org/10.5194/acp-16-13149-2016, 2016
Short summary
Short summary
The current study provides the first quantitative budget analysis of radiocesium re-suspended from ground surface contaminated by the Fukushima nuclear accident. It provides useful information to society since our simulation can be used for the long-term assessment of internal exposure to residents in Japan. It also discussed that the re-suspension from forest ecosystems could be a dominant source of suspended radiocesium in the warm season in Japan.
O. Uchino, T. Sakai, T. Nagai, I. Morino, T. Maki, M. Deushi, K. Shibata, M. Kajino, T. Kawasaki, T. Akaho, S. Takubo, H. Okumura, K. Arai, M. Nakazato, T. Matsunaga, T. Yokota, S. Kawakami, K. Kita, and Y. Sasano
Atmos. Meas. Tech., 7, 1385–1394, https://doi.org/10.5194/amt-7-1385-2014, https://doi.org/10.5194/amt-7-1385-2014, 2014
Akira Watanabe, Mizuo Kajino, Kazuhiko Ninomiya, Yoshitaka Nagahashi, and Atsushi Shinohara
Atmos. Chem. Phys., 22, 675–692, https://doi.org/10.5194/acp-22-675-2022, https://doi.org/10.5194/acp-22-675-2022, 2022
Short summary
Short summary
This study summarizes continuous measurements of surface air concentrations and deposition of radiocesium in Fukushima city over 8 years after the Fukushima nuclear accident. The concentration in the city was high in winter and low in summer (inverse of the forest area). The decreasing trends were much faster in the earlier stage, probably because dissolved cesium discharged faster from the local environment. Biotite might play a key role in circulation of particulate cesium in Fukushima city.
Syuichi Itahashi, Baozhu Ge, Keiichi Sato, Zhe Wang, Junichi Kurokawa, Jiani Tan, Kan Huang, Joshua S. Fu, Xuemei Wang, Kazuyo Yamaji, Tatsuya Nagashima, Jie Li, Mizuo Kajino, Gregory R. Carmichael, and Zifa Wang
Atmos. Chem. Phys., 21, 8709–8734, https://doi.org/10.5194/acp-21-8709-2021, https://doi.org/10.5194/acp-21-8709-2021, 2021
Short summary
Short summary
This study presents the detailed analysis of acid deposition over southeast Asia based on the Model Inter-Comparison Study for Asia (MICS-Asia) phase III. Simulated wet deposition is evaluated with observation data from the Acid Deposition Monitoring Network in East Asia (EANET). The difficulties of models to capture observations are related to the model performance on precipitation. The precipitation-adjusted approach was applied, and the distribution of wet deposition was successfully revised.
Mizuo Kajino, Makoto Deushi, Tsuyoshi Thomas Sekiyama, Naga Oshima, Keiya Yumimoto, Taichu Yasumichi Tanaka, Joseph Ching, Akihiro Hashimoto, Tetsuya Yamamoto, Masaaki Ikegami, Akane Kamada, Makoto Miyashita, Yayoi Inomata, Shin-ichiro Shima, Pradeep Khatri, Atsushi Shimizu, Hitoshi Irie, Kouji Adachi, Yuji Zaizen, Yasuhito Igarashi, Hiromasa Ueda, Takashi Maki, and Masao Mikami
Geosci. Model Dev., 14, 2235–2264, https://doi.org/10.5194/gmd-14-2235-2021, https://doi.org/10.5194/gmd-14-2235-2021, 2021
Short summary
Short summary
This study compares performance of aerosol representation methods of the Japan Meteorological Agency's regional-scale nonhydrostatic meteorology–chemistry model (NHM-Chem). It indicates separate treatment of sea salt and dust in coarse mode and that of light-absorptive and non-absorptive particles in fine mode could provide accurate assessments on aerosol feedback processes.
Yaping Shao, Jie Zhang, Masahide Ishizuka, Masao Mikami, John Leys, and Ning Huang
Atmos. Chem. Phys., 20, 12939–12953, https://doi.org/10.5194/acp-20-12939-2020, https://doi.org/10.5194/acp-20-12939-2020, 2020
Short summary
Short summary
It has been recognized in earlier research that particle size distribution of dust at emission (dust PSD) is dependent on friction velocity. This recognition has been challenged in some recent papers. Based on the analysis of experimental data, we confirm that dust PSD is dependent on friction velocity and atmospheric boundary-layer stability. By theoretical and numerical analysis, we reveal the reasons for this dependency.
Baozhu Ge, Syuichi Itahashi, Keiichi Sato, Danhui Xu, Junhua Wang, Fan Fan, Qixin Tan, Joshua S. Fu, Xuemei Wang, Kazuyo Yamaji, Tatsuya Nagashima, Jie Li, Mizuo Kajino, Hong Liao, Meigen Zhang, Zhe Wang, Meng Li, Jung-Hun Woo, Junichi Kurokawa, Yuepeng Pan, Qizhong Wu, Xuejun Liu, and Zifa Wang
Atmos. Chem. Phys., 20, 10587–10610, https://doi.org/10.5194/acp-20-10587-2020, https://doi.org/10.5194/acp-20-10587-2020, 2020
Short summary
Short summary
Performances of the simulated deposition for different reduced N (Nr) species in China were conducted with the Model Inter-Comparison Study for Asia. Results showed that simulated wet deposition of oxidized N was overestimated in northeastern China and underestimated in south China, but Nr was underpredicted in all regions by all models. Oxidized N has larger uncertainties than Nr, indicating that the chemical reaction process is one of the most importance factors affecting model performance.
Jiani Tan, Joshua S. Fu, Gregory R. Carmichael, Syuichi Itahashi, Zhining Tao, Kan Huang, Xinyi Dong, Kazuyo Yamaji, Tatsuya Nagashima, Xuemei Wang, Yiming Liu, Hyo-Jung Lee, Chuan-Yao Lin, Baozhu Ge, Mizuo Kajino, Jia Zhu, Meigen Zhang, Hong Liao, and Zifa Wang
Atmos. Chem. Phys., 20, 7393–7410, https://doi.org/10.5194/acp-20-7393-2020, https://doi.org/10.5194/acp-20-7393-2020, 2020
Short summary
Short summary
This study evaluated the performance of 12 chemical transport models from MICS-Asia III for predicting the particulate matter (PM) over East Asia. Four model processes were investigated as the possible reasons for model bias with measurements and the factors causing inconsistent predictions of PM from different models: (1) model inputs, (2) gas–particle conversion, (3) dust emission modules and (4) removal mechanisms (wet and dry depositions). The influence of each process was discussed.
Genki Katata, Kazuhide Matsuda, Atsuyuki Sorimachi, Mizuo Kajino, and Kentaro Takagi
Atmos. Chem. Phys., 20, 4933–4949, https://doi.org/10.5194/acp-20-4933-2020, https://doi.org/10.5194/acp-20-4933-2020, 2020
Short summary
Short summary
This work quantified the role of aerosol dynamics and gas–particle conversion processes in the dry deposition of inorganic reactive nitrogen using a new multilayer land surface model. It also revealed a potential impact of the above processes on improving the predictive accuracy of chemical transport models.
Syuichi Itahashi, Baozhu Ge, Keiichi Sato, Joshua S. Fu, Xuemei Wang, Kazuyo Yamaji, Tatsuya Nagashima, Jie Li, Mizuo Kajino, Hong Liao, Meigen Zhang, Zhe Wang, Meng Li, Junichi Kurokawa, Gregory R. Carmichael, and Zifa Wang
Atmos. Chem. Phys., 20, 2667–2693, https://doi.org/10.5194/acp-20-2667-2020, https://doi.org/10.5194/acp-20-2667-2020, 2020
Short summary
Short summary
This study gives an overview of acid deposition from the Model Inter-Comparison Study for Asia (MICS-Asia) phase III. Wet deposition simulated by a total of nine models is evaluated with observation data from the Acid Deposition Monitoring Network in East Asia (EANET). The total deposition maps comparing to emissions over Asia are presented. To seek a way to improve the model performance, ensemble approaches and the precipitation-adjusted method are discussed.
Lei Kong, Xiao Tang, Jiang Zhu, Zifa Wang, Joshua S. Fu, Xuemei Wang, Syuichi Itahashi, Kazuyo Yamaji, Tatsuya Nagashima, Hyo-Jung Lee, Cheol-Hee Kim, Chuan-Yao Lin, Lei Chen, Meigen Zhang, Zhining Tao, Jie Li, Mizuo Kajino, Hong Liao, Zhe Wang, Kengo Sudo, Yuesi Wang, Yuepeng Pan, Guiqian Tang, Meng Li, Qizhong Wu, Baozhu Ge, and Gregory R. Carmichael
Atmos. Chem. Phys., 20, 181–202, https://doi.org/10.5194/acp-20-181-2020, https://doi.org/10.5194/acp-20-181-2020, 2020
Short summary
Short summary
Evaluation and uncertainty investigation of NO2, CO and NH3 modeling over China were conducted in this study using 14 chemical transport model results from MICS-Asia III. All models largely underestimated CO concentrations and showed very poor performance in reproducing the observed monthly variations of NH3 concentrations. Potential factors related to such deficiencies are investigated and discussed in this paper.
Jie Li, Tatsuya Nagashima, Lei Kong, Baozhu Ge, Kazuyo Yamaji, Joshua S. Fu, Xuemei Wang, Qi Fan, Syuichi Itahashi, Hyo-Jung Lee, Cheol-Hee Kim, Chuan-Yao Lin, Meigen Zhang, Zhining Tao, Mizuo Kajino, Hong Liao, Meng Li, Jung-Hun Woo, Jun-ichi Kurokawa, Zhe Wang, Qizhong Wu, Hajime Akimoto, Gregory R. Carmichael, and Zifa Wang
Atmos. Chem. Phys., 19, 12993–13015, https://doi.org/10.5194/acp-19-12993-2019, https://doi.org/10.5194/acp-19-12993-2019, 2019
Short summary
Short summary
This study evaluated and intercompared 14 CTMs with ozone observations in East Asia, within the framework of the Model Inter-Comparison Study for ASIA Phase III (MICS-Asia III). Potential causes of the discrepancies between model results and observation were investigated by assessing the planetary boundary layer heights, emission fluxes, dry deposition, chemistry and vertical transport among models. Finally, a multi-model estimate of pollution distributions was provided.
