Articles | Volume 22, issue 23
https://doi.org/10.5194/acp-22-15379-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-15379-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Equatorial waves resolved by balloon-borne Global Navigation Satellite System radio occultation in the Strateole-2 campaign
Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
Jennifer S. Haase
Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
Michael J. Murphy
Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
M. Joan Alexander
NorthWest Research Associates, Boulder Office, Boulder, CO, USA
Martina Bramberger
NorthWest Research Associates, Boulder Office, Boulder, CO, USA
Albert Hertzog
Laboratoire de Météorologie Dynamique, Sorbonne Université, École Polytechnique, CNRS, Palaiseau, France
Related authors
Bing Cao, Jennifer S. Haase, Michael J. Murphy Jr., and Anna M. Wilson
Atmos. Meas. Tech., 18, 3361–3392, https://doi.org/10.5194/amt-18-3361-2025, https://doi.org/10.5194/amt-18-3361-2025, 2025
Short summary
Short summary
This paper describes an airborne radio occultation (ARO) observation system installed on a reconnaissance aircraft that uses GPS signal refraction in the atmosphere to retrieve information about the temperature and moisture in the storm environment as far away as 400 km surrounding the flight track. The characteristics and quality of 1700 ARO refractivity profiles were assessed. These observations are collected to help understand atmospheric rivers and improve their forecasting.
Bing Cao and Alan Z. Liu
Atmos. Meas. Tech., 17, 2123–2146, https://doi.org/10.5194/amt-17-2123-2024, https://doi.org/10.5194/amt-17-2123-2024, 2024
Short summary
Short summary
A narrow-band sodium lidar measures atmospheric waves but is limited to vertical variations. We propose to utilize phase shifts among observations from different laser beams to derive horizontal wave information. Two gravity wave packets were identified by this method. Both waves were found to interact with thin evanescent layers, partially reflected, but transmitted energy to higher altitudes. The method can detect more medium-frequency gravity waves for similar lidar systems worldwide.
Pierre Cadiou, Riwal Plougonven, Aurélien Podglajen, Albert Hertzog, and Alexandra Mac Farlane
EGUsphere, https://doi.org/10.5194/egusphere-2025-3208, https://doi.org/10.5194/egusphere-2025-3208, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Winds in the Equatorial region remain difficult to model. We take advantage of long-duration balloon campaigns from 2019 and 2021 to assess errors in winds between 18 and 20 km in a weather forecast model. Large errors persist: one third of the time, the error is larger than 3.5 meters per second. This has implications for research studies that calculate air mass trajectories in this transition region between the troposphere and the stratosphere.
Bing Cao, Jennifer S. Haase, Michael J. Murphy Jr., and Anna M. Wilson
Atmos. Meas. Tech., 18, 3361–3392, https://doi.org/10.5194/amt-18-3361-2025, https://doi.org/10.5194/amt-18-3361-2025, 2025
Short summary
Short summary
This paper describes an airborne radio occultation (ARO) observation system installed on a reconnaissance aircraft that uses GPS signal refraction in the atmosphere to retrieve information about the temperature and moisture in the storm environment as far away as 400 km surrounding the flight track. The characteristics and quality of 1700 ARO refractivity profiles were assessed. These observations are collected to help understand atmospheric rivers and improve their forecasting.
Mathieu Ratynski, Sergey Khaykin, Alain Hauchecorne, Joan Alexander, Alexis Mariaccia, Philippe Keckhut, and Antoine Mangin
EGUsphere, https://doi.org/10.5194/egusphere-2025-394, https://doi.org/10.5194/egusphere-2025-394, 2025
Short summary
Short summary
This study investigates how tropical convection generates gravity waves, which play a key role in transporting energy across the atmosphere. By combining Aeolus satellite data with ERA5 reanalysis data and radio-occultation measurements, we identified significant wave activity overlooked by ERA5, particularly over the Indian Ocean. Aeolus fills major gaps in wind data, offering a clearer picture of wave dynamics and challenging assumptions about their behavior, improving climate models.
Sullivan Carbone, Emmanuel D. Riviere, Mélanie Ghysels, Jérémie Burgalat, Georges Durry, Nadir Amarouche, Aurélien Podglajen, and Albert Hertzog
EGUsphere, https://doi.org/10.5194/egusphere-2024-3249, https://doi.org/10.5194/egusphere-2024-3249, 2024
Short summary
Short summary
During the two first Strateole 2 campaigns, instruments have flown under super pressure balloons between 18 and 20 km for several weeks at the equator and performed in situ measurements of water vapor. The present article exposes the methodology used to quantify the modulation of water vapor by atmospheric waves and deep convective cases. This methodology allows to put to the fore the influence of atmospheric waves and extremely deep convection on the observed water vapor anomalies.
