Articles | Volume 22, issue 1
https://doi.org/10.5194/acp-22-371-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-371-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Exploration of the atmospheric chemistry of nitrous acid in a coastal city of southeastern China: results from measurements across four seasons
Baoye Hu
Center for Excellence in Regional Atmospheric Environment, Institute
of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
Key Lab of Urban Environment and Health, Institute of Urban
Environment, Chinese Academy of Sciences, Xiamen 361021, China
Fujian Provincial Key Laboratory of Pollution Monitoring and Control,
Minnan Normal University, Zhangzhou, 363000, China
Fujian Provincial Key Laboratory of Modern Analytical Science and
Separation Technology, Minnan Normal University, Zhangzhou, 363000, China
Key Laboratory of Environment Optics and Technology, Anhui Institute
of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, 230031,
China
Youwei Hong
Center for Excellence in Regional Atmospheric Environment, Institute
of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
Key Lab of Urban Environment and Health, Institute of Urban
Environment, Chinese Academy of Sciences, Xiamen 361021, China
Lingling Xu
Center for Excellence in Regional Atmospheric Environment, Institute
of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
Key Lab of Urban Environment and Health, Institute of Urban
Environment, Chinese Academy of Sciences, Xiamen 361021, China
Mengren Li
Center for Excellence in Regional Atmospheric Environment, Institute
of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
Key Lab of Urban Environment and Health, Institute of Urban
Environment, Chinese Academy of Sciences, Xiamen 361021, China
Yahui Bian
Center for Excellence in Regional Atmospheric Environment, Institute
of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
Key Lab of Urban Environment and Health, Institute of Urban
Environment, Chinese Academy of Sciences, Xiamen 361021, China
Min Qin
CORRESPONDING AUTHOR
Key Laboratory of Environment Optics and Technology, Anhui Institute
of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, 230031,
China
Wu Fang
Key Laboratory of Environment Optics and Technology, Anhui Institute
of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, 230031,
China
Pinhua Xie
Center for Excellence in Regional Atmospheric Environment, Institute
of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
Key Laboratory of Environment Optics and Technology, Anhui Institute
of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, 230031,
China
University of the Chinese Academy of Sciences, Beijing 100086, China
School of Environmental Science and Optoelectronic Technology,
University of Science and Technology of China, Hefei, 230026, China
Center for Excellence in Regional Atmospheric Environment, Institute
of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
Key Lab of Urban Environment and Health, Institute of Urban
Environment, Chinese Academy of Sciences, Xiamen 361021, China
Related authors
No articles found.
Fanhao Meng, Baobin Han, Min Qin, Wu Fang, Ke Tang, Dou Shao, Zhitang Liao, Jun Duan, Yan Feng, Yong Huang, Ting Ni, and Pinhua Xie
Atmos. Chem. Phys., 24, 14191–14208, https://doi.org/10.5194/acp-24-14191-2024, https://doi.org/10.5194/acp-24-14191-2024, 2024
Short summary
Short summary
Comprehensive observations of HONO and NOx fluxes were conducted over paddy fields in the Huaihe River Basin. Consecutive peaks in HONO and NO fluxes suggest a potentially enhanced release of HONO and NO due to soil tillage, whereas waterlogged soil may inhibit microbial nitrification processes following irrigation. Notably, biological processes and light-driven NO2 reactions at the surface may serve as sources of HONO and influence the local HONO budget during rotary tillage.
Lingjun Li, Mengren Li, Xiaolong Fan, Yuping Chen, Ziyi Lin, Anqi Hou, Siqing Zhang, Ronghua Zheng, and Jinsheng Chen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2376, https://doi.org/10.5194/egusphere-2024-2376, 2024
Short summary
Short summary
Aerosol hygroscopicity has a great impact on regional and global climate, air quality. Here, we show differences and variations in f(RH) between NPF and Non-NPF days and the effect of aerosol chemical compositions on f(RH) in Xiamen, the coastal city of southeast China by in situ observations. The findings are helpful for the further understanding about aerosol hygroscopicity in the coastal city, and the use of hygroscopic growth factors in the models of air quality and climate change.
Baoye Hu, Naihua Chen, Rui Li, Mingqiang Huang, Jinsheng Chen, Youwei Hong, Lingling Xu, Xiaolong Fan, Mengren Li, Lei Tong, Qiuping Zheng, and Yuxiang Yang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2631, https://doi.org/10.5194/egusphere-2024-2631, 2024
Short summary
Short summary
Box modeling with the master chemical mechanism (MCM) was used to address the puzzle of summertime PAN formation and its association with aerosol pollution under high ozone conditions. The MCM model proves to be an ideal tool for investigating PAN photochemical formation (IOA=0.75). The model performed better during the clean period than during the haze period. Through the machine learning method of XGBoost, we found that the top three factors leading to simulation bias were NH3, NO3, and PM2.5.
Jiangman Xu, Ang Li, Zhaokun Hu, Hairong Zhang, and Min Qin
EGUsphere, https://doi.org/10.5194/egusphere-2024-1695, https://doi.org/10.5194/egusphere-2024-1695, 2024
Short summary
Short summary
This article introduces an experimental system for rapidly acquiring trace gas profiles using multi-channel spectroscopy, significantly enhancing the time resolution of spectral collection. Owing to the improved temporal resolution, the gas profile obtained by the FS MAX-DOAS can show more details than MAX-DOAS. This work can also be integrated with mobile platforms for navigational observation research, which is crucial for achieving mobile MAX-DOAS profile measurements.
Renzhi Hu, Guoxian Zhang, Haotian Cai, Jingyi Guo, Keding Lu, Xin Li, Shengrong Lou, Zhaofeng Tan, Changjin Hu, Pinhua Xie, and Wenqing Liu
EGUsphere, https://doi.org/10.5194/egusphere-2024-2494, https://doi.org/10.5194/egusphere-2024-2494, 2024
Short summary
Short summary
A full suite of radical measurements (OH, HO2, RO2, and kOH) was established to accurately elucidate the limitations of oxidation in chemical-complex atmosphere. Sensitivity tests revealed that the incorporation of complex processes enabled a balance in both radical concentrations and coordinate ratios, and effectively addressing the deficiency in the ozone generation mechanism. The full-chain radical detection untangled a gap-bridge between the photochemistry and the intensive oxidation level.
Gaojie Chen, Xiaolong Fan, Haichao Wang, Yee Jun Tham, Ziyi Lin, Xiaoting Ji, Lingling Xu, Baoye Hu, and Jinsheng Chen
EGUsphere, https://doi.org/10.5194/egusphere-2024-1638, https://doi.org/10.5194/egusphere-2024-1638, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Our study revealed that the nighttime heterogeneous N2O5 uptake process was the major contributor of ClNO2 sources, while nitrate photolysis promoted the elevation of daytime ClNO2 concentrations. The rates of alkane oxidation by Cl radical in the early morning exceeded those by OH radical, significantly promoted the formation of ROx and O3, further enhanced the atmospheric oxidation capacity levels.
Guoxian Zhang, Renzhi Hu, Pinhua Xie, Changjin Hu, Xiaoyan Liu, Liujun Zhong, Haotian Cai, Bo Zhu, Shiyong Xia, Xiaofeng Huang, Xin Li, and Wenqing Liu
Atmos. Chem. Phys., 24, 1825–1839, https://doi.org/10.5194/acp-24-1825-2024, https://doi.org/10.5194/acp-24-1825-2024, 2024
Short summary
Short summary
Comprehensive observation of HOx radicals was conducted at a coastal site in the Pearl River Delta. Radical chemistry was influenced by different air masses in a time-dependent way. Land mass promotes a more active photochemical process, with daily averages of 7.1 × 106 and 5.2 × 108 cm−3 for OH and HO2 respectively. The rapid oxidation process was accompanied by a higher diurnal HONO concentration, which influences the ozone-sensitive system and eventually magnifies the background ozone.
Yuhang Zhang, Jintai Lin, Jhoon Kim, Hanlim Lee, Junsung Park, Hyunkee Hong, Michel Van Roozendael, Francois Hendrick, Ting Wang, Pucai Wang, Qin He, Kai Qin, Yongjoo Choi, Yugo Kanaya, Jin Xu, Pinhua Xie, Xin Tian, Sanbao Zhang, Shanshan Wang, Siyang Cheng, Xinghong Cheng, Jianzhong Ma, Thomas Wagner, Robert Spurr, Lulu Chen, Hao Kong, and Mengyao Liu
Atmos. Meas. Tech., 16, 4643–4665, https://doi.org/10.5194/amt-16-4643-2023, https://doi.org/10.5194/amt-16-4643-2023, 2023
Short summary
Short summary
Our tropospheric NO2 vertical column density product with high spatiotemporal resolution is based on the Geostationary Environment Monitoring Spectrometer (GEMS) and named POMINO–GEMS. Strong hotspot signals and NO2 diurnal variations are clearly seen. Validations with multiple satellite products and ground-based, mobile car and surface measurements exhibit the overall great performance of the POMINO–GEMS product, indicating its capability for application in environmental studies.
Youwei Hong, Keran Zhang, Dan Liao, Gaojie Chen, Min Zhao, Yiling Lin, Xiaoting Ji, Ke Xu, Yu Wu, Ruilian Yu, Gongren Hu, Sung-Deuk Choi, Likun Xue, and Jinsheng Chen
Atmos. Chem. Phys., 23, 10795–10807, https://doi.org/10.5194/acp-23-10795-2023, https://doi.org/10.5194/acp-23-10795-2023, 2023
Short summary
Short summary
Particle uptakes of HCHO and the impacts on PM2.5 and O3 production remain highly uncertain. Based on the investigation of co-occurring wintertime O3 and PM2.5 pollution in a coastal city of southeast China, we found enhanced heterogeneous formation of hydroxymethanesulfonate (HMS) and increased ROx concentrations and net O3 production rates. The findings of this study are helpful to better explore the mechanisms of key precursors for co-occurring PM2.5 and O3 pollution.
Jiayan Shi, Yuping Chen, Lingling Xu, Youwei Hong, Mengren Li, Xiaolong Fan, Liqian Yin, Yanting Chen, Chen Yang, Gaojie Chen, Taotao Liu, Xiaoting Ji, and Jinsheng Chen
Atmos. Chem. Phys., 22, 11187–11202, https://doi.org/10.5194/acp-22-11187-2022, https://doi.org/10.5194/acp-22-11187-2022, 2022
Short summary
Short summary
Gaseous elemental mercury (GEM) was observed in Southeast China over the period 2012–2020. The observed GEM concentrations showed no distinct inter-annual variation trends. The interpretation rate of transportation and meteorology on GEM variations displayed an increasing trend. In contrast, anthropogenic emissions have shown a decreasing interpretation rate since 2012, indicating the effectiveness of emission mitigation measures in reducing GEM concentrations in the study region.
Youwei Hong, Xinbei Xu, Dan Liao, Taotao Liu, Xiaoting Ji, Ke Xu, Chunyang Liao, Ting Wang, Chunshui Lin, and Jinsheng Chen
Atmos. Chem. Phys., 22, 7827–7841, https://doi.org/10.5194/acp-22-7827-2022, https://doi.org/10.5194/acp-22-7827-2022, 2022
Short summary
Short summary
Secondary organic aerosol (SOA) simulation remains uncertain, due to the unknown SOA formation mechanisms. Aerosol samples with a 4 h time resolution were collected, along with online measurements of aerosol chemical compositions and meteorological parameters. We found that anthropogenic emissions, atmospheric oxidation capacity and halogen chemistry have significant effects on the formation of biogenic SOA (BSOA). The findings of this study are helpful to better explore the missed SOA sources.
Taotao Liu, Yiling Lin, Jinsheng Chen, Gaojie Chen, Chen Yang, Lingling Xu, Mengren Li, Xiaolong Fan, Yanting Chen, Liqian Yin, Yuping Chen, Xiaoting Ji, Ziyi Lin, Fuwang Zhang, Hong Wang, and Youwei Hong
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-292, https://doi.org/10.5194/acp-2022-292, 2022
Revised manuscript not accepted
Short summary
Short summary
Field observations and models analysis were carried out in a coastal city to study HCHO formation mechanism and its impacts on photochemistry. HCHO contributed to atmospheric oxidation by around 10 %, reflecting its significance in photochemistry. Disabling HCHO mechanism made net O3 production rates decrease by 31 %, which were dominated by the reductions of pathways relating to radical reactions, indicating the HCHO affected O3 mainly by controlling the efficiencies of radical propagation.
Taotao Liu, Gaojie Chen, Jinsheng Chen, Lingling Xu, Mengren Li, Youwei Hong, Yanting Chen, Xiaoting Ji, Chen Yang, Yuping Chen, Weiguo Huang, Quanjia Huang, and Hong Wang
Atmos. Chem. Phys., 22, 4339–4353, https://doi.org/10.5194/acp-22-4339-2022, https://doi.org/10.5194/acp-22-4339-2022, 2022
Short summary
Short summary
We clarified the seasonal variations of PAN pollution, influencing factors, its mechanisms, and impacts on O3 based on OBM and GAM models. PAN presented inhibition and promotion effects on O3 under low and high ROx levels. Monitoring of PAN and its precursors, and the quantification of its impacts on O3 formation, significantly guide photochemical pollution control. The analysis methods used in this study provide a reference for study of the formation mechanisms of PAN and O3 in other regions.
Taotao Liu, Youwei Hong, Mengren Li, Lingling Xu, Jinsheng Chen, Yahui Bian, Chen Yang, Yangbin Dan, Yingnan Zhang, Likun Xue, Min Zhao, Zhi Huang, and Hong Wang
Atmos. Chem. Phys., 22, 2173–2190, https://doi.org/10.5194/acp-22-2173-2022, https://doi.org/10.5194/acp-22-2173-2022, 2022
Short summary
Short summary
Based on the OBM-MCM model analyses, the study aims to clarify (1) the pollution characteristics of O3 and its precursors, (2) the atmospheric oxidation capacity and radical chemistry, and (3) the O3 formation mechanism and sensitivity analysis. The results are expected to enhance the understanding of the O3 formation mechanism with low O3 precursor levels and provide scientific evidence for O3 pollution control in coastal cities.
Lingling Xu, Jiayan Shi, Yuping Chen, Yanru Zhang, Mengrong Yang, Yanting Chen, Liqian Yin, Lei Tong, Hang Xiao, and Jinsheng Chen
Atmos. Chem. Phys., 21, 18543–18555, https://doi.org/10.5194/acp-21-18543-2021, https://doi.org/10.5194/acp-21-18543-2021, 2021
Short summary
Short summary
Mercury (Hg) isotopic compositions in aerosols are the mixed results of emission sources and atmospheric processes. This study presents Hg isotopic compositions in PM2.5 from different types of locations and total Hg from offshore surface seawater. The results indicate that atmospheric transformations induce significant mass independent fractionation of Hg isotopes, which obscures Hg isotopic signatures of initial emissions.
Xin Tian, Yang Wang, Steffen Beirle, Pinhua Xie, Thomas Wagner, Jin Xu, Ang Li, Steffen Dörner, Bo Ren, and Xiaomei Li
Atmos. Chem. Phys., 21, 12867–12894, https://doi.org/10.5194/acp-21-12867-2021, https://doi.org/10.5194/acp-21-12867-2021, 2021
Short summary
Short summary
The performances of two MAX-DOAS inversion algorithms were evaluated for various aerosol pollution scenarios. One inversion algorithm is based on optimal estimation; the other uses a parameterized approach. In this analysis, three types of profile shapes for aerosols and NO2 were considered: exponential, Boltzmann, and Gaussian. The evaluation results can effectively guide the application of the two inversion algorithms in the actual atmosphere and improve the accuracy of the actual inversion.
Youwen Sun, Hao Yin, Cheng Liu, Emmanuel Mahieu, Justus Notholt, Yao Té, Xiao Lu, Mathias Palm, Wei Wang, Changgong Shan, Qihou Hu, Min Qin, Yuan Tian, and Bo Zheng
Atmos. Chem. Phys., 21, 11759–11779, https://doi.org/10.5194/acp-21-11759-2021, https://doi.org/10.5194/acp-21-11759-2021, 2021
Short summary
Short summary
The variability, sources, and transport of ethane (C2H6) over eastern China from 2015 to 2020 were studied using ground-based Fourier transform infrared (FTIR) spectroscopy and GEOS-Chem simulations. C2H6 variability is driven by both meteorological and emission factors. The reduction in C2H6 in recent years over eastern China points to air quality improvement in China.