Lei Chen, Yi Gao, Meigen Zhang, Joshua S. Fu, Jia Zhu, Hong Liao, Jialin Li, Kan Huang, Baozhu Ge, Xuemei Wang, Yun Fat Lam, Chuan-Yao Lin, Syuichi Itahashi, Tatsuya Nagashima, Mizuo Kajino, Kazuyo Yamaji, Zifa Wang, and Jun-ichi Kurokawa
Atmos. Chem. Phys., 19, 11911–11937, https://doi.org/10.5194/acp-19-11911-2019, https://doi.org/10.5194/acp-19-11911-2019, 2019
Short summary
Short summary
Simulated aerosol concentrations from 14 CTMs within the framework of MICS-Asia III are detailedly evaluated with an extensive set of measurements in East Asia. Similarities and differences among model performances are also analyzed. Although more considerable capacities for reproducing the aerosol concentrations and their variations are shown in current CTMs than those in MICS-Asia II, more efforts are needed to reduce diversities of simulated aerosol concentrations among air quality models.
Mizuo Kajino, Makoto Deushi, Tsuyoshi Thomas Sekiyama, Naga Oshima, Keiya Yumimoto, Taichu Yasumichi Tanaka, Joseph Ching, Akihiro Hashimoto, Tetsuya Yamamoto, Masaaki Ikegami, Akane Kamada, Makoto Miyashita, Yayoi Inomata, Shin-ichiro Shima, Kouji Adachi, Yuji Zaizen, Yasuhito Igarashi, Hiromasa Ueda, Takashi Maki, and Masao Mikami
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-128, https://doi.org/10.5194/gmd-2018-128, 2018
Revised manuscript not accepted
Dongwei Liu, Masahide Ishizuka, Masao Mikami, and Yaping Shao
Atmos. Chem. Phys., 18, 7595–7606, https://doi.org/10.5194/acp-18-7595-2018, https://doi.org/10.5194/acp-18-7595-2018, 2018
Short summary
Short summary
This work is on saltation (sand motion). Most earlier studies considered only the mean features rather than the turbulent characteristics of saltation. Related to this are uncertainties in saltation model parameters. We study these issues using field measurements. We analyse saltation intermittency and spectrum and estimate the probabilistic distribution of model parameters. This work is part of our effort to develop a more general saltation model.
Tomohiro O. Sato, Takao M. Sato, Hideo Sagawa, Katsuyuki Noguchi, Naoko Saitoh, Hitoshi Irie, Kazuyuki Kita, Mona E. Mahani, Koji Zettsu, Ryoichi Imasu, Sachiko Hayashida, and Yasuko Kasai
Atmos. Meas. Tech., 11, 1653–1668, https://doi.org/10.5194/amt-11-1653-2018, https://doi.org/10.5194/amt-11-1653-2018, 2018
Short summary
Short summary
Air pollution is one of the world's greatest environmental health risks. Ozone adversely affects human health and agricultural production, and the tropospheric ozone has been increasing globally over the past few decades. We report an advanced method to derive the ozone amount in the lowermost troposphere using multi-spectral measurements (UV, thermal infrared and microwave). Combining the MW measurement with the UV and thermal infrared measurements certainly increased the sensitivity.
Erdenebayar Munkhtsetseg, Masato Shinoda, Masahide Ishizuka, Masao Mikami, Reiji Kimura, and George Nikolich
Atmos. Chem. Phys., 17, 11389–11401, https://doi.org/10.5194/acp-17-11389-2017, https://doi.org/10.5194/acp-17-11389-2017, 2017
Short summary
Short summary
Anthropogenic dust emissions induced by livestock trampling were measured using a mini wind tunnel device in Mongolian temperate grassland. A scale factor in dust emissions revealed an enhanced effect of trampling on dust emissions. The enhancement rate in dust emissions was enlarged by increased friction velocity. Our results emphasize that better livestock management is crucial to prevent dust loads by reducing the effect of trampling on dust emissions in dust seasons driven by strong winds.
Mizuo Kajino, Masahide Ishizuka, Yasuhito Igarashi, Kazuyuki Kita, Chisato Yoshikawa, and Masaru Inatsu
Atmos. Chem. Phys., 16, 13149–13172, https://doi.org/10.5194/acp-16-13149-2016, https://doi.org/10.5194/acp-16-13149-2016, 2016
Short summary
Short summary
The current study provides the first quantitative budget analysis of radiocesium re-suspended from ground surface contaminated by the Fukushima nuclear accident. It provides useful information to society since our simulation can be used for the long-term assessment of internal exposure to residents in Japan. It also discussed that the re-suspension from forest ecosystems could be a dominant source of suspended radiocesium in the warm season in Japan.
Takeshi Kinase, Kazuyuki Kita, Yoshimi Tsukagawa-Ogawa, Kumiko Goto-Azuma, and Hiroto Kawashima
Atmos. Meas. Tech., 9, 1939–1945, https://doi.org/10.5194/amt-9-1939-2016, https://doi.org/10.5194/amt-9-1939-2016, 2016
Short summary
Short summary
The influence of temperature and time for the melting snow samples on the measurement of mass concentration and its size distribution of black carbon (BC) in snow have not been understood enough. We evaluated the effect of the melting temperature and time with experiments. We also derived the best conditions of temperature and time for melting snow samples for the measurement of BC in snow by a single-particle soot photometer (SP2).
O. Uchino, T. Sakai, T. Nagai, I. Morino, T. Maki, M. Deushi, K. Shibata, M. Kajino, T. Kawasaki, T. Akaho, S. Takubo, H. Okumura, K. Arai, M. Nakazato, T. Matsunaga, T. Yokota, S. Kawakami, K. Kita, and Y. Sasano
Atmos. Meas. Tech., 7, 1385–1394, https://doi.org/10.5194/amt-7-1385-2014, https://doi.org/10.5194/amt-7-1385-2014, 2014
Related subject area
Subject: Aerosols | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Local and remote climate impacts of future African aerosol emissions
The dependence of aerosols' global and local precipitation impacts on the emitting region
Assessing the climate and air quality effects of future aerosol mitigation in India using a global climate model combined with statistical downscaling
Aggravated air pollution and health burden due to traffic congestion in urban China
Late summer transition from a free-tropospheric to boundary layer source of Aitken mode aerosol in the high Arctic
Self-lofting of wildfire smoke in the troposphere and stratosphere: simulations and space lidar observations
Role of K-feldspar and quartz in global ice nucleation by mineral dust in mixed-phase clouds
Projected increases in wildfires may challenge regulatory curtailment of PM2.5 over the eastern US by 2050
Meteorological export and deposition fluxes of black carbon on glaciers of the central Chilean Andes
Future changes in atmospheric rivers over East Asia under stratospheric aerosol intervention
Modeling the influence of chain length on secondary organic aerosol (SOA) formation via multiphase reactions of alkanes
How aerosol size matters in aerosol optical depth (AOD) assimilation and the optimization using the Ångström exponent
Microphysical, macrophysical, and radiative responses of subtropical marine clouds to aerosol injections
Hemispheric-wide climate response to regional COVID-19-related aerosol emission reductions: the prominent role of atmospheric circulation adjustments
Impacts of an aerosol layer on a midlatitude continental system of cumulus clouds: how do these impacts depend on the vertical location of the aerosol layer?
Impact of phase state and non-ideal mixing on equilibration timescales of secondary organic aerosol partitioning
A global climatology of ice-nucleating particles under cirrus conditions derived from model simulations with MADE3 in EMAC
Enviro-HIRLAM model estimates of elevated black carbon pollution over Ukraine resulted from forest fires
Where does the dust deposited over the Sierra Nevada snow come from?
Instant and delayed effects of March biomass burning aerosols over the Indochina Peninsula
Aerosol–cloud interaction in the atmospheric chemistry model GRAPES_Meso5.1/CUACE and its impacts on mesoscale numerical weather prediction under haze pollution conditions in Jing–Jin–Ji in China
Survival probabilities of atmospheric particles: comparison based on theory, cluster population simulations, and observations in Beijing
Model-based insights into aerosol perturbation on pristine continental convective precipitation
The impact of assimilating Aeolus wind data on regional Aeolian dust model simulations using WRF-Chem
The simulation of mineral dust in the United Kingdom Earth System Model UKESM1
Dust pollution in China affected by different spatial and temporal types of El Niño
An improved representation of aerosol mixing state for air quality–weather interactions
Circulation-regulated impacts of aerosol pollution on urban heat island in Beijing
Size-resolved dust direct radiative effect efficiency derived from satellite observations
A Global Evaluation of Daily to Seasonal Aerosol and Water Vapor Relationships Using a Combination of AERONET and NAAPS Reanalysis Data
Modeling coarse and giant desert dust particles
Fire–climate interactions through the aerosol radiative effect in a global chemistry–climate–vegetation model
Contributions of meteorology and anthropogenic emissions to the trends in winter PM2.5 in eastern China 2013–2018
Impacts of condensable particulate matter on atmospheric organic aerosols and fine particulate matter (PM2.5) in China
Mapping the dependence of black carbon radiative forcing on emission region and season
Regional PM2.5 pollution confined by atmospheric internal boundaries in the North China Plain: boundary layer structures and numerical simulation
Toward targeted observations of the meteorological initial state for improving the PM2.5 forecast of a heavy haze event that occurred in the Beijing–Tianjin–Hebei region
Below-cloud scavenging of aerosol by rain: a review of numerical modelling approaches and sensitivity simulations with mineral dust in the Met Office's Unified Model
On the differences in the vertical distribution of modeled aerosol optical depth over the southeast Atlantic
Predicting gridded winter PM2.5 concentration in the east of China
Satellite-based evaluation of AeroCom model bias in biomass burning regions
Impacts of marine organic emissions on low-level stratiform clouds – a large eddy simulator study
Aviation contrail climate effects in the North Atlantic from 2016 to 2021
Source attribution of cloud condensation nuclei and their impact on stratocumulus clouds and radiation in the south-eastern Atlantic
Simulating wildfire emissions and plume rise using geostationary satellite fire radiative power measurements: a case study of the 2019 Williams Flats fire
Atomistic and coarse-grained simulations reveal increased ice nucleation activity on silver iodide surfaces in slit and wedge geometries
Secondary aerosol formation in marine Arctic environments: a model measurement comparison at Ny-Ålesund
Effective radiative forcing of anthropogenic aerosols in E3SM version 1: historical changes, causality, decomposition, and parameterization sensitivities
Examination of aerosol impacts on convective clouds and precipitation in two metropolitan areas in East Asia; how varying depths of convective clouds between the areas diversify those aerosol effects?