Bing Cao and Alan Z. Liu
Atmos. Meas. Tech., 17, 2123–2146, https://doi.org/10.5194/amt-17-2123-2024, https://doi.org/10.5194/amt-17-2123-2024, 2024
Short summary
Short summary
A narrow-band sodium lidar measures atmospheric waves but is limited to vertical variations. We propose to utilize phase shifts among observations from different laser beams to derive horizontal wave information. Two gravity wave packets were identified by this method. Both waves were found to interact with thin evanescent layers, partially reflected, but transmitted energy to higher altitudes. The method can detect more medium-frequency gravity waves for similar lidar systems worldwide.
Timothy P. Banyard, Corwin J. Wright, Scott M. Osprey, Neil P. Hindley, Gemma Halloran, Lawrence Coy, Paul A. Newman, Neal Butchart, Martina Bramberger, and M. Joan Alexander
Atmos. Chem. Phys., 24, 2465–2490, https://doi.org/10.5194/acp-24-2465-2024, https://doi.org/10.5194/acp-24-2465-2024, 2024
Short summary
Short summary
In 2019/2020, the tropical stratospheric wind phenomenon known as the quasi-biennial oscillation (QBO) was disrupted for only the second time in the historical record. This was poorly forecasted, and we want to understand why. We used measurements from the first Doppler wind lidar in space, Aeolus, to observe the disruption in an unprecedented way. Our results reveal important differences between Aeolus and the ERA5 reanalysis that affect the timing of the disruption's onset and its evolution.
Xue Wu, Lars Hoffmann, Corwin J. Wright, Neil P. Hindley, M. Joan Alexander, Silvio Kalisch, Xin Wang, Bing Chen, Yinan Wang, and Daren Lyu
EGUsphere, https://doi.org/10.5194/egusphere-2023-3008, https://doi.org/10.5194/egusphere-2023-3008, 2024
Preprint archived
Short summary
Short summary
This study identified a noteworthy time-lagged correlation between hurricane intensity and stratospheric gravity wave intensities during hurricane intensification. Meanwhile, the study reveals distinct frequencies, horizontal wavelengths, and vertical wavelengths in the inner core region during hurricane intensification, offering essential insights for monitoring hurricane intensity via satellite observations of stratospheric gravity waves.
Milena Corcos, Albert Hertzog, Riwal Plougonven, and Aurélien Podglajen
Atmos. Chem. Phys., 23, 6923–6939, https://doi.org/10.5194/acp-23-6923-2023, https://doi.org/10.5194/acp-23-6923-2023, 2023
Short summary
Short summary
The role of gravity waves on tropical cirrus clouds and air-parcel dehydration was studied using the combination of Lagrangian observations of temperature fluctuations from superpressure balloons and a 1.5D model. The inclusion of the gravity waves to a reference simulation of a slow ascent around the cold-point tropopause drastically increases ice-crystal density, cloud fraction, and air-parcel dehydration, and it produces a crystal size distribution that agrees better with observations.
J. Douglas Goetz, Lars E. Kalnajs, Terry Deshler, Sean M. Davis, Martina Bramberger, and M. Joan Alexander
Atmos. Meas. Tech., 16, 791–807, https://doi.org/10.5194/amt-16-791-2023, https://doi.org/10.5194/amt-16-791-2023, 2023
Short summary
Short summary
An instrument for in situ continuous 2 km vertical profiles of temperature below high-altitude balloons was developed for high-temporal-resolution measurements within the upper troposphere and lower stratosphere using fiber-optic distributed temperature sensing. The mechanical, electrical, and temperature calibration systems were validated from a short mid-latitude constant-altitude balloon flight within the lower stratosphere. The instrument observed small-scale and inertial gravity waves.
Richard Wilson, Clara Pitois, Aurélien Podglajen, Albert Hertzog, Milena Corcos, and Riwal Plougonven
Atmos. Meas. Tech., 16, 311–330, https://doi.org/10.5194/amt-16-311-2023, https://doi.org/10.5194/amt-16-311-2023, 2023
Short summary
Short summary
Strateole-2 is an French–US initiative designed to study atmospheric events in the tropical upper troposphere–lower stratosphere. In this work, data from several superpressure balloons, capable of staying aloft at an altitude of 18–20 km for over 3 months, were used. The present article describes methods to detect the occurrence of atmospheric turbulence – one efficient process impacting the properties of the atmosphere composition via stirring and mixing.