Youwen Sun, Hao Yin, Cheng Liu, Lin Zhang, Yuan Cheng, Mathias Palm, Justus Notholt, Xiao Lu, Corinne Vigouroux, Bo Zheng, Wei Wang, Nicholas Jones, Changong Shan, Min Qin, Yuan Tian, Qihou Hu, Fanhao Meng, and Jianguo Liu
Atmos. Chem. Phys., 21, 6365–6387, https://doi.org/10.5194/acp-21-6365-2021, https://doi.org/10.5194/acp-21-6365-2021, 2021
Short summary
Short summary
This study mapped the drivers of HCHO variability from 2015 to 2019 over eastern China. Hydroxyl (OH) radical production rates from HCHO photolysis were evaluated. The relative contributions of emitted and photochemical sources to the observed HCHO abundance were analyzed. Contributions of various emission sources and geographical regions to the observed HCHO summertime enhancements were determined.
Jan-Lukas Tirpitz, Udo Frieß, François Hendrick, Carlos Alberti, Marc Allaart, Arnoud Apituley, Alkis Bais, Steffen Beirle, Stijn Berkhout, Kristof Bognar, Tim Bösch, Ilya Bruchkouski, Alexander Cede, Ka Lok Chan, Mirjam den Hoed, Sebastian Donner, Theano Drosoglou, Caroline Fayt, Martina M. Friedrich, Arnoud Frumau, Lou Gast, Clio Gielen, Laura Gomez-Martín, Nan Hao, Arjan Hensen, Bas Henzing, Christian Hermans, Junli Jin, Karin Kreher, Jonas Kuhn, Johannes Lampel, Ang Li, Cheng Liu, Haoran Liu, Jianzhong Ma, Alexis Merlaud, Enno Peters, Gaia Pinardi, Ankie Piters, Ulrich Platt, Olga Puentedura, Andreas Richter, Stefan Schmitt, Elena Spinei, Deborah Stein Zweers, Kimberly Strong, Daan Swart, Frederik Tack, Martin Tiefengraber, René van der Hoff, Michel van Roozendael, Tim Vlemmix, Jan Vonk, Thomas Wagner, Yang Wang, Zhuoru Wang, Mark Wenig, Matthias Wiegner, Folkard Wittrock, Pinhua Xie, Chengzhi Xing, Jin Xu, Margarita Yela, Chengxin Zhang, and Xiaoyi Zhao
Atmos. Meas. Tech., 14, 1–35, https://doi.org/10.5194/amt-14-1-2021, https://doi.org/10.5194/amt-14-1-2021, 2021
Short summary
Short summary
Multi-axis differential optical absorption spectroscopy (MAX-DOAS) is a ground-based remote sensing measurement technique that derives atmospheric aerosol and trace gas vertical profiles from skylight spectra. In this study, consistency and reliability of MAX-DOAS profiles are assessed by applying nine different evaluation algorithms to spectral data recorded during an intercomparison campaign in the Netherlands and by comparing the results to colocated supporting observations.
Ke Tang, Min Qin, Wu Fang, Jun Duan, Fanhao Meng, Kaidi Ye, Helu Zhang, Pinhua Xie, Yabai He, Wenbin Xu, Jianguo Liu, and Wenqing Liu
Atmos. Meas. Tech., 13, 6487–6499, https://doi.org/10.5194/amt-13-6487-2020, https://doi.org/10.5194/amt-13-6487-2020, 2020
Short summary
Short summary
We present an improved instrument for the simultaneous detection of atmospheric nitrous acid (HONO) and nitrogen dioxide (NO2). The robustness of the system is verified by simulating the influence of the relative change in light intensity on the measurement results. The instrument's capability to make fast high-sensitivity measurements of HONO and NO2 is of great significance for understanding the source of HONO and studying its role in atmospheric chemistry.
Yeyuan Huang, Ang Li, Thomas Wagner, Yang Wang, Zhaokun Hu, Pinhua Xie, Jin Xu, Hongmei Ren, Julia Remmers, Xiaoyi Fang, and Bing Dang
Atmos. Meas. Tech., 13, 6025–6051, https://doi.org/10.5194/amt-13-6025-2020, https://doi.org/10.5194/amt-13-6025-2020, 2020
Short summary
Short summary
Mobile DOAS has become an important tool for the quantification of emission sources. In this study, we focused on the error budget of mobile DOAS measurements from NOx and SO2 point sources based on the model simulations, and we also offered recommendations for the optimum settings of such measurements.
Yang Wang, Arnoud Apituley, Alkiviadis Bais, Steffen Beirle, Nuria Benavent, Alexander Borovski, Ilya Bruchkouski, Ka Lok Chan, Sebastian Donner, Theano Drosoglou, Henning Finkenzeller, Martina M. Friedrich, Udo Frieß, David Garcia-Nieto, Laura Gómez-Martín, François Hendrick, Andreas Hilboll, Junli Jin, Paul Johnston, Theodore K. Koenig, Karin Kreher, Vinod Kumar, Aleksandra Kyuberis, Johannes Lampel, Cheng Liu, Haoran Liu, Jianzhong Ma, Oleg L. Polyansky, Oleg Postylyakov, Richard Querel, Alfonso Saiz-Lopez, Stefan Schmitt, Xin Tian, Jan-Lukas Tirpitz, Michel Van Roozendael, Rainer Volkamer, Zhuoru Wang, Pinhua Xie, Chengzhi Xing, Jin Xu, Margarita Yela, Chengxin Zhang, and Thomas Wagner
Atmos. Meas. Tech., 13, 5087–5116, https://doi.org/10.5194/amt-13-5087-2020, https://doi.org/10.5194/amt-13-5087-2020, 2020
Baoye Hu, Jun Duan, Youwei Hong, Lingling Xu, Mengren Li, Yahui Bian, Min Qin, Wu Fang, Pinhua Xie, and Jinsheng Chen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-880, https://doi.org/10.5194/acp-2020-880, 2020
Revised manuscript not accepted
Short summary
Short summary
There has been a lack of research into HONO in coastal cities with low concentrations of NOx and PM2.5, but strong sunlight and high humidity. Insufficient research on coastal cities with good air quality has resulted in certain obstacles to assessing the photochemical processes in these areas. Furthermore, HONO contributes to the atmospheric photochemistry depending on the season. Therefore, observations of HONO across four seasons in the southeastern coastal area of China are urgently needed.
Mengyao Liu, Jintai Lin, Hao Kong, K. Folkert Boersma, Henk Eskes, Yugo Kanaya, Qin He, Xin Tian, Kai Qin, Pinhua Xie, Robert Spurr, Ruijing Ni, Yingying Yan, Hongjian Weng, and Jingxu Wang
Atmos. Meas. Tech., 13, 4247–4259, https://doi.org/10.5194/amt-13-4247-2020, https://doi.org/10.5194/amt-13-4247-2020, 2020
Short summary
Short summary
Nitrogen oxides (NOx = NO + NO2) are important air pollutants in the troposphere and play crucial roles in the formation of ozone and particulate matter. The recently launched TROPOspheric Monitoring Instrument (TROPOMI) provides an opportunity to retrieve tropospheric concentrations of nitrogen dioxide (NO2) at an unprecedented high horizontal resolution. This work presents a new NO2 retrieval product over East Asia and further quantifies key factors affecting the retrieval, including aerosol.
Karin Kreher, Michel Van Roozendael, Francois Hendrick, Arnoud Apituley, Ermioni Dimitropoulou, Udo Frieß, Andreas Richter, Thomas Wagner, Johannes Lampel, Nader Abuhassan, Li Ang, Monica Anguas, Alkis Bais, Nuria Benavent, Tim Bösch, Kristof Bognar, Alexander Borovski, Ilya Bruchkouski, Alexander Cede, Ka Lok Chan, Sebastian Donner, Theano Drosoglou, Caroline Fayt, Henning Finkenzeller, David Garcia-Nieto, Clio Gielen, Laura Gómez-Martín, Nan Hao, Bas Henzing, Jay R. Herman, Christian Hermans, Syedul Hoque, Hitoshi Irie, Junli Jin, Paul Johnston, Junaid Khayyam Butt, Fahim Khokhar, Theodore K. Koenig, Jonas Kuhn, Vinod Kumar, Cheng Liu, Jianzhong Ma, Alexis Merlaud, Abhishek K. Mishra, Moritz Müller, Monica Navarro-Comas, Mareike Ostendorf, Andrea Pazmino, Enno Peters, Gaia Pinardi, Manuel Pinharanda, Ankie Piters, Ulrich Platt, Oleg Postylyakov, Cristina Prados-Roman, Olga Puentedura, Richard Querel, Alfonso Saiz-Lopez, Anja Schönhardt, Stefan F. Schreier, André Seyler, Vinayak Sinha, Elena Spinei, Kimberly Strong, Frederik Tack, Xin Tian, Martin Tiefengraber, Jan-Lukas Tirpitz, Jeroen van Gent, Rainer Volkamer, Mihalis Vrekoussis, Shanshan Wang, Zhuoru Wang, Mark Wenig, Folkard Wittrock, Pinhua H. Xie, Jin Xu, Margarita Yela, Chengxin Zhang, and Xiaoyi Zhao
Atmos. Meas. Tech., 13, 2169–2208, https://doi.org/10.5194/amt-13-2169-2020, https://doi.org/10.5194/amt-13-2169-2020, 2020
Short summary
Short summary
In September 2016, 36 spectrometers from 24 institutes measured a number of key atmospheric pollutants during an instrument intercomparison campaign (CINDI-2) at Cabauw, the Netherlands. Here we report on the outcome of this intercomparison exercise. The three major goals were to characterise the differences between the participating instruments, to define a robust methodology for performance assessment, and to contribute to the harmonisation of the measurement settings and retrieval methods.
Fanhao Meng, Min Qin, Ke Tang, Jun Duan, Wu Fang, Shuaixi Liang, Kaidi Ye, Pinhua Xie, Yele Sun, Conghui Xie, Chunxiang Ye, Pingqing Fu, Jianguo Liu, and Wenqing Liu
Atmos. Chem. Phys., 20, 5071–5092, https://doi.org/10.5194/acp-20-5071-2020, https://doi.org/10.5194/acp-20-5071-2020, 2020
Short summary
Short summary
Nitrous acid (HONO), a major precursor of the OH radical, plays a key role in atmospheric chemistry, but its sources are still debated. The first high-resolution vertical measurements of HONO and NO2 were conducted in Beijing to investigate the nocturnal sources of HONO at different stages of pollution. The ground surface dominated HONO production by heterogeneous conversion of NO2 during clean episodes, but the aerosol production was an important nighttime HONO source during haze episodes.
Sebastian Donner, Jonas Kuhn, Michel Van Roozendael, Alkiviadis Bais, Steffen Beirle, Tim Bösch, Kristof Bognar, Ilya Bruchkouski, Ka Lok Chan, Steffen Dörner, Theano Drosoglou, Caroline Fayt, Udo Frieß, François Hendrick, Christian Hermans, Junli Jin, Ang Li, Jianzhong Ma, Enno Peters, Gaia Pinardi, Andreas Richter, Stefan F. Schreier, André Seyler, Kimberly Strong, Jan-Lukas Tirpitz, Yang Wang, Pinhua Xie, Jin Xu, Xiaoyi Zhao, and Thomas Wagner
Atmos. Meas. Tech., 13, 685–712, https://doi.org/10.5194/amt-13-685-2020, https://doi.org/10.5194/amt-13-685-2020, 2020
Short summary
Short summary
The calibration of the elevation angles of MAX-DOAS instruments is important for the correct interpretation of such MAX-DOAS measurements. We present and evaluate different methods for the elevation calibration of MAX-DOAS instruments which were applied during the CINDI-2 field campaign.
Leigh R. Crilley, Louisa J. Kramer, Bin Ouyang, Jun Duan, Wenqian Zhang, Shengrui Tong, Maofa Ge, Ke Tang, Min Qin, Pinhua Xie, Marvin D. Shaw, Alastair C. Lewis, Archit Mehra, Thomas J. Bannan, Stephen D. Worrall, Michael Priestley, Asan Bacak, Hugh Coe, James Allan, Carl J. Percival, Olalekan A. M. Popoola, Roderic L. Jones, and William J. Bloss
Atmos. Meas. Tech., 12, 6449–6463, https://doi.org/10.5194/amt-12-6449-2019, https://doi.org/10.5194/amt-12-6449-2019, 2019
Short summary
Short summary
Nitrous acid (HONO) is key species for understanding tropospheric chemistry, yet accurate and precise measurements are challenging. Here we report an inter–comparison exercise of a number of instruments that measured HONO in a highly polluted location (Beijing). All instruments agreed on the temporal trends yet displayed divergence in absolute concentrations. The cause of this divergence was unclear, but it may in part be due to spatial variability in instrument location.
Zhiyan Li, Renzhi Hu, Pinhua Xie, Hao Chen, Xiaoyan Liu, Shuaixi Liang, Dan Wang, Fengyang Wang, Yihui Wang, Chuan Lin, Jianguo Liu, and Wenqing Liu
Atmos. Meas. Tech., 12, 3223–3236, https://doi.org/10.5194/amt-12-3223-2019, https://doi.org/10.5194/amt-12-3223-2019, 2019
Short summary
Short summary
A dual-channel CRDS system for NO2 and NO detection is reported. The detection limits of the developed CRDS system for NO2 and NOx measurements are estimated to be about 0.030 ppb (1σ, 1 s) and 0.040 ppb (1σ, 1 s), respectively. The measurements of on-road vehicle emission plumes by this mobile CRDS instrument show the different emission characteristics in the urban and suburban areas of Hefei. The instrument provides a new method for retrieving fast variations in NO and NO2 plumes.
Zongbo Shi, Tuan Vu, Simone Kotthaus, Roy M. Harrison, Sue Grimmond, Siyao Yue, Tong Zhu, James Lee, Yiqun Han, Matthias Demuzere, Rachel E. Dunmore, Lujie Ren, Di Liu, Yuanlin Wang, Oliver Wild, James Allan, W. Joe Acton, Janet Barlow, Benjamin Barratt, David Beddows, William J. Bloss, Giulia Calzolai, David Carruthers, David C. Carslaw, Queenie Chan, Lia Chatzidiakou, Yang Chen, Leigh Crilley, Hugh Coe, Tie Dai, Ruth Doherty, Fengkui Duan, Pingqing Fu, Baozhu Ge, Maofa Ge, Daobo Guan, Jacqueline F. Hamilton, Kebin He, Mathew Heal, Dwayne Heard, C. Nicholas Hewitt, Michael Hollaway, Min Hu, Dongsheng Ji, Xujiang Jiang, Rod Jones, Markus Kalberer, Frank J. Kelly, Louisa Kramer, Ben Langford, Chun Lin, Alastair C. Lewis, Jie Li, Weijun Li, Huan Liu, Junfeng Liu, Miranda Loh, Keding Lu, Franco Lucarelli, Graham Mann, Gordon McFiggans, Mark R. Miller, Graham Mills, Paul Monk, Eiko Nemitz, Fionna O'Connor, Bin Ouyang, Paul I. Palmer, Carl Percival, Olalekan Popoola, Claire Reeves, Andrew R. Rickard, Longyi Shao, Guangyu Shi, Dominick Spracklen, David Stevenson, Yele Sun, Zhiwei Sun, Shu Tao, Shengrui Tong, Qingqing Wang, Wenhua Wang, Xinming Wang, Xuejun Wang, Zifang Wang, Lianfang Wei, Lisa Whalley, Xuefang Wu, Zhijun Wu, Pinhua Xie, Fumo Yang, Qiang Zhang, Yanli Zhang, Yuanhang Zhang, and Mei Zheng
Atmos. Chem. Phys., 19, 7519–7546, https://doi.org/10.5194/acp-19-7519-2019, https://doi.org/10.5194/acp-19-7519-2019, 2019
Short summary
Short summary
APHH-Beijing is a collaborative international research programme to study the sources, processes and health effects of air pollution in Beijing. This introduction to the special issue provides an overview of (i) the APHH-Beijing programme, (ii) the measurement and modelling activities performed as part of it and (iii) the air quality and meteorological conditions during joint intensive field campaigns as a core activity within APHH-Beijing.
