

Supplement of

Exploration of the atmospheric chemistry of nitrous acid in a coastal city of southeastern China: results from measurements across four seasons

Baoye Hu et al.

Correspondence to: Jinsheng Chen (jschen@iue.ac.cn) and Min Qin (mqin@aiofm.ac.cn)

The copyright of individual parts of the supplement might differ from the article licence.

Supplementary Material

Table S1. Comparison of HONO concentrations and related parameters at this site with other regions.

Site	Country	Туре	Seasons	RH (%)	T (°C)	NO/NO ₂	HONO (ppb)	Reference
Jinan	China	Urban	Annual	51.42	16.07	15.38/27.92	1.15 ± 1.07	(Li et al. 2018)
			Spring	56.67	16.77	11.33/29.67	1.16 ± 0.90	
			Summer	38.67	26.67	5.67/17.33	1.12 ± 0.93	
			Autumn	53.00	16.33	13.00/23.67	0.78 ± 0.60	
			Winter	59.67	3.00	31.17/36.33	1.71 ± 1.62	
Kathmandu	Nepal	Urban	Winter		_	3.16/14.14	1.55	(Yu et al. 2009)
Beijing	China	Urban	Severe haze	—		29.35/48.1	1.95	(Hou et al. 2016)
			Clean			5.2/18.85	0.72	,
Guangzhou	China	Urban	Summer	77	31.2	—/30.3	~2.8	(Qin et al. 2009)
Shanghai	China	Urban	Annual	_		/18.78	0.92 ± 0.57	(Wang et al. 2013)
Changzhou	China	Urban	Spring	53.7 ± 19.8	18.7 ± 4.8	8.2/22.9	1.55 ± 1.21	(Shi et al. 2020)
Beijing	China	Urban	Summer	56.79	28.27	6.44/31.70	1.45 ± 0.58	(Spataro et al.
			Winter	26.02	3.51	25.90/38.76	1.04 ± 0.73	2013)
Xi'an)	China	Urban	Summer	—	—	—/20.9	1.12 ± 0.97	(Huang et al. 2017)
Beijing	China	Urban	Annual	43.34	16.01		1.44 ± 1.33	(Wang et al.
5 0			Spring	34.73	18.44	—/25.97	1.05 ± 0.95	2017a)
			Summer	55.30	28.11	—/19.21	1.38 ± 0.90	
			autumn	51.11	17.33	/32.91	2.27 ± 1.82	
			winter	30.48	-3.57	—/19.96	1.05 ± 0.89	
Nanjing	China	Industrial	Winter	68	6.1	7.97/23.9	1.32 ± 0.92	(Zheng et al. 2020)
Touji Island	China	Marine background	Autumn	74	14.2	0.5/5.3	0.20 ± 0.20	(Wen et al. 2019)
The North Atlantic Ocean	_	Marine boundary layer	5 July 2013	_		—	$\begin{array}{ccc} 0.0113 & \pm \\ 0.0016 & \end{array}$	(Ye et al. 2016)
		5 5	8 July 2013	—		—	0.0088 ± 0.0023	
Cyprus	Mediterranean Sea	Coastal remote	summer	_	18-28	0.02/0.14	0.035 ± 0.025	(Meusel et al. 2016)
Kwangju	Korea	Suburban	Autumn	74.55	15.08	—	0.67 ± 0.60	(Park et al. 2004)

Nanjing	China	Suburban	Annual	72	17.00	5.7/16.4	0.69 ± 0.58	(Liu et al. 2019)
			Spring	73	17.67	2.35/15.15	0.68 ± 0.48	
			Summer	77	28.00	1.2/10.1	0.45 ± 0.37	
			Autumn	72	18.11	5.25/16.15	0.66 ± 0.53	
			Winter	66	4.33	15.58/25.75	1.04 ± 0.75	
Hongkong	China	Suburban	Annual	73	25	10.7/21.7	0.71	(Xu et al. 2015)
			Spring	75	28	5.5/15.5	0.35	
			Summer	71	32	8/19.8	0.65	
			Autumn	67	23	10.1/26.8	0.93	
			Winter	78	17	19.3/24.7	0.91	
Western Yangtze	China	Suburban	Spring	_		—	0.76 ± 0.79	(Nie et al. 2015)
River delta								
Xiamen	China	Suburban	Annual	78.35	22.95	5.80/14.99	0.54 ± 0.47	This work
			Spring	84.21	16.59	8.47/18.10	0.62 ± 0.58	
			Summer	84.12	30.00	4.79/13.39	0.61 ± 0.39	
			Autumn	69.55	24.02	2.18/12.88	0.41 ± 0.30	
			Winter	78.13	18.41	8.86/17.03	0.54 ± 0.47	

Note: "-" means no data found in the corresponding reference.

Figure S1. Time series measurements of NO₂ from the IBBCEAS and TEI 42*i*.

Figure S2. Time series of photolysis rate constants.

Figure S3. Diurnal variations of HONO_{corr}/NO₂.

Figure S4. Correlations between the strength of Runknown and BC (colored by orange), UV (colored by dark yellow), and BC*UV (colored by magenta) in autumn and winter, respectively

Figure S5. Correlations between *J*(HONO)×HONO and *J*(NO₂)×NO₂.

Figure S6. Diurnal profile of the measured values of HONO and the value estimated using the parameterized formula Eq. (10).

Figure S7. Diurnal variation of NO₂ concentration and HONO concentration simulated by Eq. (10).

25

Figure S8. Diurnal variations of $J(O^1D)$.

Figure S9. Diurnal variations of *J*(HONO).