Influence of emission size distribution and nucleation on number concentrations over Greater Paris
Christopher D. Wells, Matthew Kasoar, Nicolas Bellouin, and Apostolos Voulgarakis
Atmos. Chem. Phys., 23, 3575–3593, https://doi.org/10.5194/acp-23-3575-2023, https://doi.org/10.5194/acp-23-3575-2023, 2023
Short summary
Short summary
The climate is altered by greenhouse gases and air pollutant particles, and such emissions are likely to change drastically in the future over Africa. Air pollutants do not travel far, so their climate effect depends on where they are emitted. This study uses a climate model to find the climate impacts of future African pollutant emissions being either high or low. The particles absorb and scatter sunlight, causing the ground nearby to be cooler, but elsewhere the increased heat causes warming.
Geeta G. Persad
Atmos. Chem. Phys., 23, 3435–3452, https://doi.org/10.5194/acp-23-3435-2023, https://doi.org/10.5194/acp-23-3435-2023, 2023
Short summary
Short summary
Human-induced aerosol pollution has major impacts on both local and global precipitation. This study demonstrates using a global climate model that both the strength and localization of aerosols' precipitation impacts are highly dependent on which region the aerosols are emitted from. The findings highlight that the geographic distribution of human-induced aerosol emissions must be accounted for when quantifying their influence on global precipitation.
Tuuli Miinalainen, Harri Kokkola, Antti Lipponen, Antti-Pekka Hyvärinen, Vijay Kumar Soni, Kari E. J. Lehtinen, and Thomas Kühn
Atmos. Chem. Phys., 23, 3471–3491, https://doi.org/10.5194/acp-23-3471-2023, https://doi.org/10.5194/acp-23-3471-2023, 2023
Short summary
Short summary
We simulated the effects of aerosol emission mitigation on both global and regional radiative forcing and city-level air quality with a global-scale climate model. We used a machine learning downscaling approach to bias-correct the PM2.5 values obtained from the global model for the Indian megacity New Delhi. Our results indicate that aerosol mitigation could result in both improved air quality and less radiative heating for India.
Peng Wang, Ruhan Zhang, Shida Sun, Meng Gao, Bo Zheng, Dan Zhang, Yanli Zhang, Gregory R. Carmichael, and Hongliang Zhang
Atmos. Chem. Phys., 23, 2983–2996, https://doi.org/10.5194/acp-23-2983-2023, https://doi.org/10.5194/acp-23-2983-2023, 2023
Short summary
Short summary
In China, the number of vehicles has jumped significantly in the last decade. This caused severe traffic congestion and aggravated air pollution. In this study, we developed a new temporal allocation approach to quantify the impacts of traffic congestion. We found that traffic congestion worsens air quality and the health burden across China, especially in the urban clusters. More effective and comprehensive vehicle emission control policies should be implemented to improve air quality in China.
Ruth Price, Andrea Baccarini, Julia Schmale, Paul Zieger, Ian M. Brooks, Paul Field, and Ken S. Carslaw
Atmos. Chem. Phys., 23, 2927–2961, https://doi.org/10.5194/acp-23-2927-2023, https://doi.org/10.5194/acp-23-2927-2023, 2023
Short summary
Short summary
Arctic clouds can control how much energy is absorbed by the surface or reflected back to space. Using a computer model of the atmosphere we investigated the formation of atmospheric particles that allow cloud droplets to form. We found that particles formed aloft are transported to the lowest part of the Arctic atmosphere and that this is a key source of particles. Our results have implications for the way Arctic clouds will behave in the future as climate change continues to impact the region.
Kevin Ohneiser, Albert Ansmann, Jonas Witthuhn, Hartwig Deneke, Alexandra Chudnovsky, Gregor Walter, and Fabian Senf
Atmos. Chem. Phys., 23, 2901–2925, https://doi.org/10.5194/acp-23-2901-2023, https://doi.org/10.5194/acp-23-2901-2023, 2023
Short summary
Short summary
This study shows that smoke layers can reach the tropopause via the self-lofting effect within 3–7 d in the absence of pyrocumulonimbus convection if the
aerosol optical thickness is larger than approximately 2 for a longer time period. When reaching the stratosphere, wildfire smoke can sensitively influence the stratospheric composition on a hemispheric scale and thus can affect the Earth’s climate and the ozone layer.
Marios Chatziparaschos, Nikos Daskalakis, Stelios Myriokefalitakis, Nikos Kalivitis, Athanasios Nenes, María Gonçalves Ageitos, Montserrat Costa-Surós, Carlos Pérez García-Pando, Medea Zanoli, Mihalis Vrekoussis, and Maria Kanakidou
Atmos. Chem. Phys., 23, 1785–1801, https://doi.org/10.5194/acp-23-1785-2023, https://doi.org/10.5194/acp-23-1785-2023, 2023
Short summary
Short summary
Ice formation is enabled by ice-nucleating particles (INP) at higher temperatures than homogeneous formation and can profoundly affect the properties of clouds. Our global model results show that K-feldspar is the most important contributor to INP concentrations globally, affecting mid-level mixed-phase clouds. However, quartz can significantly contribute and dominates the lowest and the highest altitudes of dust-derived INP, affecting mainly low-level and high-level mixed-phase clouds.
Chandan Sarangi, Yun Qian, L. Ruby Leung, Yang Zhang, Yufei Zou, and Yuhang Wang
Atmos. Chem. Phys., 23, 1769–1783, https://doi.org/10.5194/acp-23-1769-2023, https://doi.org/10.5194/acp-23-1769-2023, 2023
Short summary
Short summary
We show that for air quality, the densely populated eastern US may see even larger impacts of wildfires due to long-distance smoke transport and associated positive climatic impacts, partially compensating the improvements from regulations on anthropogenic emissions. This study highlights the tension between natural and anthropogenic contributions and the non-local nature of air pollution that complicate regulatory strategies for improving future regional air quality for human health.
Rémy Lapere, Nicolás Huneeus, Sylvain Mailler, Laurent Menut, and Florian Couvidat
Atmos. Chem. Phys., 23, 1749–1768, https://doi.org/10.5194/acp-23-1749-2023, https://doi.org/10.5194/acp-23-1749-2023, 2023
Short summary
Short summary
Glaciers in the Andes of central Chile are shrinking rapidly in response to global warming. This melting is accelerated by the deposition of opaque particles onto snow and ice. In this work, model simulations quantify typical deposition rates of soot on glaciers in summer and winter months and show that the contribution of emissions from Santiago is not as high as anticipated. Additionally, the combination of regional- and local-scale meteorology explains the seasonality in deposition.
Ju Liang and Jim Haywood
Atmos. Chem. Phys., 23, 1687–1703, https://doi.org/10.5194/acp-23-1687-2023, https://doi.org/10.5194/acp-23-1687-2023, 2023
Short summary
Short summary
The recent record-breaking flood events in China during the summer of 2021 highlight the importance of mitigating the risks from future changes in high-impact weather systems under global warming. Based on a state-of-the-art Earth system model, we demonstrate a pilot study on the responses of atmospheric rivers and extreme precipitation over East Asia to anthropogenically induced climate warming and an unconventional mitigation strategy – stratospheric aerosol injection.
Azad Madhu, Myoseon Jang, and David Deacon
Atmos. Chem. Phys., 23, 1661–1675, https://doi.org/10.5194/acp-23-1661-2023, https://doi.org/10.5194/acp-23-1661-2023, 2023
Short summary
Short summary
SOA formation is simulated using the UNIPAR model for series of linear alkanes. The inclusion of autoxidation reactions within the explicit gas mechanisms of C9–C12 was found to significantly improve predictions. Available product distributions were extrapolated with an incremental volatility coefficient (IVC) to predict SOA formation of alkanes without explicit mechanisms. These product distributions were used to simulate SOA formation from C13 and C15 and had good agreement with chamber data.
Jianbing Jin, Bas Henzing, and Arjo Segers
Atmos. Chem. Phys., 23, 1641–1660, https://doi.org/10.5194/acp-23-1641-2023, https://doi.org/10.5194/acp-23-1641-2023, 2023
Short summary
Short summary
Aerosol models and satellite retrieval algorithms rely on different aerosol size assumptions. In practice, differences between simulations and observations do not always reflect the difference in aerosol amount. To avoid inconsistencies, we designed a hybrid assimilation approach. Different from a standard aerosol optical depth (AOD) assimilation that directly assimilates AODs, the hybrid one estimates aerosol size parameters by assimilating Ängström observations before assimilating the AODs.
Je-Yun Chun, Robert Wood, Peter Blossey, and Sarah J. Doherty
Atmos. Chem. Phys., 23, 1345–1368, https://doi.org/10.5194/acp-23-1345-2023, https://doi.org/10.5194/acp-23-1345-2023, 2023
Short summary
Short summary
We investigate the impact of injected aerosol on subtropical low marine clouds under a variety of meteorological conditions using high-resolution model simulations. This study illustrates processes perturbed by aerosol injections and their impact on cloud properties (e.g., cloud number concentration, thickness, and cover). We show that those responses are highly sensitive to background meteorological conditions, such as precipitation, and background cloud properties.