Hans-Christoph Lachnitt, Peter Hoor, Daniel Kunkel, Martina Bramberger, Andreas Dörnbrack, Stefan Müller, Philipp Reutter, Andreas Giez, Thorsten Kaluza, and Markus Rapp
Atmos. Chem. Phys., 23, 355–373, https://doi.org/10.5194/acp-23-355-2023, https://doi.org/10.5194/acp-23-355-2023, 2023
Short summary
Short summary
We present an analysis of high-resolution airborne measurements during a flight of the DEEPWAVE 2014 campaign in New Zealand. The focus of this flight was to study the effects of enhanced mountain wave activity over the Southern Alps. We discuss changes in the upstream and downstream distributions of N2O and CO and show that these changes are related to turbulence-induced trace gas fluxes which have persistent effects on the trace gas composition in the lower stratosphere.
Corwin J. Wright, Neil P. Hindley, M. Joan Alexander, Laura A. Holt, and Lars Hoffmann
Atmos. Meas. Tech., 14, 5873–5886, https://doi.org/10.5194/amt-14-5873-2021, https://doi.org/10.5194/amt-14-5873-2021, 2021
Short summary
Short summary
Measuring atmospheric gravity waves in low vertical-resolution data is technically challenging, especially when the waves are significantly longer in the vertical than in the length of the measurement domain. We introduce and demonstrate a modification to the existing Stockwell transform methods of characterising these waves that address these problems, with no apparent reduction in the other capabilities of the technique.
Cited articles
Alexander, M. J. and Ortland, D. A.: Equatorial waves in High Resolution
Dynamics Limb Sounder (HIRDLS) data, J. Geophys. Res.-Atmos., 115, D24111, https://doi.org/10.1029/2010JD014782, 2010. a, b
Alexander, M. J., Geller, M., McLandress, C., Polavarapu, S., Preusse, P.,
Sassi, F., Sato, K., Eckermann, S., Ern, M., Hertzog, A., Kawatani, Y.,
Pulido, M., Shaw, T. A., Sigmond, M., Vincent, R., and Watanabe, S.: Recent
developments in gravity-wave effects in climate models and the global
distribution of gravity-wave momentum flux from observations and models,
Q. J. Roy. Meteor. Soc., 136, 1103–1124, https://doi.org/10.1002/qj.637, 2010. a
Antonita, T. M., Ramkumar, G., Kishore Kumar, K., and Sunil Kumar, S. V.:
Quantification of gravity wave forcing in driving the stratospheric
Quasi-Biennial Oscillation, Geophys. Res. Lett., 35, L09805,
https://doi.org/10.1029/2008GL033960, 2008. a
Baldwin, M. P., Gray, L. J., Dunkerton, T. J., Hamilton, K., Haynes, P. H.,
Randel, W. J., Holton, J. R., Alexander, M. J., Hirota, I., Horinouchi, T.,
Jones, D. B. A., Kinnersley, J. S., Marquardt, C., Sato, K., and Takahashi,
M.: The Quasi-Biennial Oscillation, Rev. Geophys., 39, 179–229,
https://doi.org/10.1029/1999RG000073, 2001. a
Boccara, G., Hertzog, A., Vincent, R. A., and Vial, F.: Estimation of Gravity
Wave Momentum Flux and Phase Speeds from Quasi-Lagrangian Stratospheric
Balloon Flights, Part I: Theory and Simulations, J. Atmos. Sci, 65,
3042–3055, https://doi.org/10.1175/2008JAS2709.1, 2008. a
Born, M. and Wolf, E.: Principles of optics: electromagnetic theory of
propagation, interference and diffraction of light, Cambridge University
Press, New York, 7th (expanded) edn., ISBN 0521642221, 1999. a
Bushell, A. C., Anstey, J. A., Butchart, N., Kawatani, Y., Osprey, S. M.,
Richter, J. H., Serva, F., Braesicke, P., Cagnazzo, C., Chen, C.-C., Chun,
H.-Y., Garcia, R. R., Gray, L. J., Hamilton, K., Kerzenmacher, T., Kim,
Y.-H., Lott, F., McLandress, C., Naoe, H., Scinocca, J., Smith, A. K.,
Stockdale, T. N., Versick, S., Watanabe, S., Yoshida, K., and Yukimoto, S.:
Evaluation of the Quasi-Biennial Oscillation in global climate models for