Shuaixi Liang, Min Qin, Pinhua Xie, Jun Duan, Wu Fang, Yabai He, Jin Xu, Jingwei Liu, Xin Li, Ke Tang, Fanhao Meng, Kaidi Ye, Jianguo Liu, and Wenqing Liu
Atmos. Meas. Tech., 12, 2499–2512, https://doi.org/10.5194/amt-12-2499-2019, https://doi.org/10.5194/amt-12-2499-2019, 2019
Short summary
Short summary
A home-built instrument of an incoherent broadband cavity-enhanced absorption spectrometer is reported for sensitive detection of CHOCHO and NO2 in China's highly polluted environment. An NO2 spectral profile measured using the same spectrometer is applied as a reference spectral profile in the subsequent atmospheric spectral analysis and retrieval of NO2 and CHOCHO. This will provide an idea for solving the problem of cross-interference of strongly absorbing gases in weakly absorbing gases.
Xin Tian, Pinhua Xie, Jin Xu, Yang Wang, Ang Li, Fengcheng Wu, Zhaokun Hu, Cheng Liu, and Qiong Zhang
Atmos. Chem. Phys., 19, 3375–3393, https://doi.org/10.5194/acp-19-3375-2019, https://doi.org/10.5194/acp-19-3375-2019, 2019
Short summary
Short summary
We used the MAX-DOAS instrument installed at the UCAS, Beijing, to evaluate effects on HCHO. The daily variation, transport, sources, and the effect of APEC emission control measures on HCHO were analyzed. Dependences of HCHO VCDs on wind fields indicated that the HCHO values were affected by the transport of pollutants from the south. The results from comparing the MAX-DOAS with the CAMS model indicate the CAMS model can simulate the effects of transport and the secondary sources of HCHO well.
Mengyao Liu, Jintai Lin, K. Folkert Boersma, Gaia Pinardi, Yang Wang, Julien Chimot, Thomas Wagner, Pinhua Xie, Henk Eskes, Michel Van Roozendael, François Hendrick, Pucai Wang, Ting Wang, Yingying Yan, Lulu Chen, and Ruijing Ni
Atmos. Meas. Tech., 12, 1–21, https://doi.org/10.5194/amt-12-1-2019, https://doi.org/10.5194/amt-12-1-2019, 2019
Short summary
Short summary
China has become the world’s largest emitter of NOx, which mainly comes from vehicle exhaust, power plants, etc. However, there are no official ground-based measurements before 2013, so satellites have been widely used to monitor and analyze NOx pollution here. Aerosol is the key factor influencing the accuracy of the satellite NOx product. Our study provides a more accurate way to account for aerosol's influence compared to current widely used products.
Jun Duan, Min Qin, Bin Ouyang, Wu Fang, Xin Li, Keding Lu, Ke Tang, Shuaixi Liang, Fanhao Meng, Zhaokun Hu, Pinhua Xie, Wenqing Liu, and Rolf Häsler
Atmos. Meas. Tech., 11, 4531–4543, https://doi.org/10.5194/amt-11-4531-2018, https://doi.org/10.5194/amt-11-4531-2018, 2018
Short summary
Short summary
We report a custom-built instrument for simultaneous unambiguous measurements of HONO and NO2 based on incoherent broadband cavity enhanced absorption spectroscopy (IBBCEAS). The current IBBCEAS instrument has made significant improvements in terms of efficient sampling as well as resistance against vibration; temperature change and the measurement precisions (2σ) for HONO are about 180 and 340 ppt in 30 s, respectively. The field inter-comparison and the mobile measurements are present.
Fengcheng Wu, Pinhua Xie, Ang Li, Fusheng Mou, Hao Chen, Yi Zhu, Tong Zhu, Jianguo Liu, and Wenqing Liu
Atmos. Chem. Phys., 18, 1535–1554, https://doi.org/10.5194/acp-18-1535-2018, https://doi.org/10.5194/acp-18-1535-2018, 2018
Short summary
Short summary
Investigating the temporal and spatial distribution of pollutants, emissions, and pollution transport is necessary to better understand the effect of various sources on air quality. We report on mobile differential optical absorption spectroscopy (mobile DOAS) observations of precursors SO2 and NO2 vertical columns in NCP in the summer of 2013 (from 11 June to 7 July) in this study.
Yang Wang, Steffen Beirle, Francois Hendrick, Andreas Hilboll, Junli Jin, Aleksandra A. Kyuberis, Johannes Lampel, Ang Li, Yuhan Luo, Lorenzo Lodi, Jianzhong Ma, Monica Navarro, Ivan Ortega, Enno Peters, Oleg L. Polyansky, Julia Remmers, Andreas Richter, Olga Puentedura, Michel Van Roozendael, André Seyler, Jonathan Tennyson, Rainer Volkamer, Pinhua Xie, Nikolai F. Zobov, and Thomas Wagner
Atmos. Meas. Tech., 10, 3719–3742, https://doi.org/10.5194/amt-10-3719-2017, https://doi.org/10.5194/amt-10-3719-2017, 2017
Short summary
Short summary
Slant column densities of nitrous acid (HONO) derived from different MAX-DOAS instruments and retrieval software are systematically compared for the first time during the Multi Axis DOAS – Comparison campaign for Aerosols and Trace gases (MAD-CAT) campaign held at MPIC in Mainz, Germany, from June to October 2013. Through the inter-comparisons and sensitivity studies we quantified the uncertainties in the DOAS fits of HONO from different sources and concluded a recommended setting.
Wei Wang, Yuan Tian, Cheng Liu, Youwen Sun, Wenqing Liu, Pinhua Xie, Jianguo Liu, Jin Xu, Isamu Morino, Voltaire A. Velazco, David W. T. Griffith, Justus Notholt, and Thorsten Warneke
Atmos. Meas. Tech., 10, 2627–2643, https://doi.org/10.5194/amt-10-2627-2017, https://doi.org/10.5194/amt-10-2627-2017, 2017
Short summary
Short summary
A ground-based high-resolution Fourier transform spectrometer (FTS) station has been established in Hefei, China to remotely measure CO2, CO and other greenhouse gases. Our research aim is to provide information for constraining regional sources and sinks, and validate satellite data, such as GOSAT, OCO-2 and TANSAT. We investigate the potential of FTS to determine the temporal variability of atmospheric CO2 and CO, and assess the ability of our observations to validate satellite data.
Yang Wang, Steffen Beirle, Johannes Lampel, Mariliza Koukouli, Isabelle De Smedt, Nicolas Theys, Ang Li, Dexia Wu, Pinhua Xie, Cheng Liu, Michel Van Roozendael, Trissevgeni Stavrakou, Jean-François Müller, and Thomas Wagner
Atmos. Chem. Phys., 17, 5007–5033, https://doi.org/10.5194/acp-17-5007-2017, https://doi.org/10.5194/acp-17-5007-2017, 2017
Short summary
Short summary
A long-term MAX-DOAS measurement from 2011 to 2014 was operated in Wuxi, part of the most industrialized area of the Yangtze River delta region of China. The tropospheric VCDs and vertical profiles of NO2, SO2 and HCHO derived from the MAX-DOAS are used to validate the products derived from OMI and GOME-2A/B by different scientific teams (daily- and bimonthly-averaged data). We investigate the effects of clouds, aerosols and a priori profile shapes on satellite retrievals of tropospheric VCDs.
Yang Wang, Johannes Lampel, Pinhua Xie, Steffen Beirle, Ang Li, Dexia Wu, and Thomas Wagner
Atmos. Chem. Phys., 17, 2189–2215, https://doi.org/10.5194/acp-17-2189-2017, https://doi.org/10.5194/acp-17-2189-2017, 2017
Short summary
Short summary
The air pollution in the Yangtze River delta (YRD), the largest economic region in China, threatens the health of the inhabitants in this region. A long-term MAX-DOAS observation in Wuxi, China (belonging to YRD), is used to characterize vertical distributions (VD) of the aerosols and the precursor trace gases in the boundary to identify the dominating sources. The results are valuable for further validation of satellite products and chemical transport modelings.
Qianqian Hong, Zhouqing Xie, Cheng Liu, Feiyue Wang, Pinhua Xie, Hui Kang, Jin Xu, Jiancheng Wang, Fengcheng Wu, Pengzhen He, Fusheng Mou, Shidong Fan, Yunsheng Dong, Haicong Zhan, Xiawei Yu, Xiyuan Chi, and Jianguo Liu
Atmos. Chem. Phys., 16, 13807–13821, https://doi.org/10.5194/acp-16-13807-2016, https://doi.org/10.5194/acp-16-13807-2016, 2016
Short summary
Short summary
It is known that rapid industrialization in developing countries has led to an increase in air pollution. Here we firstly report the speciated atmospheric mercury during haze days based upon 1-year synchronous observations in an inland city in China. The findings provide direct evidence to understand the biogeochemical cycles of atmospheric mercury related to air pollution and an opportunity to evaluate the potential health risks of atmospheric mercury.
U. Frieß, H. Klein Baltink, S. Beirle, K. Clémer, F. Hendrick, B. Henzing, H. Irie, G. de Leeuw, A. Li, M. M. Moerman, M. van Roozendael, R. Shaiganfar, T. Wagner, Y. Wang, P. Xie, S. Yilmaz, and P. Zieger
Atmos. Meas. Tech., 9, 3205–3222, https://doi.org/10.5194/amt-9-3205-2016, https://doi.org/10.5194/amt-9-3205-2016, 2016
Short summary
Short summary
This article describes the first direct comparison of aerosol extinction profiles from Multi-Axis DOAS measurements of the oxygen collision complex using five different retrieval algorithms. A comparison of the retrieved profiles with co-located aerosol measurements shows good agreement with respect to profile shape and aerosol optical thickness. This study shows that MAX-DOAS is a simple, versatile and cost-effective method for the measurement of aerosol properties in the lower troposphere.
Youwen Sun, Cheng Liu, Pinhua Xie, Andreas Hartl, Kalok Chan, Yuan Tian, Wei Wang, Min Qin, Jianguo Liu, and Wenqing Liu
Atmos. Meas. Tech., 9, 1167–1180, https://doi.org/10.5194/amt-9-1167-2016, https://doi.org/10.5194/amt-9-1167-2016, 2016
Short summary
Short summary
SO2 variability over a large concentration range and interferences from other gases have been major limitations in industrial SO2 emission monitoring. This study demonstrates accurate industrial SO2 emission monitoring through a portable multichannel gas analyzer with an optimized retrieval algorithm. The developed instrument shows good performance in both the linear and nonlinear ranges.
Y. Wang, M. Penning de Vries, P. H. Xie, S. Beirle, S. Dörner, J. Remmers, A. Li, and T. Wagner
Atmos. Meas. Tech., 8, 5133–5156, https://doi.org/10.5194/amt-8-5133-2015, https://doi.org/10.5194/amt-8-5133-2015, 2015
Y. Kanaya, H. Irie, H. Takashima, H. Iwabuchi, H. Akimoto, K. Sudo, M. Gu, J. Chong, Y. J. Kim, H. Lee, A. Li, F. Si, J. Xu, P.-H. Xie, W.-Q. Liu, A. Dzhola, O. Postylyakov, V. Ivanov, E. Grechko, S. Terpugova, and M. Panchenko
Atmos. Chem. Phys., 14, 7909–7927, https://doi.org/10.5194/acp-14-7909-2014, https://doi.org/10.5194/acp-14-7909-2014, 2014
Y. Wang, A. Li, P. H. Xie, T. Wagner, H. Chen, W. Q. Liu, and J. G. Liu
Atmos. Meas. Tech., 7, 1663–1680, https://doi.org/10.5194/amt-7-1663-2014, https://doi.org/10.5194/amt-7-1663-2014, 2014
F. C. Wu, P. H. Xie, A. Li, K. L. Chan, A. Hartl, Y. Wang, F. Q. Si, Y. Zeng, M. Qin, J. Xu, J. G. Liu, W. Q. Liu, and M. Wenig
Atmos. Meas. Tech., 6, 2277–2292, https://doi.org/10.5194/amt-6-2277-2013, https://doi.org/10.5194/amt-6-2277-2013, 2013
Related subject area
Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Measurement report: Surface exchange fluxes of HONO during the growth process of paddy fields in the Huaihe River Basin, China
Molecular and seasonal characteristics of organic vapors in urban Beijing: insights from Vocus-PTR measurements
The variations in volatile organic compounds based on the policy change for Omicron in the traffic hub of Zhengzhou
On the dynamics of ozone depletion events at Villum Research Station in the High Arctic
Measurement report: Long-term measurements of surface ozone and trends in semi-natural sub-Saharan African ecosystems
Characterization of biogenic volatile organic compounds and their oxidation products in a stressed spruce-dominated forest close to a biogas power plant
Reactive chlorine-, sulfur-, and nitrogen-containing volatile organic compounds impact atmospheric chemistry in the megacity of Delhi during both clean and extremely polluted seasons
Analysis of the day-to-day variability of ozone vertical profiles in the lower troposphere during the 2022 Paris ACROSS campaign
Ozone deposition measurements over wheat fields in the North China Plain: variability and related factors of deposition flux and velocity
Consistency evaluation of tropospheric ozone from ozonesonde and IAGOS (In-service Aircraft for a Global Observing System) observations: vertical distribution, ozonesonde types, and station–airport distance
CO2 and CO temporal variability over Mexico City from ground-based total column and surface measurements
Investigating carbonyl compounds above the Amazon rainforest using a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) with NO+ chemical ionization
Measurement report: In-flight and ground-based measurements of nitrogen oxide emissions from latest-generation jet engines and 100 % sustainable aviation fuel
Measurement report: Sources, sinks, and lifetime of NOx in a suburban temperate forest at night
Measurement report: Urban ammonia and amines in Houston, Texas
Biomass-burning sources control ambient particulate matter, but traffic and industrial sources control volatile organic compound (VOC) emissions and secondary-pollutant formation during extreme pollution events in Delhi
Multi-year observations of variable incomplete combustion in the New York megacity
Observations of the vertical distributions of summertime atmospheric pollutants in Nam Co: OH production and source analysis
Understanding summertime peroxyacetyl nitrate (PAN) formation and its relation to aerosol pollution: Insights from high-resolution measurements and modeling
Measurement report: Elevated atmospheric ammonia may promote particle pH and HONO formation – insights from the COVID-19 pandemic
Measurement report: Vertical and temporal variability in the near-surface ozone production rate and sensitivity in an urban area in the Pearl River Delta region, China
Elevated oxidized mercury in the free troposphere: analytical advances and application at a remote continental mountaintop site
Using observed urban NOx sinks to constrain VOC reactivity and the ozone and radical budget in the Seoul Metropolitan Area
Real-world emission characteristics of VOCs from typical cargo ships and their potential contributions to secondary organic aerosol and O3 under low-sulfur fuel policies
NO3 reactivity during a summer period in a temperate forest below and above the canopy
The role of oceanic ventilation and terrestrial outflow in atmospheric non-methane hydrocarbons over the Chinese marginal seas
Concentration and source changes of nitrous acid (HONO) during the COVID-19 lockdown in Beijing
Characteristics and sources of nonmethane volatile organic compounds (NMVOCs) and O3–NOx–NMVOC relationships in Zhengzhou, China
Seasonal Air Concentration Variability, Gas/Particle Partitioning, Precipitation Scavenging, and Air-Water Equilibrium of Organophosphate Esters in Southern Canada
Exploring the variations in ambient BTEX in urban Europe and its environmental health implications
Cloud processing of DMS oxidation products limits SO2 and OCS production in the Eastern North Atlantic marine boundary layer
Deciphering anthropogenic and biogenic contributions to selected non-methane volatile organic compound emissions in an urban area
Emission characteristics of reactive organic gases (ROGs) from industrial volatile chemical products (VCPs) in the Pearl River Delta (PRD), China
Measurement report: Enhanced photochemical formation of formic and isocyanic acids in urban regions aloft – insights from tower-based online gradient measurements
Sources of organic gases and aerosol particles and their roles in nighttime particle growth at a rural forested site in southwest Germany
Exploring the Crucial Role of Atmospheric Carbonyl Compounds in Regional Ozone heavy Pollution: Insights from Intensive Field Observations and Observation-based modelling in the Chengdu Plain Urban Agglomeration, China
Surface snow bromide and nitrate at Eureka, Canada, in early spring and implications for polar boundary layer chemistry
Opinion: Strengthening research in the Global South – atmospheric science opportunities in South America and Africa
Shipping and algae emissions have a major impact on ambient air mixing ratios of non-methane hydrocarbons (NMHCs) and methanethiol on Utö Island in the Baltic Sea
Contribution of cooking emissions to the urban volatile organic compounds in Las Vegas, NV
Reanalysis of NOAA H2 observations: implications for the H2 budget
A large role of missing volatile organic compound reactivity from anthropogenic emissions in ozone pollution regulation
Diurnal, seasonal, and interannual variations in δ(18O) of atmospheric O2 and its application to evaluate changes in oxygen, carbon, and water cycles
Measurement report: Insights into the chemical composition and origin of molecular clusters and potential precursor molecules present in the free troposphere over the southern Indian Ocean: observations from the Maïdo Observatory (2150 m a.s.l., Réunion)
Production of oxygenated volatile organic compounds from the ozonolysis of coastal seawater
Comment on “Transport of substantial stratospheric ozone to the surface by a dying typhoon and shallow convection” by Chen et al. (2022)
Observations of cyanogen bromide (BrCN) in the global troposphere and their relation to polar surface O3 destruction
Individual coal mine methane emissions constrained by eddy covariance measurements: low bias and missing sources
Measurement report: Observations of ground-level ozone concentration gradients perpendicular to the Lake Ontario shoreline
Measurement report: The Palau Atmospheric Observatory and its ozonesonde record – continuous monitoring of tropospheric composition and dynamics in the tropical western Pacific
Fanhao Meng, Baobin Han, Min Qin, Wu Fang, Ke Tang, Dou Shao, Zhitang Liao, Jun Duan, Yan Feng, Yong Huang, Ting Ni, and Pinhua Xie
Atmos. Chem. Phys., 24, 14191–14208, https://doi.org/10.5194/acp-24-14191-2024, https://doi.org/10.5194/acp-24-14191-2024, 2024
Short summary
Short summary
Comprehensive observations of HONO and NOx fluxes were conducted over paddy fields in the Huaihe River Basin. Consecutive peaks in HONO and NO fluxes suggest a potentially enhanced release of HONO and NO due to soil tillage, whereas waterlogged soil may inhibit microbial nitrification processes following irrigation. Notably, biological processes and light-driven NO2 reactions at the surface may serve as sources of HONO and influence the local HONO budget during rotary tillage.