Nora L. S. Fahrenbach and Massimo A. Bollasina
Atmos. Chem. Phys., 23, 877–894, https://doi.org/10.5194/acp-23-877-2023, https://doi.org/10.5194/acp-23-877-2023, 2023
Short summary
Short summary
We studied the monthly-scale climate response to COVID-19 aerosol emission reductions during January–May 2020 using climate models. Our results show global temperature and rainfall anomalies driven by circulation changes. The climate patterns reverse polarity from JF to MAM due to a shift in the main SO2 reduction region from China to India. This real-life example of rapid climate adjustments to abrupt, regional aerosol emission reduction has large implications for future climate projections.
Seoung Soo Lee, Junshik Um, Won Jun Choi, Kyung-Ja Ha, Chang Hoon Jung, Jianping Guo, and Youtong Zheng
Atmos. Chem. Phys., 23, 273–286, https://doi.org/10.5194/acp-23-273-2023, https://doi.org/10.5194/acp-23-273-2023, 2023
Short summary
Short summary
This paper elaborates on process-level mechanisms regarding how the interception of radiation by aerosols interacts with the surface heat fluxes and atmospheric instability in warm cumulus clouds. This paper elucidates how these mechanisms vary with the location or altitude of an aerosol layer. This elucidation indicates that the location of aerosol layers should be taken into account for parameterizations of aerosol–cloud interactions.
Meredith Schervish and Manabu Shiraiwa
Atmos. Chem. Phys., 23, 221–233, https://doi.org/10.5194/acp-23-221-2023, https://doi.org/10.5194/acp-23-221-2023, 2023
Short summary
Short summary
Secondary organic aerosols (SOAs) can exhibit complex non-ideal behavior and adopt an amorphous semisolid state. We simulate condensation of semi-volatile compounds into a phase-separated particle to investigate the effect of non-ideality and particle phase state on the equilibration timescale of SOA partitioning. Our results provide useful insights into the interpretation of experimental observations and the description and treatment of SOA in aerosol models.
Christof G. Beer, Johannes Hendricks, and Mattia Righi
Atmos. Chem. Phys., 22, 15887–15907, https://doi.org/10.5194/acp-22-15887-2022, https://doi.org/10.5194/acp-22-15887-2022, 2022
Short summary
Short summary
Ice-nucleating particles (INPs) have important influences on cirrus clouds and the climate system; however, their global atmospheric distribution in the cirrus regime is still very uncertain. We present a global climatology of INPs under cirrus conditions derived from model simulations, considering the mineral dust, soot, crystalline ammonium sulfate, and glassy organics INP types. The comparison of respective INP concentrations indicates the large importance of ammonium sulfate particles.
Mykhailo Savenets, Larysa Pysarenko, Svitlana Krakovska, Alexander Mahura, and Tuukka Petäjä
Atmos. Chem. Phys., 22, 15777–15791, https://doi.org/10.5194/acp-22-15777-2022, https://doi.org/10.5194/acp-22-15777-2022, 2022
Short summary
Short summary
The paper explores the spatio-temporal variability of black carbon during a wildfire in August 2010, with a focus on Ukraine. As a research tool, the seamless Enviro-HIRLAM modelling system is used for investigating the atmospheric transport of aerosol particles emitted by wildfires from remote and local sources. The results of this study improve our understanding of the physical and chemical processes and the interactions of aerosols in the atmosphere.
Huilin Huang, Yun Qian, Ye Liu, Cenlin He, Jianyu Zheng, Zhibo Zhang, and Antonis Gkikas
Atmos. Chem. Phys., 22, 15469–15488, https://doi.org/10.5194/acp-22-15469-2022, https://doi.org/10.5194/acp-22-15469-2022, 2022
Short summary
Short summary
Using a clustering method developed in the field of artificial neural networks, we identify four typical dust transport patterns across the Sierra Nevada, associated with the mesoscale and regional-scale wind circulations. Our results highlight the connection between dust transport and dominant weather patterns, which can be used to understand dust transport in a changing climate.
Anbao Zhu, Haiming Xu, Jiechun Deng, Jing Ma, and Shaofeng Hua
Atmos. Chem. Phys., 22, 15425–15447, https://doi.org/10.5194/acp-22-15425-2022, https://doi.org/10.5194/acp-22-15425-2022, 2022
Short summary
Short summary
This study demonstrates the instant and delayed effects of biomass burning (BB) aerosols on precipitation over the Indochina Peninsula (ICP). The convection suppression due to the BB aerosol-induced stabilized atmosphere dominates over the favorable water-vapor condition induced by large-scale circulation responses, leading to an overall reduced precipitation in March, while the delayed effect promotes precipitation from early April to mid April due to the anomalous atmospheric circulations.
Wenjie Zhang, Hong Wang, Xiaoye Zhang, Liping Huang, Yue Peng, Zhaodong Liu, Xiao Zhang, and Huizheng Che
Atmos. Chem. Phys., 22, 15207–15221, https://doi.org/10.5194/acp-22-15207-2022, https://doi.org/10.5194/acp-22-15207-2022, 2022
Short summary
Short summary
Aerosol–cloud interaction (ACI) is first implemented in the atmospheric chemistry system GRAPES_Meso5.1/CUACE. ACI can improve the simulated cloud, temperature, and precipitation under haze pollution conditions in Jing-Jin-Ji in China. This paper demonstrates the critical role of ACI in current numerical weather prediction over the severely polluted region.
Santeri Tuovinen, Runlong Cai, Veli-Matti Kerminen, Jingkun Jiang, Chao Yan, Markku Kulmala, and Jenni Kontkanen
Atmos. Chem. Phys., 22, 15071–15091, https://doi.org/10.5194/acp-22-15071-2022, https://doi.org/10.5194/acp-22-15071-2022, 2022
Short summary
Short summary
We compare observed survival probabilities of atmospheric particles from Beijing, China, with survival probabilities based on analytical formulae and model simulations. We find observed survival probabilities under polluted conditions at smaller sizes to be higher, while at larger sizes they are lower than or similar to theoretical survival probabilities. Uncertainties in condensation sink and growth rate are unlikely to explain higher-than-predicted survival probabilities at smaller sizes.
Mengjiao Jiang, Yaoting Li, Weiji Hu, Yinshan Yang, and Guy Brasseur
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-715, https://doi.org/10.5194/acp-2022-715, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
Relatively clean background aerosol over the Tibet Plateau makes the study on the aerosol-cloud-precipitation interactions distinctive. A convection on 24 July 2014 in Naqu was selected using WRF model including the Thompson aerosol-aware microphysical scheme. Our study has adopted a compromise approach to use the limited observations. The result shows that the transformation of cloud water to graupel and the development of convective clouds are favored under polluted situations.
Pantelis Kiriakidis, Antonis Gkikas, George Papangelis, Theodoros Christoudias, Jonilda Kushta, Emmanouil Proestakis, Anna Kampouri, Eleni Marinou, Eleni Drakaki, Angela Benedetti, Michael Rennie, Christian Retscher, Anne Grete Straume, Alexandru Dandocsi, Jean Sciare, and Vasilis Amiridis
EGUsphere, https://doi.org/10.5194/egusphere-2022-819, https://doi.org/10.5194/egusphere-2022-819, 2022
Short summary
Short summary
With the launch of the Aeolus satellite higher accuracy wind products became available. The research was carried out to validate the assimilated wind products by testing their effect on the WRF-Chem model predictive ability of dust processes. This was carried out for the East Mediterranean and Middle East region for two, two-month long periods in autumn and spring 2020. The use of the assimilated products improved the dust forecasts both quantitatively and qualitatively for the autumn season.
Stephanie Woodward, Alistair A. Sellar, Yongming Tang, Marc Stringer, Andrew Yool, Eddy Robertson, and Andy Wiltshire
Atmos. Chem. Phys., 22, 14503–14528, https://doi.org/10.5194/acp-22-14503-2022, https://doi.org/10.5194/acp-22-14503-2022, 2022
Short summary
Short summary
We describe the dust scheme in the UKESM1 Earth system model and show generally good agreement with observations. Comparing with the closely related HadGEM3-GC3.1 model, we show that dust differences are not only due to inter-model differences but also to the dust size distribution. Under climate change, HadGEM3-GC3.1 dust hardly changes, but UKESM1 dust decreases because that model includes the vegetation response which, in our models, has a bigger impact on dust than climate change itself.
Yang Yang, Liangying Zeng, Hailong Wang, Pinya Wang, and Hong Liao
Atmos. Chem. Phys., 22, 14489–14502, https://doi.org/10.5194/acp-22-14489-2022, https://doi.org/10.5194/acp-22-14489-2022, 2022
Short summary
Short summary
Using an aerosol–climate model, dust pollution in China affected by different spatial and temporal types of El Niño are examined. Both eastern and central Pacific El Niño and short-duration El Niño increase winter dust concentrations over northern China, while long-duration El Niño decreases concentrations. Only long-duration El Niño events can significantly affect dust over China in the following spring. This study has profound implications for air pollution control and dust storm prediction.
Robin Stevens, Andrei Ryjkov, Mahtab Majdzadeh, and Ashu Dastoor
Atmos. Chem. Phys., 22, 13527–13549, https://doi.org/10.5194/acp-22-13527-2022, https://doi.org/10.5194/acp-22-13527-2022, 2022
Short summary
Short summary
Absorbing particles like black carbon can be coated with other matter. How much radiation these particles absorb depends on the coating thickness. The removal of these particles by clouds and rain depends on the coating composition. These effects are important for both climate and air quality. We implement a more detailed representation of these particles in an air quality model which accounts for both coating thickness and composition. We find a significant effect on particle concentrations.
Fan Wang, Gregory R. Carmichael, Jing Wang, Bin Chen, Bo Huang, Yuguo Li, Yuanjian Yang, and Meng Gao
Atmos. Chem. Phys., 22, 13341–13353, https://doi.org/10.5194/acp-22-13341-2022, https://doi.org/10.5194/acp-22-13341-2022, 2022
Short summary
Short summary
Unprecedented urbanization in China has led to serious urban heat island (UHI) issues, exerting intense heat stress on urban residents. We find diverse influences of aerosol pollution on urban heat island intensity (UHII) under different circulations. Our results also highlight the role of black carbon in aggravating UHI, especially during nighttime. It could thus be targeted for cooperative management of heat islands and aerosol pollution.