the SPARC QBO-initiative, Q. J. Roy. Meteor. Soc., 1, 1459–1489, https://doi.org/10.1002/qj.3765, 2020. a
Chen, X. M., Chen, S.-H., Haase, J. S., Murphy, B. J., Wang, K.-N., Garrison,
J. L., Chen, S. Y., Huang, C. Y., Adhikari, L., and Xie, F.: The Impact of
Airborne Radio Occultation Observations on the Simulation of Hurricane Karl
(2010), Mon. Weather Rev., 146, 329–350, https://doi.org/10.1175/MWR-D-17-0001.1,
2018. a
Crustal Dynamics Data Information System (CDDIS DAAC): International GNSS Service, Daily 30-second observation data, NASA EOSDIS CDDIS DAAC [data set], https://doi:10.5067/GNSS/gnss_daily_o_00, last access: 1 May 2020. a
Corcos, M., Hertzog, A., Plougonven, R., and Podglajen, A.: Observation of
Gravity Waves at the Tropical Tropopause Using Superpressure Balloons,
J. Geophys. Res.-Atmos., 126, e2021JD035165,
https://doi.org/10.1029/2021JD035165, 2021. a
Dach, R., Schaer, S., Arnold, D., Kalarus, M. S., Prange, L., Stebler, P.,
Villiger, A., and Jäggi, A.: CODE final product series for the IGS, Astronomical Institute, University of Bern [data set],
https://doi.org/10.7892/boris.75876.4, 2020. a, b
de la Torre, A., Alexander, P., Schmidt, T., Llamedo, P., and Hierro, R.: On the distortions in calculated GW parameters during slanted atmospheric soundings, Atmos. Meas. Tech., 11, 1363–1375, https://doi.org/10.5194/amt-11-1363-2018, 2018. a
Ern, M. and Preusse, P.: Quantification of the contribution of equatorial
Kelvin waves to the QBO wind reversal in the stratosphere, Geophys. Res. Lett., 36, L21801, https://doi.org/10.1029/2009GL040493, 2009. a, b, c
Ern, M., Preusse, P., Krebsbach, M., Mlynczak, M. G., and Russell III, J. M.: Equatorial wave analysis from SABER and ECMWF temperatures, Atmos. Chem. Phys., 8, 845–869, https://doi.org/10.5194/acp-8-845-2008, 2008. a
Ern, M., Ploeger, F., Preusse, P., Gille, J. C., Gray, L. J., Kalisch, S.,
Mlynczak, M. G., Russell, J. M., and Riese, M.: Interaction of gravity waves
with the QBO: A satellite perspective, J. Geophys. Res.-Atmos., 119, 2329–2355, https://doi.org/10.1002/2013JD020731, 2014. a
European Centre for Medium-Range Weather Forecasts: ERA5 Reanalysis (0.25
Degree Latitude-Longitude Grid), https://doi.org/10.5065/BH6N-5N20, 2019. a
Fjeldbo, G. and Eshleman, V. R.: The atmosphere of Mars analyzed by integral
inversion of the Mariner IV occultation data, Planet. Space Sci.,
16, 1035–1059, https://doi.org/10.1016/0032-0633(68)90020-2, 1968. a
Ge, M., Gendt, G., Rothacher, M., Shi, C., and Liu, J.: Resolution of GPS
carrier-phase ambiguities in Precise Point Positioning (PPP) with daily
observations, J. Geodesy, 82, 389–399,
https://doi.org/10.1007/s00190-007-0187-4, 2008. a
Geng, J., Shi, C., Ge, M., Dodson, A. H., Lou, Y., Zhao, Q., and Liu, J.:
Improving the estimation of fractional-cycle biases for ambiguity resolution
in precise point positioning, J. Geodesy, 86, 579–589,
https://doi.org/10.1007/s00190-011-0537-0, 2011. a
Geng, J., Chen, X., Pan, Y., Mao, S., Li, C., Zhou, J., and Zhang, K.: PRIDE
PPP-AR: An Open-Source Software for GPS PPP Ambiguity Resolution, GPS
Solut., 23, 1–10, https://doi.org/10.1007/s10291-019-0888-1, 2019. a
Haase, J. S., Maldonado-Vargas, J., Rabier, F., Cocquerez, P., Minois, M.,
Guidard, V., Wyss, P., and Johnson, A. V.: A proof-of-concept balloon-borne
Global Positioning System radio occultation profiling instrument for polar
studies, Geophys. Res. Lett., 39, l02803, https://doi.org/10.1029/2011GL049982, 2012. a, b
Haase, J. S., Murphy, B. J., Muradyan, P., Nievinski, F. G., Larson, K. M.,
Garrison, J. L., and Wang, K.-N.: First results from an airborne GPS radio
occultation system for atmospheric profiling, Geophys. Res. Lett.,