Zhaojin An, Rujing Yin, Xinyan Zhao, Xiaoxiao Li, Yuyang Li, Yi Yuan, Junchen Guo, Yiqi Zhao, Xue Li, Dandan Li, Yaowei Li, Dongbin Wang, Chao Yan, Kebin He, Douglas R. Worsnop, Frank N. Keutsch, and Jingkun Jiang
Atmos. Chem. Phys., 24, 13793–13810, https://doi.org/10.5194/acp-24-13793-2024, https://doi.org/10.5194/acp-24-13793-2024, 2024
Short summary
Short summary
Online Vocus-PTR measurements show the compositions and seasonal variations in organic vapors in urban Beijing. With enhanced sensitivity and mass resolution, various species at a level of sub-parts per trillion (ppt) and organics with multiple oxygens (≥ 3) were observed. The fast photooxidation process in summer leads to an increase in both concentration and proportion of organics with multiple oxygens, while, in other seasons, the variations in them could be influenced by mixed sources.
Bowen Zhang, Dong Zhang, Zhe Dong, Xinshuai Song, Ruiqin Zhang, and Xiao Li
Atmos. Chem. Phys., 24, 13587–13601, https://doi.org/10.5194/acp-24-13587-2024, https://doi.org/10.5194/acp-24-13587-2024, 2024
Short summary
Short summary
To gain insight into the impact of changes due to epidemic control policies, we undertook continuous online monitoring of volatile organic compounds (VOCs) at an urban site in Zhengzhou over a 2-month period. This study examines the characteristics of VOCs, their sources, and their temporal evolution. It also assesses the impact of the policy change on VOC pollution during the monitoring period, thus providing a basis for further research on VOC pollution and source control.
Jakob Boyd Pernov, Jens Liengaard Hjorth, Lise Lotte Sørensen, and Henrik Skov
Atmos. Chem. Phys., 24, 13603–13631, https://doi.org/10.5194/acp-24-13603-2024, https://doi.org/10.5194/acp-24-13603-2024, 2024
Short summary
Short summary
Arctic ozone depletion events (ODEs) occur every spring and have vast implications for the oxidizing capacity, radiative balance, and mercury oxidation. In this study, we analyze ozone, ODEs, and their connection to meteorological and air mass history variables through statistical analyses, back trajectories, and machine learning (ML) at Villum Research Station. ODEs are favorable under sunny, calm conditions with air masses arriving from northerly wind directions with sea ice contact.
Hagninou Elagnon Venance Donnou, Aristide Barthélémy Akpo, Money Ossohou, Claire Delon, Véronique Yoboué, Dungall Laouali, Marie Ouafo-Leumbe, Pieter Gideon Van Zyl, Ousmane Ndiaye, Eric Gardrat, Maria Dias-Alves, and Corinne Galy-Lacaux
Atmos. Chem. Phys., 24, 13151–13182, https://doi.org/10.5194/acp-24-13151-2024, https://doi.org/10.5194/acp-24-13151-2024, 2024
Short summary
Short summary
Ozone is a secondary air pollutant that is detrimental to human and plant health. A better understanding of its chemical evolution is a challenge for Africa, where it is still undersampled. Out of 14 sites examined (1995–2020), high levels of O3 are reported in southern Africa. The dominant chemical processes leading to O3 formation are identified. A decrease in O3 is observed at Katibougou (Mali) and Banizoumbou (Niger), and an increase is found at Zoétélé (Cameroon) and Skukuza (South Africa).
Junwei Song, Georgios I. Gkatzelis, Ralf Tillmann, Nicolas Brüggemann, Thomas Leisner, and Harald Saathoff
Atmos. Chem. Phys., 24, 13199–13217, https://doi.org/10.5194/acp-24-13199-2024, https://doi.org/10.5194/acp-24-13199-2024, 2024
Short summary
Short summary
Biogenic volatile organic compounds (BVOCs) and organic aerosol (OA) particles were measured online in a stressed spruce-dominated forest. OA was mainly attributed to the monoterpene oxidation products. The mixing ratios of BVOCs were higher than the values previously measured in other temperate forests. The results demonstrate that BVOCs are influenced not only by meteorology and biogenic emissions but also by local anthropogenic emissions and subsequent chemical transformation processes.
Sachin Mishra, Vinayak Sinha, Haseeb Hakkim, Arpit Awasthi, Sachin D. Ghude, Vijay Kumar Soni, Narendra Nigam, Baerbel Sinha, and Madhavan N. Rajeevan
Atmos. Chem. Phys., 24, 13129–13150, https://doi.org/10.5194/acp-24-13129-2024, https://doi.org/10.5194/acp-24-13129-2024, 2024
Short summary
Short summary
We quantified 111 gases using mass spectrometry to understand how seasonal and emission changes lead from clean air in the monsoon season to extremely polluted air in the post-monsoon season in Delhi. Averaged total mass concentrations (260 µg m-3) were > 4 times in polluted periods, driven by biomass burning emissions and reduced atmospheric ventilation. Reactive gaseous nitrogen, chlorine, and sulfur compounds hitherto unreported from such a polluted environment were discovered.
Gérard Ancellet, Camille Viatte, Anne Boynard, François Ravetta, Jacques Pelon, Cristelle Cailteau-Fischbach, Pascal Genau, Julie Capo, Axel Roy, and Philippe Nédélec
Atmos. Chem. Phys., 24, 12963–12983, https://doi.org/10.5194/acp-24-12963-2024, https://doi.org/10.5194/acp-24-12963-2024, 2024
Short summary
Short summary
Characterization of ozone pollution in urban areas benefited from a measurement campaign in summer 2022 in the Paris region. The analysis is based on 21 d of lidar and aircraft observations. The main objective is an analysis of the sensitivity of ozone pollution to the micrometeorological processes in the urban atmospheric boundary layer and the transport of regional pollution. The paper also discusses to what extent satellite observations can track observed ozone plumes.
Xiaoyi Zhang, Wanyun Xu, Weili Lin, Gen Zhang, Jinjian Geng, Li Zhou, Huarong Zhao, Sanxue Ren, Guangsheng Zhou, Jianmin Chen, and Xiaobin Xu
Atmos. Chem. Phys., 24, 12323–12340, https://doi.org/10.5194/acp-24-12323-2024, https://doi.org/10.5194/acp-24-12323-2024, 2024
Short summary
Short summary
Ozone (O3) deposition is a key process that removes surface O3, affecting air quality, ecosystems and climate change. We conducted O3 deposition measurement over a wheat canopy using a newly relaxed eddy accumulation flux system. Large variabilities in O3 deposition were detected, mainly determined by crop growth and modulated by various environmental factors. More O3 deposition observations over different surfaces are needed for exploring deposition mechanisms and model optimization.
Honglei Wang, David W. Tarasick, Jane Liu, Herman G. J. Smit, Roeland Van Malderen, Lijuan Shen, Romain Blot, and Tianliang Zhao
Atmos. Chem. Phys., 24, 11927–11942, https://doi.org/10.5194/acp-24-11927-2024, https://doi.org/10.5194/acp-24-11927-2024, 2024
Short summary
Short summary
In this study, we identify 23 suitable pairs of sites from World Ozone and Ultraviolet Radiation Data Centre (WOUDC) and In-service Aircraft for a Global Observing System (IAGOS) datasets (1995 to 2021), compare the average vertical distributions of tropospheric O3 from ozonesonde and aircraft measurements, and analyze the differences based on ozonesonde type and station–airport distance.
Noémie Taquet, Wolfgang Stremme, María Eugenia González del Castillo, Victor Almanza, Alejandro Bezanilla, Olivier Laurent, Carlos Alberti, Frank Hase, Michel Ramonet, Thomas Lauvaux, Ke Che, and Michel Grutter
Atmos. Chem. Phys., 24, 11823–11848, https://doi.org/10.5194/acp-24-11823-2024, https://doi.org/10.5194/acp-24-11823-2024, 2024
Short summary
Short summary
We characterize the variability in CO and CO2 emissions over Mexico City from long-term time-resolved Fourier transform infrared spectroscopy solar absorption and surface measurements from 2013 to 2021. Using the average intraday CO growth rate from total columns, the average CO / CO2 ratio and TROPOMI data, we estimate the interannual variability in the CO and CO2 anthropogenic emissions of Mexico City, highlighting the effect of an unprecedented drop in activity due to the COVID-19 lockdown.
Akima Ringsdorf, Achim Edtbauer, Bruna Holanda, Christopher Poehlker, Marta O. Sá, Alessandro Araújo, Jürgen Kesselmeier, Jos Lelieveld, and Jonathan Williams
Atmos. Chem. Phys., 24, 11883–11910, https://doi.org/10.5194/acp-24-11883-2024, https://doi.org/10.5194/acp-24-11883-2024, 2024
Short summary
Short summary
We show the average height distribution of separately observed aldehydes and ketones over a day and discuss their rainforest-specific sources and sinks as well as their seasonal changes above the Amazon. Ketones have much longer atmospheric lifetimes than aldehydes and thus different implications for atmospheric chemistry. However, they are commonly observed together, which we overcome by measuring with a NO+ chemical ionization mass spectrometer for the first time in the Amazon rainforest.
Theresa Harlass, Rebecca Dischl, Stefan Kaufmann, Raphael Märkl, Daniel Sauer, Monika Scheibe, Paul Stock, Tiziana Bräuer, Andreas Dörnbrack, Anke Roiger, Hans Schlager, Ulrich Schumann, Magdalena Pühl, Tobias Schripp, Tobias Grein, Linda Bondorf, Charles Renard, Maxime Gauthier, Mark Johnson, Darren Luff, Paul Madden, Peter Swann, Denise Ahrens, Reetu Sallinen, and Christiane Voigt
Atmos. Chem. Phys., 24, 11807–11822, https://doi.org/10.5194/acp-24-11807-2024, https://doi.org/10.5194/acp-24-11807-2024, 2024
Short summary
Short summary
Emissions from aircraft have a direct impact on our climate. Here, we present airborne and ground-based measurement data of nitrogen oxides that were collected in the exhaust of an Airbus aircraft. We study the impact of burning fossil and sustainable aviation fuel on nitrogen oxide emissions at different engine settings related to combustor temperature, pressure and fuel flow. Further, we compare observations with engine emission models.
Simone T. Andersen, Max R. McGillen, Chaoyang Xue, Tobias Seubert, Patrick Dewald, Gunther N. T. E. Türk, Jan Schuladen, Cyrielle Denjean, Jean-Claude Etienne, Olivier Garrouste, Marina Jamar, Sergio Harb, Manuela Cirtog, Vincent Michoud, Mathieu Cazaunau, Antonin Bergé, Christopher Cantrell, Sebastien Dusanter, Bénédicte Picquet-Varrault, Alexandre Kukui, Abdelwahid Mellouki, Lucy J. Carpenter, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 24, 11603–11618, https://doi.org/10.5194/acp-24-11603-2024, https://doi.org/10.5194/acp-24-11603-2024, 2024
Short summary
Short summary
Using measurements of various trace gases in a suburban forest near Paris in the summer of 2022, we were able to gain insight into the sources and sinks of NOx (NO+NO2) with a special focus on their nighttime chemical and physical loss processes. NO was observed as a result of nighttime soil emissions when O3 levels were strongly depleted by deposition. NO oxidation products were not observed at night, indicating that soil and/or foliar surfaces are an efficient sink of reactive N.
Lee Tiszenkel, James H. Flynn, and Shan-Hu Lee
Atmos. Chem. Phys., 24, 11351–11363, https://doi.org/10.5194/acp-24-11351-2024, https://doi.org/10.5194/acp-24-11351-2024, 2024
Short summary
Short summary
Ammonia and amines are important ingredients for aerosol formation in urban environments, but the measurements of these compounds are extremely challenging. Our observations show that urban ammonia and amines in Houston are emitted from urban sources, and diurnal variations in their concentrations are likely governed by gas-to-particle conversion and emissions.
Arpit Awasthi, Baerbel Sinha, Haseeb Hakkim, Sachin Mishra, Varkrishna Mummidivarapu, Gurmanjot Singh, Sachin D. Ghude, Vijay Kumar Soni, Narendra Nigam, Vinayak Sinha, and Madhavan N. Rajeevan
Atmos. Chem. Phys., 24, 10279–10304, https://doi.org/10.5194/acp-24-10279-2024, https://doi.org/10.5194/acp-24-10279-2024, 2024
Short summary
Short summary
We use 111 volatile organic compounds (VOCs), PM10, and PM2.5 in a positive matrix factorization (PMF) model to resolve 11 pollution sources validated with chemical fingerprints. Crop residue burning and heating account for ~ 50 % of the PM, while traffic and industrial emissions dominate the gas-phase VOC burden and formation potential of secondary organic aerosols (> 60 %). Non-tailpipe emissions from compressed-natural-gas-fuelled commercial vehicles dominate the transport sector's PM burden.