Qianqian Song, Zhibo Zhang, Hongbin Yu, Jasper F. Kok, Claudia Di Biagio, Samuel Albani, Jianyu Zheng, and Jiachen Ding
Atmos. Chem. Phys., 22, 13115–13135, https://doi.org/10.5194/acp-22-13115-2022, https://doi.org/10.5194/acp-22-13115-2022, 2022
Short summary
Short summary
This study developed a dataset that enables us to efficiently calculate dust direct radiative effect (DRE, i.e., cooling or warming our planet) for any given dust size distribution in addition to three sets of dust mineral components and two dust shapes. We demonstrate and validate the method of using this dataset to calculate dust DRE. Moreover, using this dataset we found that dust mineral composition is a more important factor in determining dust DRE than dust size and shape.
Juli I. Rubin, Jeffrey S. Reid, Peng Xian, Christopher M. Selman, and Thomas F. Eck
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-594, https://doi.org/10.5194/acp-2022-594, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
This work aims to quantify the covariability between aerosol optical depth/extinction with water vapor (PW) globally, using NASA AERONET observations and NAAPS model data. Findings are important for data assimilation and radiative transfer. The study shows statistically significant and positive AOD/PW relationships are found across the globe, varying in strength with location and season and tied to large scale aerosol events. Hygroscopic growth was also found to be an important factor.
Eleni Drakaki, Vassilis Amiridis, Alexandra Tsekeri, Antonis Gkikas, Emmanouil Proestakis, Sotirios Mallios, Stavros Solomos, Christos Spyrou, Eleni Marinou, Claire L. Ryder, Demetri Bouris, and Petros Katsafados
Atmos. Chem. Phys., 22, 12727–12748, https://doi.org/10.5194/acp-22-12727-2022, https://doi.org/10.5194/acp-22-12727-2022, 2022
Short summary
Short summary
State-of-the-art atmospheric dust models have limitations in accounting for a realistic dust size distribution (emission, transport). We modify the parameterization of the mineral dust cycle by including particles with diameter >20 μm, as indicated by observations over deserts. Moreover, we investigate the effects of reduced settling velocities of dust particles. Model results are evaluated using airborne and spaceborne dust measurements above Cabo Verde.
Chenguang Tian, Xu Yue, Jun Zhu, Hong Liao, Yang Yang, Yadong Lei, Xinyi Zhou, Hao Zhou, Yimian Ma, and Yang Cao
Atmos. Chem. Phys., 22, 12353–12366, https://doi.org/10.5194/acp-22-12353-2022, https://doi.org/10.5194/acp-22-12353-2022, 2022
Short summary
Short summary
We quantify the impacts of fire aerosols on climate through direct, indirect, and albedo effects. In atmosphere-only simulations, we find global fire aerosols cause surface cooling and rainfall inhibition over many land regions. These fast atmospheric perturbations further lead to a reduction in regional leaf area index and lightning activities. By considering the feedback of fire aerosols on humidity, lightning, and leaf area index, we predict a slight reduction in fire emissions.
Yanxing Wu, Run Liu, Yanzi Li, Junjie Dong, Zhijiong Huang, Junyu Zheng, and Shaw Chen Liu
Atmos. Chem. Phys., 22, 11945–11955, https://doi.org/10.5194/acp-22-11945-2022, https://doi.org/10.5194/acp-22-11945-2022, 2022
Short summary
Short summary
Multiple linear regression (MLR) analyses often interpret the correlation coefficient (r2) as the contribution of an independent variable to the dependent variable. Since a good correlation does not imply a causal relationship, we propose that r2 should be interpreted as the maximum possible contribution. Moreover, MLR results are sensitive to the length of time analyzed; long-term analysis gives a more accurate assessment because of its additional constraints.
Mengying Li, Shaocai Yu, Xue Chen, Zhen Li, Yibo Zhang, Zhe Song, Weiping Liu, Pengfei Li, Xiaoye Zhang, Meigen Zhang, Yele Sun, Zirui Liu, Caiping Sun, Jingkun Jiang, Shuxiao Wang, Benjamin N. Murphy, Kiran Alapaty, Rohit Mathur, Daniel Rosenfeld, and John H. Seinfeld
Atmos. Chem. Phys., 22, 11845–11866, https://doi.org/10.5194/acp-22-11845-2022, https://doi.org/10.5194/acp-22-11845-2022, 2022
Short summary
Short summary
This study constructed an emission inventory of condensable particulate matter (CPM) in China with a focus on organic aerosols (OAs), based on collected CPM emission information. The results show that OA emissions are enhanced twofold for the years 2014 and 2017 after the inclusion of CPM in the new inventory. Sensitivity cases demonstrated the significant contributions of CPM emissions from stationary combustion and mobile sources to primary, secondary, and total OA concentrations.
Petri Räisänen, Joonas Merikanto, Risto Makkonen, Mikko Savolahti, Alf Kirkevåg, Maria Sand, Øyvind Seland, and Antti-Ilari Partanen
Atmos. Chem. Phys., 22, 11579–11602, https://doi.org/10.5194/acp-22-11579-2022, https://doi.org/10.5194/acp-22-11579-2022, 2022
Short summary
Short summary
A climate model is used to evaluate how the radiative forcing (RF) associated with black carbon (BC) emissions depends on the latitude, longitude, and seasonality of emissions. It is found that both the direct RF (BC absorption of solar radiation in air) and snow RF (BC absorption in snow/ice) depend strongly on the emission region and season. The results suggest that, for a given mass of BC emitted, climatic impacts are likely to be largest for high-latitude emissions due to the large snow RF.
Xipeng Jin, Xuhui Cai, Mingyuan Yu, Yu Song, Xuesong Wang, Hongsheng Zhang, and Tong Zhu
Atmos. Chem. Phys., 22, 11409–11427, https://doi.org/10.5194/acp-22-11409-2022, https://doi.org/10.5194/acp-22-11409-2022, 2022
Short summary
Short summary
Meteorological discontinuities in the vertical direction define the lowest atmosphere as the boundary layer, while in the horizontal direction it identifies the contrast zone as the internal boundary. Both of them determine the polluted air mass dimension over the North China Plain. This study reveals the boundary layer structures under three categories of internal boundaries, modified by thermal, dynamical, and blending effects. It provides a new insight to understand regional pollution.
Lichao Yang, Wansuo Duan, Zifa Wang, and Wenyi Yang
Atmos. Chem. Phys., 22, 11429–11453, https://doi.org/10.5194/acp-22-11429-2022, https://doi.org/10.5194/acp-22-11429-2022, 2022
Short summary
Short summary
The initial meteorological state has a great impact on PM2.5 forecasts. Assimilating additional observations is an effective way to improve the accuracy of the initial meteorological state. Here we used an advanced optimization approach to identify where we should preferentially place the meteorological observations associated with PM2.5 forecasts in the Beijing–Tianjin–Hebei region of China. We provide evidence that the target observation strategy is effective for improving PM2.5 forecasts.
Anthony C. Jones, Adrian Hill, John Hemmings, Pascal Lemaitre, Arnaud Quérel, Claire L. Ryder, and Stephanie Woodward
Atmos. Chem. Phys., 22, 11381–11407, https://doi.org/10.5194/acp-22-11381-2022, https://doi.org/10.5194/acp-22-11381-2022, 2022
Short summary
Short summary
As raindrops fall to the ground, they capture aerosol (i.e. below-cloud scavenging or BCS). Many different BCS schemes are available to climate models, and it is unclear what the impact of selecting one scheme over another is. Here, various BCS models are outlined and then applied to mineral dust in climate model simulations. We find that dust concentrations are highly sensitive to the BCS scheme, with dust atmospheric lifetimes ranging from 5 to 44 d.
Ian Chang, Lan Gao, Connor J. Flynn, Yohei Shinozuka, Sarah J. Doherty, Michael S. Diamond, Karla M. Longo, Gonzalo A. Ferrada, Gregory R. Carmichael, Patricia Castellanos, Arlindo M. da Silva, Pablo E. Saide, Calvin Howes, Zhixin Xue, Marc Mallet, Ravi Govindaraju, Qiaoqiao Wang, Yafang Cheng, Yan Feng, Sharon P. Burton, Richard A. Ferrare, Samuel E. LeBlanc, Meloë S. Kacenelenbogen, Kristina Pistone, Michal Segal-Rozenhaimer, Kerry G. Meyer, Ju-Mee Ryoo, Leonhard Pfister, Adeyemi A. Adebiyi, Robert Wood, Paquita Zuidema, Sundar A. Christopher, and Jens Redemann
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-496, https://doi.org/10.5194/acp-2022-496, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
Abundant aerosols are present above low-level liquid clouds over the southeast Atlantic during austral winter and spring. The model simulation differences in the proportion of aerosol residing in the planetary boundary layer and in the free troposphere can greatly affect the regional aerosol radiative effects. This study examines aerosol optical depths and planetary boundary layer depths among various models and evaluates them against measurements from the NASA ORACLES field campaign.
Zhicong Yin, Mingkeng Duan, Yuyan Li, Tianbao Xu, and Huijun Wang
Atmos. Chem. Phys., 22, 11173–11185, https://doi.org/10.5194/acp-22-11173-2022, https://doi.org/10.5194/acp-22-11173-2022, 2022
Short summary
Short summary
The PM2.5 concentration has been greatly reduced in recent years in China and has entered a crucial stage that required fine seasonal prediction. However, there is still no study aimed at predicting gridded PM2.5 concentration. A model for seasonal prediction of gridded winter PM2.5 concentration in the east of China was developed by analyzing the contributions of emissions and climate variability, which could provide scientific support for air pollution control at the regional and city levels.