41, 1759–1765, https://doi.org/10.1002/2013GL058681, 2013GL058681, 2014. a, b
Haase, J. S., Alexander, M. J., A. Hertzog, L. K., Deshler, T., Davis, S. M.,
Plougonven, R., Cocquerez, P., and Venel, S.: Around the world in 84 days,
EOS, 99, 32–36, https://doi.org/10.1029/2018EO091907, 2018. a
Haase, J. S., Murphy, M. J., Cao, B., Ralph, F. M., Zheng, M., and
Delle Monache, L.: Multi-GNSS Airborne Radio Occultation Observations as a
Complement to Dropsondes in Atmospheric River Reconnaissance, J. Geophys. Res.-Atmos., 126, e2021JD034865,
https://doi.org/10.1029/2021JD034865, 2021. a, b, c, d
Hajj, G., Kursinski, E., Romans, L., Bertiger, W., and Leroy, S.: A technical
description of atmospheric sounding by GPS occultation, J. Atmos. Sol.-Terr. Phy., 64, 451–469,
https://doi.org/10.1016/S1364-6826(01)00114-6, 2002. a, b
Healy, S. B., Haase, J., and Lesne, O.: Letter to the Editor
Abel transform inversion of radio occultation measurements made with a receiver inside the Earth’s atmosphere, Ann. Geophys., 20, 1253–1256, https://doi.org/10.5194/angeo-20-1253-2002, 2002. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R.J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: Complete ERA5 from 1979: Fifth generation of ECMWF atmospheric reanalyses of the global climate, Copernicus Climate Change Service (C3S) Data Store (CDS) [data set], https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5 (last access: 1 May 2020), 2017. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M.,
Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global
reanalysis, Q. J. Roy. Meteor. Soc., 146,
1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
Hertzog, A., Boccara, G., Vincent, R. A., Vial, F., and Cocquerez, P.:
Estimation of Gravity Wave Momentum Flux and Phase Speeds from
Quasi-Lagrangian Stratospheric Balloon Flights. Part II: Results from
the Vorcore Campaign in Antarctica, J. Atmos. Sci., 65, 3056–3070, 2008. a
Ho, S.-P., Anthes, R. A., Ao, C. O., Healy, S., Horanyi, A., Hunt, D.,
Mannucci, A. J., Pedatella, N., Randel, W. J., Simmons, A., Steiner, A., Xie,
F., Yue, X., and Zeng, Z.: The COSMIC/FORMOSAT-3 Radio Occultation Mission
after 12 years: Accomplishments, Remaining Challenges, and Potential Impacts
of COSMIC-2, B. Am. Meteorol. Soc., 101, 1107–1136
https://doi.org/10.1175/BAMS-D-18-0290.1, 2019. a
Hoeg, P., H., A., K., G., S., S., Belloul, B., Leitinger, R., and Rothleitner,
W.: Derivation of atmospheric properties using a radio occultation technique,
Sci. Rep., Tech. Rep., Danish Meteorol. Inst., Aalborg, Denmark, 1996. a
Jensen, E. J., Pfister, L., Jordan, D. E., Bui, T. V., Ueyama, R., Singh,
H. B., Thornberry, T. D., Rollins, A. W., Gao, R.-S., Fahey, D. W., Rosenlof,
K. H., Elkins, J. W., Diskin, G. S., DiGangi, J. P., Lawson, R. P., Woods,
S., Atlas, E. L., Rodriguez, M. A. N., Wofsy, S. C., Pittman, J., Bardeen,
C. G., Toon, O. B., Kindel, B. C., Newman, P. A., McGill, M. J., Hlavka,
D. L., Lait, L. R., Schoeberl, M. R., Bergman, J. W., Selkirk, H. B.,
Alexander, M. J., Kim, J.-E., Lim, B. H., Stutz, J., and Pfeilsticker, K.:
The NASA Airborne Tropical Tropopause Experiment: High-Altitude Aircraft
Measurements in the Tropical Western Pacific, B. Am. Meteorol. Soc., 98, 129–143, https://doi.org/10.1175/BAMS-D-14-00263.1,
2017. a
Kawatani, Y. and Hamilton, K.: Weakened stratospheric quasibiennial oscillation
driven by increased tropical mean upwelling, Nature, 497, 478–481,
https://doi.org/10.1038/nature12140, 2013. a
Kiladis, G. N., Wheeler, M. C., Haertel, P. T., Straub, K. H., and Roundy,
P. E.: Convectively coupled equatorial waves, Rev. Geophys., 47, RG2003,