Luke D. Schiferl, Cong Cao, Bronte Dalton, Andrew Hallward-Driemeier, Ricardo Toledo-Crow, and Róisín Commane
Atmos. Chem. Phys., 24, 10129–10142, https://doi.org/10.5194/acp-24-10129-2024, https://doi.org/10.5194/acp-24-10129-2024, 2024
Short summary
Short summary
Carbon monoxide (CO) is an air pollutant and an important indicator of the incomplete combustion of fossil fuels in cities. Using 4 years of winter and spring observations in New York City, we found that both the magnitude and variability of CO from the metropolitan area are greater than expected. Transportation emissions cannot explain the missing and variable CO, which points to energy from buildings as a likely underappreciated source of urban air pollution and greenhouse gas emissions.
Chengzhi Xing, Cheng Liu, Chunxiang Ye, Jingkai Xue, Hongyu Wu, Xiangguang Ji, Jinping Ou, and Qihou Hu
Atmos. Chem. Phys., 24, 10093–10112, https://doi.org/10.5194/acp-24-10093-2024, https://doi.org/10.5194/acp-24-10093-2024, 2024
Short summary
Short summary
We identified the contributions of ozone (O3) and nitrous acid (HONO) to the production rates of hydroxide (OH) in vertical space on the Tibetan Plateau (TP). A new insight was offered: the contributions of HONO and O3 to the production rates of OH on the TP are even greater than in lower-altitudes areas. This study enriches the understanding of vertical distribution of atmospheric components and explains the strong atmospheric oxidation capacity (AOC) on the TP.
Baoye Hu, Naihua Chen, Rui Li, Mingqiang Huang, Jinsheng Chen, Youwei Hong, Lingling Xu, Xiaolong Fan, Mengren Li, Lei Tong, Qiuping Zheng, and Yuxiang Yang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2631, https://doi.org/10.5194/egusphere-2024-2631, 2024
Short summary
Short summary
Box modeling with the master chemical mechanism (MCM) was used to address the puzzle of summertime PAN formation and its association with aerosol pollution under high ozone conditions. The MCM model proves to be an ideal tool for investigating PAN photochemical formation (IOA=0.75). The model performed better during the clean period than during the haze period. Through the machine learning method of XGBoost, we found that the top three factors leading to simulation bias were NH3, NO3, and PM2.5.
Xinyuan Zhang, Lingling Wang, Nan Wang, Shuangliang Ma, Shenbo Wang, Ruiqin Zhang, Dong Zhang, Mingkai Wang, and Hongyu Zhang
Atmos. Chem. Phys., 24, 9885–9898, https://doi.org/10.5194/acp-24-9885-2024, https://doi.org/10.5194/acp-24-9885-2024, 2024
Short summary
Short summary
This study highlights the importance of the redox reaction of NO2 with SO2 based on actual atmospheric observations. The particle pH in future China is expected to rise steadily. Consequently, this reaction could become a significant source of HONO in China. Therefore, it is crucial to coordinate the control of SO2, NOx, and NH3 emissions to avoid a rapid increase in the particle pH.
Jun Zhou, Chunsheng Zhang, Aiming Liu, Bin Yuan, Yan Wang, Wenjie Wang, Jie-Ping Zhou, Yixin Hao, Xiao-Bing Li, Xianjun He, Xin Song, Yubin Chen, Suxia Yang, Shuchun Yang, Yanfeng Wu, Bin Jiang, Shan Huang, Junwen Liu, Yuwen Peng, Jipeng Qi, Minhui Deng, Bowen Zhong, Yibo Huangfu, and Min Shao
Atmos. Chem. Phys., 24, 9805–9826, https://doi.org/10.5194/acp-24-9805-2024, https://doi.org/10.5194/acp-24-9805-2024, 2024
Short summary
Short summary
In-depth understanding of the near-ground vertical variability in photochemical ozone (O3) formation is crucial for mitigating O3 pollution. Utilizing a self-built vertical observation system, a direct net photochemical O3 production rate detection system, and an observation-based model, we diagnosed the vertical distributions and formation mechanism of net photochemical O3 production rates and sensitivity in the Pearl River Delta region, one of the most O3-polluted areas in China.
Eleanor J. Derry, Tyler R. Elgiar, Taylor Y. Wilmot, Nicholas W. Hoch, Noah S. Hirshorn, Peter Weiss-Penzias, Christopher F. Lee, John C. Lin, A. Gannet Hallar, Rainer Volkamer, Seth N. Lyman, and Lynne E. Gratz
Atmos. Chem. Phys., 24, 9615–9643, https://doi.org/10.5194/acp-24-9615-2024, https://doi.org/10.5194/acp-24-9615-2024, 2024
Short summary
Short summary
Mercury (Hg) is a globally distributed neurotoxic pollutant. Atmospheric deposition is the main source of Hg in ecosystems. However, measurement biases hinder understanding of the origins and abundance of the more bioavailable oxidized form. We used an improved, calibrated measurement system to study air mass composition and transport of atmospheric Hg at a remote mountaintop site in the central US. Oxidized Hg originated upwind in the low to middle free troposphere under clean, dry conditions.
Benjamin A. Nault, Katherine R. Travis, James H. Crawford, Donald R. Blake, Pedro Campuzano-Jost, Ronald C. Cohen, Joshua P. DiGangi, Glenn S. Diskin, Samuel R. Hall, L. Gregory Huey, Jose L. Jimenez, Kyung-Eun Min, Young Ro Lee, Isobel J. Simpson, Kirk Ullmann, and Armin Wisthaler
Atmos. Chem. Phys., 24, 9573–9595, https://doi.org/10.5194/acp-24-9573-2024, https://doi.org/10.5194/acp-24-9573-2024, 2024
Short summary
Short summary
Ozone (O3) is a pollutant formed from the reactions of gases emitted from various sources. In urban areas, the density of human activities can increase the O3 formation rate (P(O3)), thus impacting air quality and health. Observations collected over Seoul, South Korea, are used to constrain P(O3). A high local P(O3) was found; however, local P(O3) was partly reduced due to compounds typically ignored. These observations also provide constraints for unmeasured compounds that will impact P(O3).
Fan Zhang, Binyu Xiao, Zeyu Liu, Yan Zhang, Chongguo Tian, Rui Li, Can Wu, Yali Lei, Si Zhang, Xinyi Wan, Yubao Chen, Yong Han, Min Cui, Cheng Huang, Hongli Wang, Yingjun Chen, and Gehui Wang
Atmos. Chem. Phys., 24, 8999–9017, https://doi.org/10.5194/acp-24-8999-2024, https://doi.org/10.5194/acp-24-8999-2024, 2024
Short summary
Short summary
Mandatory use of low-sulfur fuel due to global sulfur limit regulations means large uncertainties in volatile organic compound (VOC) emissions. On-board tests of VOCs from nine cargo ships in China were carried out. Results showed that switching from heavy-fuel oil to diesel increased emission factor VOCs by 48 % on average, enhancing O3 and the secondary organic aerosol formation potential. Thus, implementing a global ultra-low-sulfur oil policy needs to be optimized in the near future.
Patrick Dewald, Tobias Seubert, Simone T. Andersen, Gunther N. T. E. Türk, Jan Schuladen, Max R. McGillen, Cyrielle Denjean, Jean-Claude Etienne, Olivier Garrouste, Marina Jamar, Sergio Harb, Manuela Cirtog, Vincent Michoud, Mathieu Cazaunau, Antonin Bergé, Christopher Cantrell, Sebastien Dusanter, Bénédicte Picquet-Varrault, Alexandre Kukui, Chaoyang Xue, Abdelwahid Mellouki, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 24, 8983–8997, https://doi.org/10.5194/acp-24-8983-2024, https://doi.org/10.5194/acp-24-8983-2024, 2024
Short summary
Short summary
In the scope of a field campaign in a suburban forest near Paris in the summer of 2022, we measured the reactivity of the nitrate radical NO3 towards biogenic volatile organic compounds (BVOCs; e.g. monoterpenes) mainly below but also above the canopy. NO3 reactivity was the highest during nights with strong temperature inversions and decreased strongly with height. Reactions with BVOCs were the main removal process of NO3 throughout the diel cycle below the canopy.
Jian Wang, Lei Xue, Qianyao Ma, Feng Xu, Gaobin Xu, Shibo Yan, Jiawei Zhang, Jianlong Li, Honghai Zhang, Guiling Zhang, and Zhaohui Chen
Atmos. Chem. Phys., 24, 8721–8736, https://doi.org/10.5194/acp-24-8721-2024, https://doi.org/10.5194/acp-24-8721-2024, 2024
Short summary
Short summary
This study investigated the distribution and sources of non-methane hydrocarbons (NMHCs) in the lower atmosphere over the marginal seas of China. NMHCs, a subset of volatile organic compounds (VOCs), play a crucial role in atmospheric chemistry. Derived from systematic atmospheric sampling in coastal cities and marginal sea regions, this study offers valuable insights into the interaction between land and sea in shaping offshore atmospheric NMHCs.
Yusheng Zhang, Feixue Zheng, Zemin Feng, Chaofan Lian, Weigang Wang, Xiaolong Fan, Wei Ma, Zhuohui Lin, Chang Li, Gen Zhang, Chao Yan, Ying Zhang, Veli-Matti Kerminen, Federico Bianch, Tuukka Petäjä, Juha Kangasluoma, Markku Kulmala, and Yongchun Liu
Atmos. Chem. Phys., 24, 8569–8587, https://doi.org/10.5194/acp-24-8569-2024, https://doi.org/10.5194/acp-24-8569-2024, 2024
Short summary
Short summary
The nitrous acid (HONO) budget was validated during a COVID-19 lockdown event. The main conclusions are (1) HONO concentrations showed a significant decrease from 0.97 to 0.53 ppb during lockdown; (2) vehicle emissions accounted for 53 % of nighttime sources, with the heterogeneous conversion of NO2 on ground surfaces more important than aerosol; and (3) the dominant daytime source shifted from the homogenous reaction between NO and OH (51 %) to nitrate photolysis (53 %) during lockdown.
Dong Zhang, Xiao Li, Minghao Yuan, Yifei Xu, Qixiang Xu, Fangcheng Su, Shenbo Wang, and Ruiqin Zhang
Atmos. Chem. Phys., 24, 8549–8567, https://doi.org/10.5194/acp-24-8549-2024, https://doi.org/10.5194/acp-24-8549-2024, 2024
Short summary
Short summary
The increasing concentration of O3 precursors and unfavorable meteorological conditions are key factors in the formation of O3 pollution in Zhengzhou. Vehicular exhausts (28 %), solvent usage (27 %), and industrial production (22 %) are identified as the main sources of NMVOCs. Moreover, O3 formation in Zhengzhou is found to be in an anthropogenic volatile organic compound (AVOC)-limited regime. Thus, to reduce O3 formation, a minimum AVOCs / NOx reduction ratio ≥ 3 : 1 is recommended.
Yuening Li, Faqiang Zhan, Chubashini Shunthirasingham, Ying Duan Lei, Jenny Oh, Amina Ben Chaaben, Zhe Lu, Kelsey Lee, Frank A. P. C. Gobas, Hayley Hung, and Frank Wania
EGUsphere, https://doi.org/10.5194/egusphere-2024-1883, https://doi.org/10.5194/egusphere-2024-1883, 2024
Short summary
Short summary
Organophosphate esters are important man-made trace contaminants. Measuring them in the atmospheric gas phase, particles, precipitation and surface water from Canada, we explore seasonal concentration variability, gas/particle partitioning, precipitation scavenging, and air-water equilibrium. Whereas higher concentrations in summer and efficient precipitation scavenging conform with expectations, the lack of a relationship between compound volatility and gas-particle partitioning is puzzling.
Xiansheng Liu, Xun Zhang, Marvin Dufresne, Tao Wang, Lijie Wu, Rosa Lara, Roger Seco , Marta Monge, Ana Maria Yáñez-Serrano, Marie Gohy, Paul Petit, Audrey Chevalier, Marie-Pierre Vagnot, Yann Fortier, Alexia Baudic, Véronique Ghersi, Grégory Gille, Ludovic Lanzi, Valérie Gros, Leïla Simon, Heidi Hellen, Stefan Reimann, Zoé Le Bras, Michelle Jessy Müller, David Beddows, Siqi Hou, Zongbo Shi, Roy M. Harrison, William Bloss, James Dernie, Stéphane Sauvage, Philip K. Hopke, Xiaoli Duan, Taicheng An, Alastair Lewis, Jim Hopkins, Eleni Liakakou, Nikolaos Mihalopoulos, Xiaohu Zhang, Andrés Alastuey, Xavier Querol, and Thérèse Salameh
EGUsphere, https://doi.org/10.5194/egusphere-2024-2309, https://doi.org/10.5194/egusphere-2024-2309, 2024
Short summary
Short summary
This study examines BTEX (benzene, toluene, ethylbenzene, xylenes) pollution in urban areas across 7 European countries. Analyzing data from 22 monitoring sites, we found traffic and industrial activities significantly impact BTEX levels, with peaks during rush hours. Despite improvements, the risk from BTEX exposure remains moderate, especially in high-traffic and industrial zones. It highlights the need for targeted air quality management to protect public health and improve urban air quality.
Delaney B. Kilgour, Christopher M. Jernigan, Olga Garmash, Sneha Aggarwal, Claudia Mohr, Matt E. Salter, Joel A. Thornton, Jian Wang, Paul Zieger, and Timothy H. Bertram
EGUsphere, https://doi.org/10.5194/egusphere-2024-1975, https://doi.org/10.5194/egusphere-2024-1975, 2024
Short summary
Short summary
We report simultaneous measurements of dimethyl sulfide (DMS) and hydroperoxymethyl thioformate (HPMTF) in the Eastern North Atlantic. We use an observationally constrained box model to show cloud loss is the dominant sink of HPMTF in this region over six weeks, resulting in large reductions in DMS-derived products that contribute to aerosol formation and growth. Our findings indicate that fast cloud processing of HPMTF must be included in global models to accurately capture the sulfur cycle.
Arianna Peron, Martin Graus, Marcus Striednig, Christian Lamprecht, Georg Wohlfahrt, and Thomas Karl
Atmos. Chem. Phys., 24, 7063–7083, https://doi.org/10.5194/acp-24-7063-2024, https://doi.org/10.5194/acp-24-7063-2024, 2024
Short summary
Short summary
The anthropogenic fraction of non-methane volatile organic compound (NMVOC) emissions associated with biogenic sources (e.g., terpenes) is investigated based on eddy covariance observations. The anthropogenic fraction of terpene emissions is strongly dependent on season. When analyzing volatile chemical product (VCP) emissions in urban environments, we caution that observations from short-term campaigns might over-/underestimate their significance depending on local and seasonal circumstances.
Sihang Wang, Bin Yuan, Xianjun He, Ru Cui, Xin Song, Yubin Chen, Caihong Wu, Chaomin Wang, Yibo Huangfu, Xiao-Bing Li, Boguang Wang, and Min Shao
Atmos. Chem. Phys., 24, 7101–7121, https://doi.org/10.5194/acp-24-7101-2024, https://doi.org/10.5194/acp-24-7101-2024, 2024
Short summary
Short summary
Emissions of reactive organic gases from industrial volatile chemical product sources are measured. There are large differences among these industrial sources. We show that oxygenated species account for significant contributions to reactive organic gas emissions, especially for industrial sources utilizing water-borne chemicals.
Qing Yang, Xiao-Bing Li, Bin Yuan, Xiaoxiao Zhang, Yibo Huangfu, Lei Yang, Xianjun He, Jipeng Qi, and Min Shao
Atmos. Chem. Phys., 24, 6865–6882, https://doi.org/10.5194/acp-24-6865-2024, https://doi.org/10.5194/acp-24-6865-2024, 2024
Short summary
Short summary
Online vertical gradient measurements of formic and isocyanic acids were made based on a 320 m tower in a megacity. Vertical variations and sources of the two acids were analyzed in this study. We find that formic and isocyanic acids exhibited positive vertical gradients and were mainly contributed by photochemical formations. The formation of formic and isocyanic acids was also significantly enhanced in urban regions aloft.