Qirui Zhong, Nick Schutgens, Guido van der Werf, Twan van Noije, Kostas Tsigaridis, Susanne E. Bauer, Tero Mielonen, Alf Kirkevåg, Øyvind Seland, Harri Kokkola, Ramiro Checa-Garcia, David Neubauer, Zak Kipling, Hitoshi Matsui, Paul Ginoux, Toshihiko Takemura, Philippe Le Sager, Samuel Rémy, Huisheng Bian, Mian Chin, Kai Zhang, Jialei Zhu, Svetlana G. Tsyro, Gabriele Curci, Anna Protonotariou, Ben Johnson, Joyce E. Penner, Nicolas Bellouin, Ragnhild B. Skeie, and Gunnar Myhre
Atmos. Chem. Phys., 22, 11009–11032, https://doi.org/10.5194/acp-22-11009-2022, https://doi.org/10.5194/acp-22-11009-2022, 2022
Short summary
Short summary
Aerosol optical depth (AOD) errors for biomass burning aerosol (BBA) are evaluated in 18 global models against satellite datasets. Notwithstanding biases in satellite products, they allow model evaluations. We observe large and diverse model biases due to errors in BBA. Further interpretations of AOD diversities suggest large biases exist in key processes for BBA which require better constraining. These results can contribute to further model improvement and development.
Marje Prank, Juha Tonttila, Jaakko Ahola, Harri Kokkola, Thomas Kühn, Sami Romakkaniemi, and Tomi Raatikainen
Atmos. Chem. Phys., 22, 10971–10992, https://doi.org/10.5194/acp-22-10971-2022, https://doi.org/10.5194/acp-22-10971-2022, 2022
Short summary
Short summary
Aerosols and clouds persist as the dominant sources of uncertainty in climate projections. In this modelling study, we investigate the role of marine aerosols in influencing the lifetime of low-level clouds. Our high resolution simulations show that sea spray can both extend and shorten the lifetime of the cloud layer depending on the model setup. The impact of the primary marine organics is relatively limited while secondary aerosol from monoterpenes can have larger impact.
Roger Teoh, Ulrich Schumann, Edward Gryspeerdt, Marc Shapiro, Jarlath Molloy, George Koudis, Christiane Voigt, and Marc E. J. Stettler
Atmos. Chem. Phys., 22, 10919–10935, https://doi.org/10.5194/acp-22-10919-2022, https://doi.org/10.5194/acp-22-10919-2022, 2022
Short summary
Short summary
Aircraft condensation trails (contrails) contribute to over half of the climate forcing attributable to aviation. This study uses historical air traffic and weather data to simulate contrails in the North Atlantic over 5 years, from 2016 to 2021. We found large intra- and inter-year variability in contrail radiative forcing and observed a 66 % reduction due to COVID-19. Most warming contrails predominantly result from night-time flights in winter.
Haochi Che, Philip Stier, Duncan Watson-Parris, Hamish Gordon, and Lucia Deaconu
Atmos. Chem. Phys., 22, 10789–10807, https://doi.org/10.5194/acp-22-10789-2022, https://doi.org/10.5194/acp-22-10789-2022, 2022
Short summary
Short summary
Extensive stratocumulus clouds over the south-eastern Atlantic (SEA) can lead to a cooling effect on the climate. A key pathway by which aerosols affect cloud properties is by acting as cloud condensation nuclei (CCN). Here, we investigated the source attribution of CCN in the SEA as well as the cloud responses. Our results show that aerosol nucleation contributes most to CCN in the marine boundary layer. In terms of emissions, anthropogenic sources contribute most to the CCN and cloud droplets.
Aditya Kumar, R. Bradley Pierce, Ravan Ahmadov, Gabriel Pereira, Saulo Freitas, Georg Grell, Chris Schmidt, Allen Lenzen, Joshua P. Schwarz, Anne E. Perring, Joseph M. Katich, John Hair, Jose L. Jimenez, Pedro Campuzano-Jost, and Hongyu Guo
Atmos. Chem. Phys., 22, 10195–10219, https://doi.org/10.5194/acp-22-10195-2022, https://doi.org/10.5194/acp-22-10195-2022, 2022
Short summary
Short summary
We use the WRF-Chem model with new implementations of GOES-16 wildfire emissions and plume rise based on fire radiative power (FRP) to interpret aerosol observations during the 2019 NASA–NOAA FIREX-AQ field campaign and perform model evaluations. The model shows significant improvements in simulating the variety of aerosol loading environments sampled during FIREX-AQ. Our results also highlight the importance of accurate wildfire diurnal cycle and aerosol chemical mechanisms in models.
Golnaz Roudsari, Olli H. Pakarinen, Bernhard Reischl, and Hanna Vehkamäki
Atmos. Chem. Phys., 22, 10099–10114, https://doi.org/10.5194/acp-22-10099-2022, https://doi.org/10.5194/acp-22-10099-2022, 2022
Short summary
Short summary
We use atomistic simulations to study heterogeneous ice nucleation on silver iodide surfaces in slit and wedge geometries at low supercooling which serve as a model of irregularities on real atmospheric aerosol particle surfaces. The revealed microscopic ice nucleation mechanisms in confined geometries strongly support the experimental evidence for the importance of surface features such as cracks or pits functioning as active sites for ice nucleation in the atmosphere.
Carlton Xavier, Metin Baykara, Robin Wollesen de Jonge, Barbara Altstädter, Petri Clusius, Ville Vakkari, Roseline Thakur, Lisa Beck, Silvia Becagli, Mirko Severi, Rita Traversi, Radovan Krejci, Peter Tunved, Mauro Mazzola, Birgit Wehner, Mikko Sipilä, Markku Kulmala, Michael Boy, and Pontus Roldin
Atmos. Chem. Phys., 22, 10023–10043, https://doi.org/10.5194/acp-22-10023-2022, https://doi.org/10.5194/acp-22-10023-2022, 2022
Short summary
Short summary
The focus of this work is to study and improve our understanding of processes involved in the formation and growth of new particles in a remote Arctic marine environment. We run the 1D model ADCHEM along air mass trajectories arriving at Ny-Ålesund in May 2018. The model finds that ion-mediated H2SO4–NH3 nucleation can explain the observed new particle formation at Ny-Ålesund. The growth of particles is driven via H2SO4 condensation and formation of methane sulfonic acid in the aqueous phase.
Kai Zhang, Wentao Zhang, Hui Wan, Philip J. Rasch, Steven J. Ghan, Richard C. Easter, Xiangjun Shi, Yong Wang, Hailong Wang, Po-Lun Ma, Shixuan Zhang, Jian Sun, Susannah M. Burrows, Manish Shrivastava, Balwinder Singh, Yun Qian, Xiaohong Liu, Jean-Christophe Golaz, Qi Tang, Xue Zheng, Shaocheng Xie, Wuyin Lin, Yan Feng, Minghuai Wang, Jin-Ho Yoon, and L. Ruby Leung
Atmos. Chem. Phys., 22, 9129–9160, https://doi.org/10.5194/acp-22-9129-2022, https://doi.org/10.5194/acp-22-9129-2022, 2022
Short summary
Short summary
Here we analyze the effective aerosol forcing simulated by E3SM version 1 using both century-long free-running and short nudged simulations. The aerosol forcing in E3SMv1 is relatively large compared to other models, mainly due to the large indirect aerosol effect. Aerosol-induced changes in liquid and ice cloud properties in E3SMv1 have a strong correlation. The aerosol forcing estimates in E3SMv1 are sensitive to the parameterization changes in both liquid and ice cloud processes.
Seoung Soo Lee, Jinho Choi, Goun Kim, Kyung-Ja Ha, Kyong-Hwan Seo, Chang Hoon Jung, Junshik Um, Youtong Zheng, Jianping Guo, Sang-Keun Song, Yun Gon Lee, and Nobuyuki Utsumi
Atmos. Chem. Phys., 22, 9059–9081, https://doi.org/10.5194/acp-22-9059-2022, https://doi.org/10.5194/acp-22-9059-2022, 2022
Short summary
Short summary
This study investigates how aerosols affect clouds and precipitation and how the aerosol effects vary with varying types of clouds that are characterized by cloud depth in two metropolitan areas in East Asia. As cloud depth increases, the enhancement of precipitation amount transitions to no changes in precipitation amount with increasing aerosol concentrations. This indicates that cloud depth needs to be considered for a comprehensive understanding of aerosol-cloud interactions.
Karine Sartelet, Youngseob Kim, Florian Couvidat, Maik Merkel, Tuukka Petäjä, Jean Sciare, and Alfred Wiedensohler
Atmos. Chem. Phys., 22, 8579–8596, https://doi.org/10.5194/acp-22-8579-2022, https://doi.org/10.5194/acp-22-8579-2022, 2022
Short summary
Short summary
A methodology is defined to estimate number emissions from an inventory providing mass emissions. Number concentrations are simulated over Greater Paris using different nucleation parameterisations (binary, ternary involving sulfuric acid and ammonia, and heteromolecular involving sulfuric acid and extremely low-volatility organics, ELVOCs). The comparisons show that ternary nucleation may not be a dominant process for new particle formation in cities, but they stress the role of ELVOCs.
Cited articles
Adachi, K., Kajino, M., Zaizen, Y., and Igarashi, Y.: Emission of spherical
cesium-bearing particles from an early stage of the Fukushima nuclear
accident, Sci. Rep., 3, 12–15, https://doi.org/10.1038/srep02554, 2013.
Denby, B. R., Ketzel, M., Ellermann, T., Stojiljkovic, A., Kupiainen, K.,
Niemi, J. V., Norman, M., Johansson, C., Gustafsson, M., Blomqvist, G.,
Janhäll, S., and Sundvor, I.: Road salt emissions: A comparison of
measurements and modelling using the NORTRIP road dust emission model,
Atmos. Environ., 141, 508–522, https://doi.org/10.1016/j.atmosenv.2016.07.027, 2016.
Dépée, A., Lemaitre, P., Gelain, T., Mathieu, A., Monier, M., and
Flossmann, A.: Theoretical study of aerosol particle electroscavenging by
clouds, J. Aerosol Sci., 135, 1–20, https://doi.org/10.1016/j.jaerosci.2019.04.001,
2019.