https://doi.org/10.1029/2008RG000266, 2009. a, b, c
Kim, J.-E. and Alexander, M. J.: Direct impacts of waves on tropical cold point
tropopause temperature, Geophys. Res. Lett., 42, 1584–1592,
https://doi.org/10.1002/2014GL062737, 2015. a, b
Kirchengast, G., J., H., and W, P.: The CIRA86aQ_UoG model: An extension of
the CIRA-86 monthly tables including humidity tables and a Fortran 95 global
moist air climatology model., Tech. Rep. IMG/UoG Techn Rep 8, Eur Space
Agency, Paris, France, 1999. a
Lemoine, F. G., Kenyon, S. C., Factor, J. K., Trimmer, R., Pavlis, N. K.,
Chinn, D. S., Cox, C. M., Klosko, S. M., Luthcke, S. B., Torrence, M. H.,
Wang, Y. M., Williamson, R. G., Pavlis, E. C., Rapp, R. H., and Olson, T. R.:
The Development of the Joint NASA GSFC and NIMA Geopotential Model EGM96,
Tech. rep., NASA Goddard Space Flight Center, Greenbelt, Maryland, 20771
USA, 1998. a
Lou, Y., Zhang, W., Wang, C., Yao, X., Shi, C., and Liu, J.: The impact of
orbital errors on the estimation of satellite clock errors and PPP, Adv.
Space Res., 54, 1571–1580, https://doi.org/10.1016/j.asr.2014.06.012, 2014. a
Muradyan, P.: Profiling the atmosphere with the airborne GPS radio occultation
technique using open-loop tracking, PhD. thesis, Purdue University, West
Lafayette, IN, USA, AAI3544312, 2012. a
Muradyan, P., Haase, J. S., Xie, F., Garrison, J. L., and Voo, J.: GPS/INS
navigation precision and its effect on airborne radio occultation retrieval
accuracy, GPS Solut., 15, 207–218, https://doi.org/10.1007/s10291-010-0183-7,
2011. a, b
Murphy, B. J.: Profiling the Moisture Environment of Developing Tropical Storms
using Airborne Radio Occultation, PhD. thesis, Purdue University, AAI3734541, 2015. a
Murphy, B. J., Haase, J. S., Muradyan, P., Garrison, J. L., and Wang, K.-N.:
Airborne GPS radio occultation refractivity profiles observed in tropical
storm environments, J. Geophys. Res.-Atmos., 120,
1690–1709, https://doi.org/10.1002/2014JD022931, 2014JD022931, 2015. a, b
Podglajen, A., Hertzog, A., Plougonven, R., and Legras, B.: Lagrangian
temperature and vertical velocity fluctuations due to gravity waves in the
lower stratosphere, Geophys. Res. Lett., 43, 3543–3553,
https://doi.org/10.1002/2016GL068148, 2016. a
Poli, P., Joiner, J., and Kursinski, E. R.: 1DVAR analysis of temperature and
humidity using GPS radio occultation refractivity data, J. Geophys. Res.-Atmos., 107, ACL 14–1–ACL 14–20,
https://doi.org/10.1029/2001JD000935, 2002. a, b
Rabier, F., Bouchard, A., Brun, E., Doerenbecher, A., Guedj, S., Guidard, V.,
Karbou, F., Peuch, V.-H., Amraoui, L. E., Puech, D., Genthon, C., Picard, G.,
Town, M., Hertzog, A., Vial, F., Cocquerez, P., Cohn, S. A., Hock, T., Fox,
J., Cole, H., Parsons, D., Powers, J., Romberg, K., VanAndel, J., Deshler,
T., Mercer, J., Haase, J. S., Avallone, L., Kalnajs, L., Mechoso, C. R.,
Tangborn, A., Pellegrini, A., Frenot, Y., Thépaut, J.-N., McNally, A.,
Balsamo, G., and Steinle, P.: The Concordiasi Project in Antarctica,
B. Am. Meteorol. Soc., 91, 69 – 86,
https://doi.org/10.1175/2009BAMS2764.1, 2010. a
Ralph, F. M., Cannon, F., Tallapragada, V., Davis, C. A., Doyle, J. D.,
Pappenberger, F., Subramanian, A., Wilson, A. M., Lavers, D. A., Reynolds,
C. A., Haase, J. S., Centurioni, L., Ingleby, B., Rutz, J. J., Cordeira,
J. M., Zheng, M., Hecht, C., Kawzenuk, B., and Monache, L. D.: West Coast
Forecast Challenges and Development of Atmospheric River Reconnaissance,
B. Am. Meteorol. Soc., 101, 1357–1377,
https://doi.org/10.1175/BAMS-D-19-0183.1, 2020. a
Randel, W. J., Wu, F., and Rivera Ríos, W.: Thermal variability of the
tropical tropopause region derived from GPS/MET observations, J.