Junwei Song, Harald Saathoff, Feng Jiang, Linyu Gao, Hengheng Zhang, and Thomas Leisner
Atmos. Chem. Phys., 24, 6699–6717, https://doi.org/10.5194/acp-24-6699-2024, https://doi.org/10.5194/acp-24-6699-2024, 2024
Short summary
Short summary
This study presents concurrent online measurements of organic gas and particles (VOCs and OA) at a forested site in summer. Both VOCs and OA were largely contributed by oxygenated organic compounds. Semi-volatile oxygenated OA and organic nitrate formed from monoterpenes and sesquiterpenes contributed significantly to nighttime particle growth. The results help us to understand the causes of nighttime particle growth regularly observed in summer in central European rural forested environments.
Jiemeng Bao, Xin Zhang, Zhenhai Wu, Li Zhou, Jun Qian, Qinwen Tan, Fumo Yang, Junhui Chen, Yunfeng Li, Hefan Liu, Liqun Deng, and Hong Li
EGUsphere, https://doi.org/10.5194/egusphere-2024-1204, https://doi.org/10.5194/egusphere-2024-1204, 2024
Short summary
Short summary
Our research in the Chengdu Plain Urban Agglomeration (CPUA), China, reveals significant correlations between carbonyl compounds and ozone pollution, particularly in Chengdu. Formaldehyde, acetone, and acetaldehyde are key contributors to ozone formation. Urgent collaborative actions among cities are needed to mitigate carbonyl-related ozone pollution, stressing the control of NOx and VOCs emissions. Our study offers crucial insights for crafting effective regional pollution control strategies.
Xin Yang, Kimberly Strong, Alison S. Criscitiello, Marta Santos-Garcia, Kristof Bognar, Xiaoyi Zhao, Pierre Fogal, Kaley A. Walker, Sara M. Morris, and Peter Effertz
Atmos. Chem. Phys., 24, 5863–5886, https://doi.org/10.5194/acp-24-5863-2024, https://doi.org/10.5194/acp-24-5863-2024, 2024
Short summary
Short summary
This study uses snow samples collected from a Canadian high Arctic site, Eureka, to demonstrate that surface snow in early spring is a net sink of atmospheric bromine and nitrogen. Surface snow bromide and nitrate are significantly correlated, indicating the oxidation of reactive nitrogen is accelerated by reactive bromine. In addition, we show evidence that snow photochemical release of reactive bromine is very weak, and its emission flux is much smaller than the deposition flux of bromide.
Rebecca M. Garland, Katye E. Altieri, Laura Dawidowski, Laura Gallardo, Aderiana Mbandi, Nestor Y. Rojas, and N'datchoh E. Touré
Atmos. Chem. Phys., 24, 5757–5764, https://doi.org/10.5194/acp-24-5757-2024, https://doi.org/10.5194/acp-24-5757-2024, 2024
Short summary
Short summary
This opinion piece focuses on two geographical areas in the Global South where the authors are based that are underrepresented in atmospheric science. This opinion provides context on common challenges and constraints, with suggestions on how the community can address these. The focus is on the strengths of atmospheric science research in these regions. It is these strengths, we believe, that highlight the critical role of Global South researchers in the future of atmospheric science research.
Heidi Hellén, Rostislav Kouznetsov, Kaisa Kraft, Jukka Seppälä, Mika Vestenius, Jukka-Pekka Jalkanen, Lauri Laakso, and Hannele Hakola
Atmos. Chem. Phys., 24, 4717–4731, https://doi.org/10.5194/acp-24-4717-2024, https://doi.org/10.5194/acp-24-4717-2024, 2024
Short summary
Short summary
Mixing ratios of C2-C5 NMHCs and methanethiol were measured on an island in the Baltic Sea using an in situ gas chromatograph. Shipping emissions were found to be an important source of ethene, ethyne, propene, and benzene. High summertime mixing ratios of methanethiol and dependence of mixing ratios on seawater temperature and height indicated the biogenic origin to possibly be phytoplankton or macroalgae. These emissions may have a strong impact on SO2 production and new particle formation.
Matthew M. Coggon, Chelsea E. Stockwell, Lu Xu, Jeff Peischl, Jessica B. Gilman, Aaron Lamplugh, Henry J. Bowman, Kenneth Aikin, Colin Harkins, Qindan Zhu, Rebecca H. Schwantes, Jian He, Meng Li, Karl Seltzer, Brian McDonald, and Carsten Warneke
Atmos. Chem. Phys., 24, 4289–4304, https://doi.org/10.5194/acp-24-4289-2024, https://doi.org/10.5194/acp-24-4289-2024, 2024
Short summary
Short summary
Residential and commercial cooking emits pollutants that degrade air quality. Here, ambient observations show that cooking is an important contributor to anthropogenic volatile organic compounds (VOCs) emitted in Las Vegas, NV. These emissions are not fully presented in air quality models, and more work may be needed to quantify emissions from important sources, such as commercial restaurants.
Fabien Paulot, Gabrielle Pétron, Andrew M. Crotwell, and Matteo B. Bertagni
Atmos. Chem. Phys., 24, 4217–4229, https://doi.org/10.5194/acp-24-4217-2024, https://doi.org/10.5194/acp-24-4217-2024, 2024
Short summary
Short summary
New data from the National Oceanic and Atmospheric Administration show that hydrogen (H2) concentrations increased from 2010 to 2019, which is consistent with the simulated increase in H2 photochemical production (mainly from methane). But this cannot be reconciled with the expected decrease (increase) in H2 anthropogenic emissions (soil deposition) in the same period. This shows gaps in our knowledge of the H2 biogeochemical cycle that must be resolved to quantify the impact of higher H2 usage.
Wenjie Wang, Bin Yuan, Hang Su, Yafang Cheng, Jipeng Qi, Sihang Wang, Wei Song, Xinming Wang, Chaoyang Xue, Chaoqun Ma, Fengxia Bao, Hongli Wang, Shengrong Lou, and Min Shao
Atmos. Chem. Phys., 24, 4017–4027, https://doi.org/10.5194/acp-24-4017-2024, https://doi.org/10.5194/acp-24-4017-2024, 2024
Short summary
Short summary
This study investigates the important role of unmeasured volatile organic compounds (VOCs) in ozone formation. Based on results in a megacity of China, we show that unmeasured VOCs can contribute significantly to ozone fomation and also influence the determination of ozone control strategy. Our results show that these unmeasured VOCs are mainly from human sources.
Shigeyuki Ishidoya, Satoshi Sugawara, and Atsushi Okazaki
EGUsphere, https://doi.org/10.5194/egusphere-2024-654, https://doi.org/10.5194/egusphere-2024-654, 2024
Short summary
Short summary
Diurnal, seasonal, and interannual variations of the present-day stable isotopic ratio of atmospheric O2, in other words slight variations in the Dole-Morita effect, have been detected firstly. A box model that incorporated biological and water processes associated with the Dole-Morita effect reproduced the general characteristics of the observational results. Based on the findings, we proposed some applications to evaluate oxygen, carbon, and water cycles.
Romain Salignat, Matti Rissanen, Siddharth Iyer, Jean-Luc Baray, Pierre Tulet, Jean-Marc Metzger, Jérôme Brioude, Karine Sellegri, and Clémence Rose
Atmos. Chem. Phys., 24, 3785–3812, https://doi.org/10.5194/acp-24-3785-2024, https://doi.org/10.5194/acp-24-3785-2024, 2024
Short summary
Short summary
Using mass spectrometry data collected at the Maïdo Observatory (2160 m a.s.l., Réunion), we provide the first detailed analysis of molecular cluster chemical composition specifically in the marine free troposphere. The abundance of the identified species is related both to in situ meteorological parameters and air mass history, which also provide insight into their origin. Our work makes an important contribution to documenting the chemistry and physics of the marine free troposphere.
Delaney B. Kilgour, Gordon A. Novak, Megan S. Claflin, Brian M. Lerner, and Timothy H. Bertram
Atmos. Chem. Phys., 24, 3729–3742, https://doi.org/10.5194/acp-24-3729-2024, https://doi.org/10.5194/acp-24-3729-2024, 2024
Short summary
Short summary
Laboratory experiments with seawater mimics suggest ozone deposition to the surface ocean can be a source of reactive carbon to the marine atmosphere. We conduct both field and laboratory measurements to assess abiotic VOC composition and yields from ozonolysis of real surface seawater. We show that C5–C11 aldehydes contribute to the observed VOC emission flux. We estimate that VOCs generated by the ozonolysis of surface seawater are competitive with biological VOC production and emission.
Xiangdong Zheng, Wen Yang, Yuting Sun, Chunmei Geng, Yingying Liu, and Xiaobin Xu
Atmos. Chem. Phys., 24, 3759–3768, https://doi.org/10.5194/acp-24-3759-2024, https://doi.org/10.5194/acp-24-3759-2024, 2024
Short summary
Short summary
Chen et al. (2022) attributed the nocturnal ozone enhancement (NOE) during the night of 31 July 2021 in the North China Plain (NCP) to "the direct stratospheric intrusion to reach the surface". We analyzed in situ data from the NCP. Our results do not suggest that there was a significant impact from the stratosphere on surface ozone during the NOE. We argue that the NOE was not caused by stratospheric intrusion but originated from fresh photochemical production in the lower troposphere.
James M. Roberts, Siyuan Wang, Patrick R. Veres, J. Andrew Neuman, Michael A. Robinson, Ilann Bourgeois, Jeff Peischl, Thomas B. Ryerson, Chelsea R. Thompson, Hannah M. Allen, John D. Crounse, Paul O. Wennberg, Samuel R. Hall, Kirk Ullmann, Simone Meinardi, Isobel J. Simpson, and Donald Blake
Atmos. Chem. Phys., 24, 3421–3443, https://doi.org/10.5194/acp-24-3421-2024, https://doi.org/10.5194/acp-24-3421-2024, 2024
Short summary
Short summary
We measured cyanogen bromide (BrCN) in the troposphere for the first time. BrCN is a product of the same active bromine chemistry that destroys ozone and removes mercury in polar surface environments and is a previously unrecognized sink for active Br compounds. BrCN has an apparent lifetime against heterogeneous loss in the range 1–10 d, so it serves as a cumulative marker of Br-radical chemistry. Accounting for BrCN chemistry is an important part of understanding polar Br cycling.
Kai Qin, Wei Hu, Qin He, Fan Lu, and Jason Blake Cohen
Atmos. Chem. Phys., 24, 3009–3028, https://doi.org/10.5194/acp-24-3009-2024, https://doi.org/10.5194/acp-24-3009-2024, 2024
Short summary
Short summary
We compute CH4 emissions and uncertainty on a mine-by-mine basis, including underground, overground, and abandoned mines. Mine-by-mine gas and flux data and 30 min observations from a flux tower located next to a mine shaft are integrated. The observed variability and bias correction are propagated over the emissions dataset, demonstrating that daily observations may not cover the range of variability. Comparisons show both an emissions magnitude and spatial mismatch with current inventories.
Yao Yan Huang and D. James Donaldson
Atmos. Chem. Phys., 24, 2387–2398, https://doi.org/10.5194/acp-24-2387-2024, https://doi.org/10.5194/acp-24-2387-2024, 2024
Short summary
Short summary
Ground-level ozone interacts at the lake–land boundary; this is important to our understanding and modelling of atmospheric chemistry and air pollution in the lower atmosphere. We show that a steep ozone gradient occurs year-round moving inland up to 1 km from the lake and that this gradient is influenced by seasonal factors on the local land environment, where more rural areas are more greatly affected seasonally.
Katrin Müller, Jordis S. Tradowsky, Peter von der Gathen, Christoph Ritter, Sharon Patris, Justus Notholt, and Markus Rex
Atmos. Chem. Phys., 24, 2169–2193, https://doi.org/10.5194/acp-24-2169-2024, https://doi.org/10.5194/acp-24-2169-2024, 2024
Short summary
Short summary
The Palau Atmospheric Observatory is introduced as an ideal site to detect changes in atmospheric composition and dynamics above the remote tropical western Pacific. We focus on the ozone sounding program from 2016–2021, including El Niño 2016. The year-round high convective activity is reflected in dominant low tropospheric ozone and high relative humidity. Their seasonal distributions are unique compared to other tropical sites and are modulated by the Intertropical Convergence Zone.
Cited articles
Acker, K., Febo, A., Trick, S., Perrino, C., Bruno, P., Wiesen, P.,
Möller, D., Wieprecht, W., Auel, R., Giusto, M., Geyer, A., Platt, U.,
and Allegrini, I.: Nitrous acid in the urban area of Rome, Atmos. Environ.,
40, 3123–3133, https://doi.org/10.1016/j.atmosenv.2006.01.028, 2006.
Alicke, B.: Impact of nitrous acid photolysis on the total hydroxyl radical
budget during the Limitation of Oxidant Production/Pianura Padana Produzione
di Ozono study in Milan, J. Geophys. Res., 107, 8196, https://doi.org/10.1029/2000jd000075, 2002.
Ammann, M., Kalberer, M., Jost, D. T., Tobler, L., Rössler, E., Piguet, D., Gäggeler, H. W., and
Baltensperger, U.: Heterogeneous production of nitrous acid on soot in
polluted air masses, Nature, 395, 157–160, 1998.
Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I – gas phase reactions of Ox, HOx, NOx and SOx species, Atmos. Chem. Phys., 4, 1461–1738, https://doi.org/10.5194/acp-4-1461-2004, 2004.
Aubin, D. G. and Abbatt, J. P.: Interaction of NO2 with hydrocarbon
soot: Focus on HONO yield, surface modification, and mechanism, J. Phys.
Chem. A, 111, 6263–6273, 2007.
Chang, Y., Zou, Z., Deng, C., Huang, K., Collett, J. L., Lin, J., and Zhuang, G.: The importance of vehicle emissions as a source of atmospheric ammonia in the megacity of Shanghai, Atmos. Chem. Phys., 16, 3577–3594, https://doi.org/10.5194/acp-16-3577-2016, 2016.
Cui, L., Li, R., Zhang, Y., Meng, Y., Fu, H., and Chen, J.: An observational
study of nitrous acid (HONO) in Shanghai, China: The aerosol impact on HONO
formation during the haze episodes, Sci. Total. Environ., 630, 1057–1070, https://doi.org/10.1016/j.scitotenv.2018.02.063, 2018.
Duan, J., Qin, M., Ouyang, B., Fang, W., Li, X., Lu, K., Tang, K., Liang, S., Meng, F., Hu, Z., Xie, P., Liu, W., and Häsler, R.: Development of an incoherent broadband cavity-enhanced absorption spectrometer for in situ measurements of HONO and NO2, Atmos. Meas. Tech., 11, 4531–4543, https://doi.org/10.5194/amt-11-4531-2018, 2018.
Elshorbany, Y. F., Kurtenbach, R., Wiesen, P., Lissi, E., Rubio, M., Villena, G., Gramsch, E., Rickard, A. R., Pilling, M. J., and Kleffmann, J.: Oxidation capacity of the city air of Santiago, Chile, Atmos. Chem. Phys., 9, 2257–2273, https://doi.org/10.5194/acp-9-2257-2009, 2009.
Elshorbany, Y. F., Steil, B., Brühl, C., and Lelieveld, J.: Impact of HONO on global atmospheric chemistry calculated with an empirical parameterization in the EMAC model, Atmos. Chem. Phys., 12, 9977–10000, https://doi.org/10.5194/acp-12-9977-2012, 2012.
Finlayson-Pitts, B. J., Wingen, L. M., Sumner, A. L., Syomin, D., and
Ramazan, K. A.: The heterogeneous hydrolysis of NO2 in laboratory systems
and in outdoor and indoor atmospheres: An integrated mechanism, Phys. Chem.
Chem. Phys., 5, 223–242, https://doi.org/10.1039/b208564j, 2003.
Fu, X., Wang, T., Zhang, L., Li, Q., Wang, Z., Xia, M., Yun, H., Wang, W., Yu, C., Yue, D., Zhou, Y., Zheng, J., and Han, R.: The significant contribution of HONO to secondary pollutants during a severe winter pollution event in southern China, Atmos. Chem. Phys., 19, 1–14, https://doi.org/10.5194/acp-19-1-2019, 2019.
Gao, J.: An analysis of some pollution weather conditions, Journal of
Oceanography in Taiwan Strait, 18, 55–62, 1999.