Draxler, R., Arnold, D., Chino, M., Galmarini, S., Hort, M., Jones, A.,
Leadbetter, S., Malo, A., Maurer, C., Rolph, G., Saito, K., Servranckx, R.,
Shimbori, T., Solazzo, E., and Wotawa, G.: World Meteorological
Organization's model simulations of the radionuclide dispersion and
deposition from the Fukushima Daiichi nuclear power plant accident, J.
Environ. Radioact., 139, 172–184, https://doi.org/10.1016/j.jenvrad.2013.09.014, 2015.
Emanuel, K. A. and Živković-Rothman, M.: Development and evaluation
of a convection scheme for use in climate models, J. Atmos. Sci., 56,
1766–1782, https://doi.org/10.1175/1520-0469(1999)056< 1766:DAEOAC>2.0.CO;2, 1999.
Goto, D., Morino, Y., Ohara, T., Sekiyama, T. T., Uchida, J., and Nakajima, T.: Application of linear minimum variance estimation to the multi-model ensemble of atmospheric radioactive Cs-137 with observations, Atmos. Chem. Phys., 20, 3589–3607, https://doi.org/10.5194/acp-20-3589-2020, 2020.
Hososhima, M. and Kaneyasu, N.: Altitude-dependent distribution of ambient
gamma dose rates in a mountainous area of japan caused by the fukushima
nuclear accident, Environ. Sci. Technol., 49, 3341–3348,
https://doi.org/10.1021/es504838w, 2015.
Igarashi, Y.: Bioaerosols emission from forest ecosystem – Close look at
fungal spore, Earozoru Kenkyu, 36, 5–18, https://doi.org/10.11203/jar.36.5, 2021.
Igarashi, Y., Kajino, M., Zaizen, Y., Adachi, K., and Mikami, M.: Atmospheric
radioactivity over Tsukuba, Japan: a summary of three years of observations
after the FDNPP accident, Prog. Earth Planet. Sci., 2, 44,
https://doi.org/10.1186/s40645-015-0066-1, 2015.
Igarashi, Y., Kogure, T., Kurihara, Y., Miura, H., Okumura, T., Satou, Y.,
Takahashi, Y., and Yamaguchi, N.: A review of Cs-bearing microparticles in
the environment emitted by the Fukushima Dai-ichi Nuclear Power Plant
accident, J. Environ. Radioact., 205–206, 101–118,
https://doi.org/10.1016/j.jenvrad.2019.04.011, 2019a.
Igarashi, Y., Kita, K., Maki, T., Kinase, T., Hayashi, N., Hosaka, K.,
Adachi, K., Kajino, M., Ishizuka, M., Sekiyama, T. T., Zaizen, Y., Takenaka,
C., Ninomiya, K., Okochi, H., and Sorimachi, A.: Fungal spore involvement in
the resuspension of radiocaesium in summer, Sci. Rep., 9, 1954,
https://doi.org/10.1038/s41598-018-37698-x, 2019b.
Imamura, N., Katata, G., Kajino, M., Kobayashi, M., Itoh, Y., and Akama, A.:
Fogwater deposition of radiocesium in the forested mountains of East Japan
during the Fukushima Daiichi Nuclear Power Plant accident: A key process in
regional radioactive contamination, Atmos. Environ., 224, 117339,
https://doi.org/10.1016/j.atmosenv.2020.117339, 2020.
Ishizuka, M., Mikami, M., Tanaka, T. Y., Igarashi, Y., Kita, K., Yamada, Y.,
Yoshida, N., Toyoda, S., Satou, Y., Kinase, T., Ninomiya, K., and Shinohara,
A.: Use of a size-resolved 1-D resuspension scheme to evaluate resuspended
radioactive material associated with mineral dust particles from the ground
surface, J. Environ. Radioact., 166, 436–448,
https://doi.org/10.1016/j.jenvrad.2015.12.023, 2017.
Iwagami, S., Onda, Y., Tsujimura, M., and Abe, Y.: Contribution of
radioactive 137Cs discharge by suspended sediment, coarse organic matter,
and dissolved fraction from a headwater catchment in Fukushima after the
Fukushima Dai-ichi Nuclear Power Plant accident, J. Environ. Radioact., 166,
466–474, https://doi.org/10.1016/j.jenvrad.2016.07.025, 2017.
Kajino, M.: ACP_resus2_pubdata, Meteorological Research Institute [data set and code], available at: https://mri-2.mri-jma.go.jp/owncloud/s/Cr6nS3iJXPTZLf7, last access: 20 August 2021.
Kajino, M., Deushi, M., Maki, T., Oshima, N., Inomata, Y., Sato, K., Ohizumi, T., and Ueda, H.: Modeling wet deposition and concentration of inorganics over Northeast Asia with MRI-PM/c, Geosci. Model Dev., 5, 1363–1375, https://doi.org/10.5194/gmd-5-1363-2012, 2012.
Kajino, M., Ishizuka, M., Igarashi, Y., Kita, K., Yoshikawa, C., and Inatsu, M.: Long-term assessment of airborne radiocesium after the Fukushima nuclear accident: re-suspension from bare soil and forest ecosystems, Atmos. Chem. Phys., 16, 13149–13172, https://doi.org/10.5194/acp-16-13149-2016, 2016.
Kajino, M., Sekiyama, T. T., Igarashi, Y., Katata, G., Sawada, M., Adachi,
K., Zaizen, Y., Tsuruta, H., and Nakajima, T.: Deposition and Dispersion of
Radio-Cesium Released Due to the Fukushima Nuclear Accident: Sensitivity to
Meteorological Models and Physical Modules, J. Geophys. Res.-Atmos., 124,
1823–1845, https://doi.org/10.1029/2018JD028998, 2019.
Kajino, M., Adachi, K., Igarashi, Y., Satou, Y., Sawada, M., Thomas
Sekiyama, T., Zaizen, Y., Saya, A., Tsuruta, H., and Moriguchi, Y.:
Deposition and Dispersion of Radio-Cesium Released due to the Fukushima
Nuclear Accident: 2. Sensitivity to Aerosol Microphysical Properties of
Cs-Bearing Microparticles (CsMPs), J. Geophys. Res.-Atmos., 126, e2020JD033460,
https://doi.org/10.1029/2020JD033460, 2021.
Kaneyasu, N., Ohashi, H., Suzuki, F., Okuda, T., and Ikemori, F.: Sulfate
aerosol as a potential transport medium of radiocesium from the fukushima
nuclear accident, Environ. Sci. Technol., 46, 5720–5726,
https://doi.org/10.1021/es204667h, 2012.
Katata, G., Chino, M., Kobayashi, T., Terada, H., Ota, M., Nagai, H., Kajino, M., Draxler, R., Hort, M. C., Malo, A., Torii, T., and Sanada, Y.: Detailed source term estimation of the atmospheric release for the Fukushima Daiichi Nuclear Power Station accident by coupling simulations of an atmospheric dispersion model with an improved deposition scheme and oceanic dispersion model, Atmos. Chem. Phys., 15, 1029–1070, https://doi.org/10.5194/acp-15-1029-2015, 2015.
Kinase, T., Kita, K., Igarashi, Y., Adachi, K., Ninomiya, K., Shinohara, A.,
Okochi, H., Ogata, H., Ishizuka, M., Toyoda, S., Yamada, K., Yoshida, N.,
Zaizen, Y., Mikami, M., Demizu, H., and Onda, Y.: The seasonal variations of
atmospheric 134,137Cs activity and possible host particles for their
resuspension in the contaminated areas of Tsushima and Yamakiya, Fukushima,
Japan, Prog. Earth Planet. Sci., 5, 12, https://doi.org/10.1186/s40645-018-0171-z, 2018.
Kita, K., Igarashi, Y., Kinase, T., Hayashi, N., Ishizuka, M., Adachi, K.,
Koitabashi, M., Sekiyama, T. T., and Onda, Y.: Rain-induced bioecological
resuspension of radiocaesium in a polluted forest in Japan, Sci. Rep.,
10, 1–15, https://doi.org/10.1038/s41598-020-72029-z, 2020.
Kitayama, K., Morino, Y., Takigawa, M., Nakajima, T., Hayami, H., Nagai, H.,
Terada, H., Saito, K., Shimbori, T., Kajino, M., Sekiyama, T. T., Didier,
D., Mathieu, A., Quélo, D., Ohara, T., Tsuruta, H., Oura, Y., Ebihara,
M., Moriguchi, Y., and Shibata, T.: Atmospheric Modeling of 137Cs Plumes
From the Fukushima Daiichi Nuclear Power Plant—Evaluation of the Model
Intercomparison Data of the Science Council of Japan, J. Geophys. Res.-Atmos., 123, 7754–7770, https://doi.org/10.1029/2017JD028230, 2018.
Leadbetter, S. J., Hort, M. C., Jones, A. R., Webster, H. N., and Draxler, R.
R.: Sensitivity of the modelled deposition of Caesium-137 from the Fukushima
Dai-ichi nuclear power plant to the wet deposition parameterisation in NAME,
J. Environ. Radioact., 139, 200–211, https://doi.org/10.1016/j.jenvrad.2014.03.018,
2015.
Li, X., Sun, S., Hu, X., Huang, H., Li, H., Morino, Y., Wang, S., Yang, X.,
Shi, J., and Fang. S.: Source inversion of both long- and short-lived
radionuclide releases from the Fukushima Daiichi nuclear accident using
on-site gamma dose rates, J. Hazard. Mater., 379, 120770,
https://doi.org/10.1016/j.jhazmat.2019.120770, 2019.
Loosemore, G. A. and Hunt, J. R.: Dust resuspension without saltation, J.
Geophys. Res., 105, 20663–20671, https://doi.org/10.1029/2000JD900271, 2002.
Mathieu, A., Kajino, M., Korsakissok, I., Périllat, R., Quélo, D.,
Quérel, A., Saunier, O., Sekiyama, T. T., Igarashi, Y., and Didier, D.:
Fukushima Daiichi–derived radionuclides in the atmosphere, transport and
deposition in Japan: A review, Appl. Geochem., 91, 122–139,
https://doi.org/10.1016/j.apgeochem.2018.01.002, 2018.
Minami, K., Katata, G., Kita, K., Sorimachi, A., Hosaka, K., and Igarashi,
Y.: Numerical Analyses of Transport Processes of Bioaerosol Released from a
Temperate Deciduous Broad-Leaved Forest, Earozoru Kenkyu, 35, 208–218,
https://doi.org/10.11203/jar.35.208, 2020.
Nakagawa, M., Yamada, K., Toyoda, S., Kita, K., Igarashi, Y., Komatsu, S.,
Yamada, K., and Yoshida, N.: Characterization of hydrocarbons in aerosols and
investigation of biogenic sources as a carrier of radiocesium isotopes,
Geochem. J., 52, 163–172, https://doi.org/10.2343/geochemj.2.0512, 2018.
Nakajima, T., Misawa, S., Morino, Y., Tsuruta, H., Goto, D., Uchida, J.,
Takemura, T., Ohara, T., Oura, Y., Ebihara, M., and Satoh, M.: Model
depiction of the atmospheric flows of radioactive cesium emitted from the
Fukushima Daiichi nuclear power station accident, Prog. Earth Planet. Sci.,
4, 2, https://doi.org/10.1186/s40645-017-0117-x, 2017.
NRA (Nuclear Regulation Authority): Airborne Monitoring Results in each
prefecture, available at:
http://radioactivity.nsr.go.jp/en/list/203/list-1.html (last access: 31 July
2021), 2012.
NRA: Assessment of radionuclide emission involved in the debris removal
operations for reactor 3; Handout for the 28th meeting on the supervision of
a specific nuclear facility, available at:
http://www.nsr.go.jp/data/000051154.pdf (last access: 11 November 2021),
2014 (in Japanese).
Ochiai, S., Hasegawa, H., Kakiuchi, H., Akata, N., Ueda, S., Tokonami, S.,
and Hisamatsu, S.: Temporal variation of post-accident atmospheric 137Cs in
an evacuated area of Fukushima Prefecture: Size-dependent behaviors of
137Cs-bearing particles, J. Environ. Radioact., 165, 131–139,
https://doi.org/10.1016/j.jenvrad.2016.09.014, 2016.
Oura, Y., Ebihara, M., Tsuruta, H., Nakajima, T., Ohara, T., Ishimoto, M.,
Sawahata, H., Katsumura, Y., and Nitta, W.: A Database of Hourly Atmospheric
Concentrations of Radiocesium (134Cs and 137Cs) in Suspended
Particulate Matter Collected in March 2011 at 99 Air Pollution Monitoring
Stations in Eastern Japan, J. Nucl. Radiochem. Sci., 15, 2_1–2_12, https://doi.org/10.14494/jnrs.15.2_1, 2015.
Petroff, A. and Zhang, L.: Development and validation of a size-resolved particle dry deposition scheme for application in aerosol transport models, Geosci. Model Dev., 3, 753–769, https://doi.org/10.5194/gmd-3-753-2010, 2010.
Riggs, G. A., Hall, D., and Román, M. O.: MODIS Snow Products Collection
6 User Guide, Earth Sci., 6 (August), 1–80, available at:
https://modis-snow-ice.gsfc.nasa.gov/uploads/C6_MODIS_Snow_User_Guide.pdf (last
access: 31 July 2021), 2016.
Sanada, Y., Kondo, A., Sugita, T., Nishizawa, Y., Yuuki, Y., Ikeda, K.,
Shoji, Y., and Torii, T.: Radiation monitoring using an unmanned helicopter
in the evacuation zone around the Fukushima Daiichi nuclear power plant,
Explor. Geophys., 45, 3–7, https://doi.org/10.1071/EG13004, 2014.
Sanada, Y., Katata, G., Kaneyasu, N., Nakanishi, C., Urabe, Y., and
Nishizawa, Y.: Altitudinal characteristics of atmospheric deposition of
aerosols in mountainous regions: Lessons from the Fukushima Daiichi Nuclear
Power Station accident, Sci. Total Environ., 618, 881–890,
https://doi.org/10.1016/j.scitotenv.2017.08.246, 2018.
Sato, Y., Takigawa, M., Sekiyama, T. T., Kajino, M., Terada, H., Nagai, H.,
Kondo, H., Uchida, J., Goto, D., Quélo, D., Mathieu, A., Quérel, A.,
Fang, S., Morino, Y., von Schoenberg, P., Grahn, H., Brännström, N.,
Hirao, S., Tsuruta, H., Yamazawa, H., and Nakajima, T.: Model Intercomparison
of Atmospheric 137Cs From the Fukushima Daiichi Nuclear Power Plant
Accident: Simulations Based on Identical Input Data, J. Geophys. Res.-Atmos., 123, 11748–11765, https://doi.org/10.1029/2018JD029144, 2018.
Sato, Y., Sekiyama, T. T., Fang, S., Kajino, M., Quérel, A., Quélo,
D., Kondo, H., Terada, H., Kadowaki, M., Takigawa, M., Morino, Y., Uchida,
J., Goto, D., and Yamazawa, H.: A model intercomparison of atmospheric 137Cs
concentrations from the Fukushima Daiichi Nuclear Power Plant accident,
phase III: Simulation with an identical source term and meteorological field
at 1-km resolution, Atmos. Environ., 7, 100086,
https://doi.org/10.1016/j.aeaoa.2020.100086, 2020.
Sekiyama, T. T. and Iwasaki, T.: Mass flux analysis of 137Cs plumes emitted
from the Fukushima Daiichi nuclear power plant, Tellus B, 70, 1–11, https://doi.org/10.1080/16000889.2018.1507390, 2018.
Sekiyama, T. T. and Kajino, M.: Reproducibility of surface wind and tracer
transport simulations over complex terrain using 5-, 3-, and 1-km-grid
models, J. Appl. Meteorol. Clim., 59, 937–952,
https://doi.org/10.1175/JAMC-D-19-0241.1, 2020.
Sekiyama, T. T., Kajino, M., and Kunii, M.: Ensemble dispersion simulation of
a point-source radioactive aerosol using perturbed meteorological fields
over eastern Japan, Atmosphere, 12, 662, https://doi.org/10.3390/atmos12060662,
2021.
Skamarock, W. C., Klemp, J. B., Dudhia, J. B., Gill, D. O., Barker, D. M.,
Duda, M. G., Huang, X.-Y., Wang, W., and Powers, J. G.: A description of the
Advanced Research WRF Version 3, NCAR Technical Note TN-475+STR, Tech.
Rep., 113, 2008.
Steinhauser, G., Niisoe, T., Harada, K. H., Shozugawa, K., Schneider, S.,
Synal, H. A., Walther, C., Christl, M., Nanba, K., Ishikawa, H., and Koizumi,
A.: Post-Accident Sporadic Releases of Airborne Radionuclides from the
Fukushima Daiichi Nuclear Power Plant Site, Environ. Sci. Technol., 49,
14028–14035, https://doi.org/10.1021/acs.est.5b03155, 2015.
Terada, H., Nagai, H., Tsuduki, K., Furuno, A., Kadowaki, M., and Kakefuda,
T.: Refinement of source term and atmospheric dispersion simulations of
radionuclides during the Fukushima Daiichi Nuclear Power Station accident,
J. Environ. Radioact., 213, 106104,
https://doi.org/10.1016/j.jenvrad.2019.106104, 2020.
Torii, T., Sanada, Y., Shikaze, Y., Takahashi, M., Ishida, M., Nishizawa,
Y., Urabe, Y., Sugita, T., and Kondo, A.: Investigation of radionuclide
distribution using aircraft for surrounding environmental survey from
Fukushima Dai-ichi Nuclear Power Plant, 182, available at:
https://inis.iaea.org/search/search.aspx?orig_q=RN:44087099
(last access: 2 August 2021), 2012.
Torii, T., Sugita, T., Okada, C. E., Reed, M. S., and Blumenthal, D. J.:
Enhanced analysis methods to derive the spatial distribution of 131I
deposition on the ground by airborne surveys at an early stage after the
fukushima daiichi nuclear power plant accident, Health Phys., 105,
192–200, https://doi.org/10.1097/HP.0b013e318294444e, 2013.
Tsuruta, H., Oura, Y., Ebihara, M., Ohara, T., and Nakajima, T.: First
retrieval of hourly atmospheric radionuclides just after the Fukushima
accident by analyzing filter-tapes of operational air pollution monitoring
stations, Sci. Rep., 4, 1–32, https://doi.org/10.1038/srep06717, 2014.
Wang, X., Zhang, L., and Moran, M. D.: Uncertainty assessment of current size-resolved parameterizations for below-cloud particle scavenging by rain, Atmos. Chem. Phys., 10, 5685–5705, https://doi.org/10.5194/acp-10-5685-2010, 2010.
Watanabe, A., Kajino, M., Ninomiya, K., Nagahashi, Y., and Shinohara, A.: Eight-year variations in atmospheric radiocesium in Fukushima city, Atmos. Chem. Phys., 22, 675–692, https://doi.org/10.5194/acp-22-675-2022, 2022.
Yumimoto, K., Morino, Y., Ohara, T., Oura, Y., Ebihara, M., Tsuruta, H., and
Nakajima, T.: Inverse modeling of the 137Cs source term of the Fukushima
Dai-ichi Nuclear Power Plant accident constrained by a deposition map
monitored by aircraft, J. Environ. Radioact., 164, 1–12,
https://doi.org/10.1016/j.jenvrad.2016.06.018, 2016.
Short summary
Using a numerical model and observations of surface concentration and depositions, the current study provides quantitative assessments of resuspension, transport, and deposition of radio-Cs in eastern Japan in 2013, which was once deposited to the ground surface after the Fukushima nuclear accident. The areal mean resuspension rate of radio-Cs from the ground to the air is estimated as 0.96 % per year, which is equivalent to 1–10 % of the decreasing rate of the ambient gamma dose in Fukushima.
Using a numerical model and observations of surface concentration and depositions, the current...
Altmetrics
Final-revised paper
Preprint