Ge, S., Wang, G., Zhang, S., Li, D., Xie, Y., Wu, C., Yuan, Q., Chen, J.,
and Zhang, H.: Abundant NH3 in China Enhances Atmospheric HONO Production by
Promoting the Heterogeneous Reaction of SO2 with NO2, Environ.
Sci. Technol., 53, 14339–14347, https://doi.org/10.1021/acs.est.9b04196, 2019.
George, C., Strekowski, R. S., Kleffmann, J., Stemmler, K., and Ammann, M.:
Photoenhanced uptake of gaseous NO2 on solid organic compounds: a
photochemical source of HONO?, Faraday Discuss., 130, 195–210, https://doi.org/10.1039/b417888m, 2005.
Gil, J., Kim, J., Lee, M., Lee, G., Lee, D., Jung, J., An, J., Hong, J., Cho, S., Lee, J., and Long, R.: The role of HONO in O3 formation and insight into its formation mechanism during the KORUS-AQ Campaign, Atmos. Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-2019-1012, 2019.
Gligorovski, S., Strekowski, R., Barbati, S., and Vione, D.: Environmental
Implications of Hydroxyl Radicals (⚫OH), Chem. Rev., 115, 13051–13092, https://doi.org/10.1021/cr500310b, 2015.
Gutzwiller, L., Arens, F., Baltensperger, U., Gäggeler,
H. W., and Ammann, M.: Significance of Semivolatile Diesel Exhaust Organics
for Secondary HONO Formation, Environ. Sci. Technol., 36, 677–682, 2002.
He, Y., Zhou, X., Hou, J., Gao, H., and Bertman, S. B.: Importance of dew in
controlling the air-surface exchange of HONO in rural forested environments,
Geophys. Res. Lett., 33, L02813, https://doi.org/10.1029/2005gl024348, 2006.
Hofzumahaus, A., Rohrer, F., Lu, K., Bohn, B., Brauers, T., Chang, C.-C.,
Fuchs, H., Holland, F., Kita, K., Kondo, Y., Li, X., Lou, S., Shao, M.,
Zeng, L., Wahner, A., and Zhang, Y.: Amplified Trace Gas Removal in the
Troposphere, Science, 324, 1702–1704, 2009.
Hou, S., Tong, S., Ge, M., and An, J.: Comparison of atmospheric nitrous
acid during severe haze and clean periods in Beijing, China, Atmos. Environ., 124, 199–206, https://doi.org/10.1016/j.atmosenv.2015.06.023, 2016.
Hu, B., Liu, T., Hong, Y., Xu, L., Li, M., Wu, X., Wang, H., Chen, J., and
Chen, J.: Characteristics of peroxyacetyl nitrate (PAN) in a coastal city of
southeastern China: Photochemical mechanism and pollution process, Sci.
Total Environ., 719, 137493, https://doi.org/10.1016/j.scitotenv.2020.137493, 2020.
Huang, R. J., Yang, L., Cao, J., Wang, Q., Tie, X., Ho, K. F., Shen, Z.,
Zhang, R., Li, G., Zhu, C., Zhang, N., Dai, W., Zhou, J., Liu, S., Chen, Y.,
Chen, J., and O'Dowd, C. D.: Concentration and sources of atmospheric
nitrous acid (HONO) at an urban site in Western China, Sci. Total Environ.,
593–594, 165–172, https://doi.org/10.1016/j.scitotenv.2017.02.166, 2017.
Jenkin, M. E., Cox, R. A., and Williams, D. J.: Laboratory studies of the
kinetics of formation of nitrous acid from the thermal reaction of nitrogen
dioxide and water vapour, Atmos. Environ., 22, 487–498, 1988.
Kasibhatla, P., Sherwen, T., Evans, M. J., Carpenter, L. J., Reed, C., Alexander, B., Chen, Q., Sulprizio, M. P., Lee, J. D., Read, K. A., Bloss, W., Crilley, L. R., Keene, W. C., Pszenny, A. A. P., and Hodzic, A.: Global impact of nitrate photolysis in sea-salt aerosol on NOx, OH, and O3 in the marine boundary layer, Atmos. Chem. Phys., 18, 11185–11203, https://doi.org/10.5194/acp-18-11185-2018, 2018.
Kirchner, U., Scheer, V., and Vogt, R.: FTIR Spectroscopic Investigation of
the Mechanism and Kinetics of the Heterogeneous Reactions of NO2 and HNO3
with Soot, J. Phys. Chem. A, 104, 8908–8915, 2000.
Kirchstetter, T. W., Harley, R. A., and Littlejohn, D.: Measurement of
Nitrous Acid in Motor Vehicle Exhaust, Environ. Sci. Technol., 30,
2843–2849, 1996.
Kleffmann, J.: Daytime formation of nitrous acid: A major source of OH
radicals in a forest, Geophys. Res. Lett., 32, L05818, https://doi.org/10.1029/2005gl022524, 2005.
Kleffmann, J.: Daytime sources of nitrous acid (HONO) in the atmospheric
boundary layer, Chem. Phys. Chem, 8, 1137–1144, https://doi.org/10.1002/cphc.200700016,
2007.
Kleffmann, J., Becker, K., and Wiesen, P.: Heterogeneous NO2 conversion
processes on acid surfaces: Possible atmospheric implications, Atmos.
Environ., 32, 2721–2729,
https://doi.org/10.1016/S1352-2310(98)00065-X, 1998.
Kramer, L. J., Crilley, L. R., Adams, T. J., Ball, S. M., Pope, F. D., and Bloss, W. J.: Nitrous acid (HONO) emissions under real-world driving conditions from vehicles in a UK road tunnel, Atmos. Chem. Phys., 20, 5231–5248, https://doi.org/10.5194/acp-20-5231-2020, 2020.
Kurtenbacha, R., Beckera, K. H., Gomesa, J. A. G., Kleffmanna, J., L.orzera,
J. C., Spittlera, M., Wiesena, P., Ackermannb, R., Geyerb, A., and Plattb,
U.: Investigations of emissions and heterogeneous formation of HONO in a
road traffic tunnel, Atmos. Environ., 35, 3385–3394, 2001.
Lee, B. H., Wood, E. C., Herndon, S. C., Lefer, B. L., Luke, W. T., Brune,
W. H., Nelson, D. D., Zahniser, M. S., and Munger, J. W.: Urban measurements
of atmospheric nitrous acid: A caveat on the interpretation of the HONO
photostationary state, J. Geophys. Res.-Atmos., 118, 12274–212281, https://doi.org/10.1002/2013jd020341, 2013.
Lee, J. D., Whalley, L. K., Heard, D. E., Stone, D., Dunmore, R. E., Hamilton, J. F., Young, D. E., Allan, J. D., Laufs, S., and Kleffmann, J.: Detailed budget analysis of HONO in central London reveals a missing daytime source, Atmos. Chem. Phys., 16, 2747–2764, https://doi.org/10.5194/acp-16-2747-2016, 2016.
Lei, L., Zhiyao, D., Hui Li, Chongqin Zhu, Graeme Henkelman, Joseph S.
Franciscoa, and Zeng, X. C.: Formation of HONO from the NH3-promoted
hydrolysis of NO2 dimers in the atmosphere, P. Natl. Acad. Sci. USA,
115, 7236–7241, https://doi.org/10.1073/pnas.1807719115, 2018.
Li, D., Xue, L., Wen, L., Wang, X., Chen, T., Mellouki, A., Chen, J., and
Wang, W.: Characteristics and sources of nitrous acid in an urban atmosphere
of northern China: Results from 1-yr continuous observations, Atmos.
Environ., 182, 296–306, https://doi.org/10.1016/j.atmosenv.2018.03.033, 2018.
Li, G., Lei, W., Zavala, M., Volkamer, R., Dusanter, S., Stevens, P., and Molina, L. T.: Impacts of HONO sources on the photochemistry in Mexico City during the MCMA-2006/MILAGO Campaign, Atmos. Chem. Phys., 10, 6551–6567, https://doi.org/10.5194/acp-10-6551-2010, 2010.
Li, L., Duan, Z., Li, H., Zhu, C., Henkelman, G., Francisco, J. S., and
Zeng, X. C.: Formation of HONO from the NH3-promoted hydrolysis of NO2
dimers in the atmosphere, P. Natl. Acad. Sci. USA, 115, 7236–7241, https://doi.org/10.1073/pnas.1807719115, 2018.
Li, S., Matthews, J., and Sinha, A.: Atmospheric Hydroxyl Radical Production
from Electronically Excited NO2 and H2O, Science, 319, 1657–1660, https://doi.org/10.1126/science.1151443, 2008.
Li, X., Brauers, T., Häseler, R., Bohn, B., Fuchs, H., Hofzumahaus, A., Holland, F., Lou, S., Lu, K. D., Rohrer, F., Hu, M., Zeng, L. M., Zhang, Y. H., Garland, R. M., Su, H., Nowak, A., Wiedensohler, A., Takegawa, N., Shao, M., and Wahner, A.: Exploring the atmospheric chemistry of nitrous acid (HONO) at a rural site in Southern China, Atmos. Chem. Phys., 12, 1497–1513, https://doi.org/10.5194/acp-12-1497-2012, 2012.
Li, X., Rohrer, F., Hofzumahaus, A., Brauers, T., Häseler, R., Bohn, B.,
Broch, S., Fuchs, H., Gomm, S., Holland, F., Jäger, J., Kaiser, J.,
Keutsch, F. N., Lohse, I., Lu, K., Tillmann, R., Wegener, R., Wolfe, G. M.,
Mentel, T. F., Kiendler-Scharr, A., and Wahner, A.: Missing Gas-Phase Source
of HONO Inferred from Zeppelin Measurements in the Troposphere, Science,
344, 292–296, https://doi.org/10.1126/science.1248999, 2014.
Liu, Y.: Observations and parameterized modelling of ambient nitrous acid
(HONO) in the megacity areas of the eastern China, PhD thesis, Peking University, China,
161 pp., 2017.
Liu, Y., Nie, W., Xu, Z., Wang, T., Wang, R., Li, Y., Wang, L., Chi, X., and Ding, A.: Semi-quantitative understanding of source contribution to nitrous acid (HONO) based on 1 year of continuous observation at the SORPES station in eastern China, Atmos. Chem. Phys., 19, 13289–13308, https://doi.org/10.5194/acp-19-13289-2019, 2019a.
Liu, Y., Lu, K., Li, X., Dong, H., Tan, Z., Wang, H., Zou, Q., Wu, Y., Zeng,
L., Hu, M., Min, K. E., Kecorius, S., Wiedensohler, A., and Zhang, Y.: A
Comprehensive Model Test of the HONO Sources Constrained to Field
Measurements at Rural North China Plain, Environ. Sci. Technol., 53, 3517–3525, https://doi.org/10.1021/acs.est.8b06367, 2019b.
Liu, Z., Wang, Y., Costabile, F., Amoroso, A., Zhao, C., Huey, L. G.,
Stickel, R., Liao, J., and Zhu, T.: Evidence of aerosols as a media for
rapid daytime HONO production over China, Environ. Sci. Technol., 48,
14386–14391, https://doi.org/10.1021/es504163z, 2014.
Lu, K. D., Hofzumahaus, A., Holland, F., Bohn, B., Brauers, T., Fuchs, H., Hu, M., Häseler, R., Kita, K., Kondo, Y., Li, X., Lou, S. R., Oebel, A., Shao, M., Zeng, L. M., Wahner, A., Zhu, T., Zhang, Y. H., and Rohrer, F.: Missing OH source in a suburban environment near Beijing: observed and modelled OH and HO2 concentrations in summer 2006, Atmos. Chem. Phys., 13, 1057–1080, https://doi.org/10.5194/acp-13-1057-2013, 2013.
Makkonen, U., Virkkula, A., Mäntykenttä, J., Hakola, H., Keronen, P., Vakkari, V., and Aalto, P. P.: Semi-continuous gas and inorganic aerosol measurements at a Finnish urban site: comparisons with filters, nitrogen in aerosol and gas phases, and aerosol acidity, Atmos. Chem. Phys., 12, 5617–5631, https://doi.org/10.5194/acp-12-5617-2012, 2012.
McFall, A. S., Edwards, K. C., and Anastasio, C.: Nitrate Photochemistry at
the Air-Ice Interface and in Other Ice Reservoirs, Environ. Sci. Technol.,
52, 5710–5717, https://doi.org/10.1021/acs.est.8b00095, 2018.
Meusel, H., Kuhn, U., Reiffs, A., Mallik, C., Harder, H., Martinez, M., Schuladen, J., Bohn, B., Parchatka, U., Crowley, J. N., Fischer, H., Tomsche, L., Novelli, A., Hoffmann, T., Janssen, R. H. H., Hartogensis, O., Pikridas, M., Vrekoussis, M., Bourtsoukidis, E., Weber, B., Lelieveld, J., Williams, J., Pöschl, U., Cheng, Y., and Su, H.: Daytime formation of nitrous acid at a coastal remote site in Cyprus indicating a common ground source of atmospheric HONO and NO, Atmos. Chem. Phys., 16, 14475–14493, https://doi.org/10.5194/acp-16-14475-2016, 2016.
Michoud, V., Colomb, A., Borbon, A., Miet, K., Beekmann, M., Camredon, M., Aumont, B., Perrier, S., Zapf, P., Siour, G., Ait-Helal, W., Afif, C., Kukui, A., Furger, M., Dupont, J. C., Haeffelin, M., and Doussin, J. F.: Study of the unknown HONO daytime source at a European suburban site during the MEGAPOLI summer and winter field campaigns, Atmos. Chem. Phys., 14, 2805–2822, https://doi.org/10.5194/acp-14-2805-2014, 2014.
Min, K.-E., Washenfelder, R. A., Dubé, W. P., Langford, A. O., Edwards, P. M., Zarzana, K. J., Stutz, J., Lu, K., Rohrer, F., Zhang, Y., and Brown, S. S.: A broadband cavity enhanced absorption spectrometer for aircraft measurements of glyoxal, methylglyoxal, nitrous acid, nitrogen dioxide, and water vapor, Atmos. Meas. Tech., 9, 423–440, https://doi.org/10.5194/amt-9-423-2016, 2016.
Monge, M. E., D'Anna, B., Mazri, L., Giroir-Fendler, A., Ammann, M.,
Donaldson, D. J., and George, C.: Light changes the atmospheric reactivity
of soot, P. Natl. Acad. Sci. USA, 107, 6605–6609, https://doi.org/10.1073/pnas.0908341107, 2010.
Ndour, M., D'Anna, B., George, C., Ka, O., Balkanski, Y., Kleffmann, J.,
Stemmler, K., and Ammann, M.: Photoenhanced uptake of NO2 on mineral
dust: Laboratory experiments and model simulations, Geophys. Res. Lett., 35, L05812, https://doi.org/10.1029/2007gl032006, 2008.
Nie, W., Ding, A. J., Xie, Y. N., Xu, Z., Mao, H., Kerminen, V.-M., Zheng, L. F., Qi, X. M., Huang, X., Yang, X.-Q., Sun, J. N., Herrmann, E., Petäjä, T., Kulmala, M., and Fu, C. B.: Influence of biomass burning plumes on HONO chemistry in eastern China, Atmos. Chem. Phys., 15, 1147–1159, https://doi.org/10.5194/acp-15-1147-2015, 2015.
Oswald, R., Behrendt, T., Ermel, M., Wu, D., Su, H., Cheng, Y., Breuninger,
C., Moravek, A., Mougin, E., Delon, C., Loubet, B., Pommerening-Roser, A.,
Sorgel, M., Pöschl, U., Hoffmann, T., Andreae, M. O., Meixner, F. X., and
Trebs, I.: HONO emissions from soil bacteria as a major source of
atmospheric reactive nitrogen, Science, 341, 1233–1235, https://doi.org/10.1126/science.1242266, 2013.
Park, S. S., Hong, S. B., Jung, Y. G., and Lee, J. H.: Measurements of
PM10 aerosol and gas-phase nitrous acid during fall season in a
semi-urban atmosphere, Atmos. Environ., 38, 293–304, https://doi.org/10.1016/j.atmosenv.2003.09.041, 2004.
Perner, D. and Platt, U.: Detection of nitrous acid in the atmosphere by
differential optical absorption, Geophys. Res. Lett., 6, 917–920,
https://doi.org/10.1029/GL006i012p00917, 1979.
Qin, M., Xie, P., Su, H., Gu, J., Peng, F., Li, S., Zeng, L., Liu, J., Liu,
W., and Zhang, Y.: An observational study of the HONO–NO2 coupling at an
urban site in Guangzhou City, South China, Atmos. Environ., 43, 5731–5742, https://doi.org/10.1016/j.atmosenv.2009.08.017, 2009.
Rappenglück, B., Lubertino, G., Alvarez, S., Golovko, J., Czader, B.,
and Ackermann, L.: Radical precursors and related species from traffic as
observed and modeled at an urban highway junction, J. Air Waste Ma., 63, 1270–1286, https://doi.org/10.1080/10962247.2013.822438, 2013.
Röckmann, T., Walter, S., Bohn, B., Wegener, R., Spahn, H., Brauers, T., Tillmann, R., Schlosser, E., Koppmann, R., and Rohrer, F.: Isotope effect in the formation of H2 from H2CO studied at the atmospheric simulation chamber SAPHIR, Atmos. Chem. Phys., 10, 5343–5357, https://doi.org/10.5194/acp-10-5343-2010, 2010.
Romer, P. S., Wooldridge, P. J., Crounse, J. D., Kim, M. J., Wennberg, P.
O., Dibb, J. E., Scheuer, E., Blake, D. R., Meinardi, S., Brosius, A. L.,
Thames, A. B., Miller, D. O., Brune, W. H., Hall, S. R., Ryerson, T. B., and
Cohen, R. C.: Constraints on Aerosol Nitrate Photolysis as a Potential
Source of HONO and NOx, Environ. Sci. Technol., 52, 13738–13746, https://doi.org/10.1021/acs.est.8b03861,
2018.
Ryan, R. G., Rhodes, S., Tully, M., Wilson, S., Jones, N., Frieß, U., and Schofield, R.: Daytime HONO, NO2 and aerosol distributions from MAX-DOAS observations in Melbourne, Atmos. Chem. Phys., 18, 13969–13985, https://doi.org/10.5194/acp-18-13969-2018, 2018.
Scharko, N. K., Berke, A. E., and Raff, J. D.: Release of Nitrous Acid and
Nitrogen Dioxide from Nitrate Photolysis in Acidic Aqueous Solutions,
Environ. Sci. Technol., 48, 11991–12001, https://doi.org/10.1021/es503088x, 2014.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: From
Air Pollution to Climate Changes, Wiley-Interscience, 1232 pp., ISBN 9780471720188, 1998.
Shi, X., Ge, Y., Zheng, J., Ma, Y., Ren, X., and Zhang, Y.: Budget of
nitrous acid and its impacts on atmospheric oxidative capacity at an urban
site in the central Yangtze River Delta region of China, Atmos. Environ.,
238, 117725, https://doi.org/10.1016/j.atmosenv.2020.117725, 2020.
Slanina, J., ten Brink, H. M., Otjes, R. P., Even, A., Jongejan, P.,
Khlystov, A., WaijersIjpelaan, A., and Hu, M.: The continuous analysis of
nitrate and ammonium in aerosols by the steam jet aerosol collector (SJAC):
extension and validation of the methodology, Atmos. Environ., 35, 2319–2330,
2001.
Sörgel, M., Regelin, E., Bozem, H., Diesch, J.-M., Drewnick, F., Fischer, H., Harder, H., Held, A., Hosaynali-Beygi, Z., Martinez, M., and Zetzsch, C.: Quantification of the unknown HONO daytime source and its relation to NO2, Atmos. Chem. Phys., 11, 10433–10447, https://doi.org/10.5194/acp-11-10433-2011, 2011.
Spataro, F., Ianniello, A., Esposito, G., Allegrini, I., Zhu, T., and Hu,
M.: Occurrence of atmospheric nitrous acid in the urban area of Beijing
(China), Sci. Total Environ., 447, 210–224, https://doi.org/10.1016/j.scitotenv.2012.12.065,
2013.
Stemmler, K., Ammann, M., Donders, C., Kleffmann, J., and George, C.:
Photosensitized reduction of nitrogen dioxide on humic acid as a source of
nitrous acid, Nature, 440, 195–198, https://doi.org/10.1038/nature04603, 2006.
Stutz, J., Alicke, B., Ackermann, R., Geyer, A., Wang, S., White, A. B.,
Williams, E. J., Spicer, C. W., and Fast, J. D.: Relative humidity
dependence of HONO chemistry in urban areas, J. Geophys. Res.-Atmos., 109, D03307, https://doi.org/10.1029/2003jd004135, 2004.
Su, H., Cheng, Y. F., Shao, M., Gao, D. F., Yu, Z. Y., Zeng, L. M., Slanina,
J., Zhang, Y. H., and Wiedensohler, A.: Nitrous acid (HONO) and its daytime
sources at a rural site during the 2004 PRIDE-PRD experiment in China, J.
Geophys. Res., 113, D14312, https://doi.org/10.1029/2007jd009060, 2008a.
Su, H., Cheng, Y. F., Cheng, P., Zhang, Y. H., Dong, S., Zeng, L. M., Wang,
X., Slanina, J., Shao, M., and Wiedensohler, A.: Observation of nighttime
nitrous acid (HONO) formation at a non-urban site during PRIDE-PRD2004 in
China, Atmos. Environ., 42, 6219–6232, https://doi.org/10.1016/j.atmosenv.2008.04.006,
2008b.
Su, H., Cheng, Y., Oswald, R., Behrendt, T., Trebs, I., Meixner, F. X.,
Andreae, M. O., Cheng, P., Zhang, Y., and Pöschl, U.: Soil nitrite as a
source of atmospheric HONO and OH radicals, Science, 333, 1616–1618, 2011.
Tan, Z., Fuchs, H., Lu, K., Hofzumahaus, A., Bohn, B., Broch, S., Dong, H., Gomm, S., Häseler, R., He, L., Holland, F., Li, X., Liu, Y., Lu, S., Rohrer, F., Shao, M., Wang, B., Wang, M., Wu, Y., Zeng, L., Zhang, Y., Wahner, A., and Zhang, Y.: Radical chemistry at a rural site (Wangdu) in the North China Plain: observation and model calculations of OH, HO2 and RO2 radicals, Atmos. Chem. Phys., 17, 663–690, https://doi.org/10.5194/acp-17-663-2017, 2017.
Tang, K., Qin, M., Duan, J., Fang, W., Meng, F., Liang, S., Xie, P., Liu,
J., Liu, W., Xue, C., and Mu, Y.: A dual dynamic chamber system based on
IBBCEAS for measuring fluxes of nitrous acid in agricultural fields in the
North China Plain, Atmos. Environ., 196, 10–19, https://doi.org/10.1016/j.atmosenv.2018.09.059, 2019.
Underwood, G. M., Song, C. H., Phadnis, M., Carmichael, G. R., and Grassian,
V. H.: Heterogeneous reactions of NO2 and HNO3 on oxides and mineral dust: A
combined laboratory and modeling study, J. Geophys. Res.-Atmos., 106,
18055–18066, https://doi.org/10.1029/2000jd900552, 2001.
VandenBoer, T. C., Brown, S. S., Murphy, J. G., Keene, W. C., Young, C. J.,
Pszenny, A. A. P., Kim, S., Warneke, C., de Gouw, J. A., Maben, J. R.,
Wagner, N. L., Riedel, T. P., Thornton, J. A., Wolfe, D. E., Dubé, W.
P., Öztürk, F., Brock, C. A., Grossberg, N., Lefer, B., Lerner, B.,
Middlebrook, A. M., and Roberts, J. M.: Understanding the role of the ground
surface in HONO vertical structure: High resolution vertical profiles during
NACHTT-11, J. Geophys. Res.-Atmos., 118, 10155–110171, https://doi.org/10.1002/jgrd.50721, 2013.
VandenBoer, T. C., Young, C. J., Talukdar, R. K., Markovic, M. Z., Brown, S.
S., Roberts, J. M., and Murphy, J. G.: Nocturnal loss and daytime source of
nitrous acid through reactive uptake and displacement, Nat. Geosci., 8,
55–60, https://doi.org/10.1038/ngeo2298, 2014.
Villena, G., Bejan, I., Kurtenbach, R., Wiesen, P., and Kleffmann, J.: Interferences of commercial NO2 instruments in the urban atmosphere and in a smog chamber, Atmos. Meas. Tech., 5, 149–159, https://doi.org/10.5194/amt-5-149-2012, 2012.
Wang, H., Lyu, X., Guo, H., Wang, Y., Zou, S., Ling, Z., Wang, X., Jiang, F., Zeren, Y., Pan, W., Huang, X., and Shen, J.: Ozone pollution around a coastal region of South China Sea: interaction between marine and continental air, Atmos. Chem. Phys., 18, 4277–4295, https://doi.org/10.5194/acp-18-4277-2018, 2018.
Wang, J., Zhang, X., Guo, J., Wang, Z., and Zhang, M.: Observation of
nitrous acid (HONO) in Beijing, China: Seasonal variation, nocturnal
formation and daytime budget, Sci. Total Environ., 587–588, 350–359, https://doi.org/10.1016/j.scitotenv.2017.02.159, 2017.
Wang, L., Wen, L., Xu, C., Chen, J., Wang, X., Yang, L., Wang, W., Yang, X.,
Sui, X., Yao, L., and Zhang, Q.: HONO and its potential source particulate
nitrite at an urban site in North China during the cold season, Sci. Total
Environ., 538, 93–101, https://doi.org/10.1016/j.scitotenv.2015.08.032, 2015.
Wang, S., Ackermann, R., Spicer, C. W., Fast, J. D., Schmeling, M., and Stutz, J.: Atmospheric observations of enhanced NO2-HONO conversion on
mineral dust particles, Geophys. Res. Lett., 30, 1595, https://doi.org/10.1029/2003gl017014, 2003.
Wang, S., Zhou, R., Zhao, H., Wang, Z., Chen, L., and Zhou, B.: Long-term
observation of atmospheric nitrous acid (HONO) and its implication to local
NO2 levels in Shanghai, China, Atmos. Environ., 77, 718–724, https://doi.org/10.1016/j.atmosenv.2013.05.071, 2013.
Wen, L., Chen, T., Zheng, P., Wu, L., Wang, X., Mellouki, A., Xue, L., and
Wang, W.: Nitrous acid in marine boundary layer over eastern Bohai Sea,
China: Characteristics, sources, and implications, Sci. Total Environ., 670, 282–291, https://doi.org/10.1016/j.scitotenv.2019.03.225, 2019.
Wong, K. W., Oh, H.-J., Lefer, B. L., Rappenglück, B., and Stutz, J.: Vertical profiles of nitrous acid in the nocturnal urban atmosphere of Houston, TX, Atmos. Chem. Phys., 11, 3595–3609, https://doi.org/10.5194/acp-11-3595-2011, 2011.
Wyers, G. P., Oties, R. P., and Slanina, J.: A continuous-flow denuder for
the measurement of ambient concentrations and surface-exchange fluxes of
ammonia, Atmos. Environ., 27, 2085–2090, 1993.
Xia, D., Zhang, X., Chen, J., Tong, S., Xie, H. B., Wang, Z., Xu, T., Ge,
M., and Allen, D. T.: Heterogeneous Formation of HONO Catalyzed by CO2,
Environ. Sci. Technol., 55, 12215–12222, https://doi.org/10.1021/acs.est.1c02706, 2021.
Xu, W., Kuang, Y., Zhao, C., Tao, J., Zhao, G., Bian, Y., Yang, W., Yu, Y., Shen, C., Liang, L., Zhang, G., Lin, W., and Xu, X.: NH3-promoted hydrolysis of NO2 induces explosive growth in HONO, Atmos. Chem. Phys., 19, 10557–10570, https://doi.org/10.5194/acp-19-10557-2019, 2019.
Xu, Z., Wang, T., Wu, J., Xue, L., Chan, J., Zha, Q., Zhou, S., Louie, P. K.
K., and Luk, C. W. Y.: Nitrous acid (HONO) in a polluted subtropical
atmosphere: Seasonal variability, direct vehicle emissions and heterogeneous
production at ground surface, Atmos. Environ., 39, 100–109, https://doi.org/10.1016/j.atmosenv.2015.01.061, 2015.
Xun, A., Huang, H., and Chen, D.: The observation and characteristic
analysis of sea-land breeze circulation in Xiamen area, Straits Science, 12,
3–7, 2017.
Yabushita, A., Enami, S., Sakamoto, Y., Kawasaki, M., Hoffmann, M. R., and
Colussi, A. J.: Anion-Catalyzed Dissolution of NO2 on Aqueous Microdroplets,
J. Phys. Chem. A, 113, 4844–4848, 2009.
Ye, C., Zhou, X., Pu, D., Stutz, J., Festa, J., Spolaor, M., Tsai, C.,
Cantrell, C., Mauldin III, R. L., Campos, T., Weinheimer, A., Hornbrook, R.
S., Apel, E. C., Guenther, A., Kaser, L., Yuan, B., Karl, T., Haggerty, J.,
Hall, S., Ullmann, K., Smith, J. N., Ortega, J., and Knote, C.: Rapid
cycling of reactive nitrogen in the marine boundary layer, Nature, 532,
489–491, https://doi.org/10.1038/nature17195, 2016.
Ye, C., Zhang, N., Gao, H., and Zhou, X.: Photolysis of Particulate Nitrate
as a Source of HONO and NOx, Environ. Sci. Technol., 51, 6849–6856, https://doi.org/10.1021/acs.est.7b00387, 2017.
Yu, Y., Galle, B., Panday, A., Hodson, E., Prinn, R., and Wang, S.: Observations of high rates of NO2-HONO conversion in the nocturnal atmospheric boundary layer in Kathmandu, Nepal, Atmos. Chem. Phys., 9, 6401–6415, https://doi.org/10.5194/acp-9-6401-2009, 2009.
Zhang, B. and Tao, F.-M.: Direct homogeneous nucleation of NO2,
H2O, and NH3 for the production of ammonium nitrate particles and
HONO gas, Chem. Phys. Lett., 489, 143–147, https://doi.org/10.1016/j.cplett.2010.02.059,
2010.
Zheng, J., Shi, X., Ma, Y., Ren, X., Jabbour, H., Diao, Y., Wang, W., Ge, Y., Zhang, Y., and Zhu, W.: Contribution of nitrous acid to the atmospheric oxidation capacity in an industrial zone in the Yangtze River Delta region of China, Atmos. Chem. Phys., 20, 5457–5475, https://doi.org/10.5194/acp-20-5457-2020, 2020.
Zhou, L., Wang, W., Hou, S., Tong, S., and Ge, M.: Heterogeneous uptake of
nitrogen dioxide on Chinese mineral dust, J. Environ. Sci.-China, 38,
110–118, https://doi.org/10.1016/j.jes.2015.05.017, 2015.
Zhou, X., Huang, G., Civerolo, K., Roychowdhury, U., and Demerjian, K. L.:
Summertime observations of HONO, HCHO, and O3 at the summit of
Whiteface Mountain, New York, J. Geophys. Res., 112, D08311, https://doi.org/10.1029/2006jd007256,
2007.
Zhou, X., Zhang, N., TerAvest, M., Tang, D., Hou, J., Bertman, S.,
Alaghmand, M., Shepson, P. B., Carroll, M. A., Griffith, S., Dusanter, S.,
and Stevens, P. S.: Nitric acid photolysis on forest canopy surface as a
source for tropospheric nitrous acid, Nat. Geosci., 4, 440–443, https://doi.org/10.1038/ngeo1164, 2011.
Short summary
There has been a lack of research into HONO in coastal cities with low concentrations of PM2.5, but strong sunlight and high humidity. Insufficient research on coastal cities with good air quality has resulted in certain obstacles to assessing the photochemical processes in these areas. Furthermore, HONO contributes to the atmospheric photochemistry depending on the season. Therefore, observations of HONO across four seasons in the southeastern coastal area of China are urgently needed.
There has been a lack of research into HONO in coastal cities with low concentrations of PM2.5,...
Altmetrics
Final-revised paper
Preprint