Geophys. Res.-Atmos., 108, ACL 7–1–ACL 7–12,
https://doi.org/10.1029/2002JD002595, 2003. a
Randel, W. J., Wu, F., and Podglajen, A.: Equatorial Waves, Diurnal Tides and
Small-Scale Thermal Variability in the Tropical Lower Stratosphere From
COSMIC-2 Radio Occultation, J. Geophys. Res.-Atmos.,
126, 2020JD033969, https://doi.org/10.1029/2020JD033969, 2021. a
Ravetta, F., Vincent Mariage, Emmanuel Brousse, Eric d´Almeida,
Frédéric Ferreira , Jacques Pelon, and Stéphane Victori: BeCOOL:
A Balloon-Borne Microlidar System Designed for Cirrus and Convective
Overshoot Monitoring, EPJ Web Conf., 237, 07003,
https://doi.org/10.1051/epjconf/202023707003, 2020. a
Richter, J. H., Butchart, N., Kawatani, Y., Bushell, A. C., Holt, L., Serva,
F., Anstey, J., Simpson, I. R., Osprey, S., Hamilton, K., Braesicke, P.,
Cagnazzo, C., Chen, C.-C., Garcia, R. R., Gray, L. J., Kerzenmacher, T.,
Lott, F., McLandress, C., Naoe, H., Scinocca, J., Stockdale, T. N., Versick,
S., Watanabe, S., Yoshida, K., and Yukimoto, S.: Response of the
Quasi-Biennial Oscillation to a warming climate in global climate models,
Q. J. Roy. Meteor. Soc., 1, 1490–1518,
https://doi.org/10.1002/qj.3749, 2020. a
Rüeger, J.: Refractive index formulae for electronic distance measurements
with radio and millimetre waves, Rep. Unisurv Rep, 109, 758–766, 2002. a
Saastamoinen, J.: Atmospheric Correction for the Troposphere and Stratosphere
in Radio Ranging Satellites, American Geophysical Union (AGU),
247–251, https://doi.org/10.1029/GM015p0247, 1972. a
Salby, M. L., Hartmann, D. L., Bailey, P. L., and Gille, J. C.: Evidence for
Equatorial Kelvin Modes in Nimbus-7 LIMS, J. Atmos. Sci.,
41, 220–235, https://doi.org/10.1175/1520-0469(1984)041<0220:EFEKMI>2.0.CO;2, 1984. a
Sato, K. and Dunkerton, T. J.: Estimates of momentum flux associated with
equatorial Kelvin and gravity waves, J. Geophys. Res.-Atmos., 102, 26247–26261, https://doi.org/10.1029/96JD02514, 1997. a, b, c
Scherllin-Pirscher, B., Steiner, A. K., Anthes, R. A., Alexander, M. J.,
Alexander, S. P., Biondi, R., Birner, T., Kim, J., Randel, W. J., Son, S.-W.,
Tsuda, T., and Zeng, Z.: Tropical Temperature Variability in the UTLS: New
Insights from GPS Radio Occultation Observations, J. Climate, 34,
2813–2838, https://doi.org/10.1175/jcli-d-20-0385.1, 2021. a, b
Schmidt, T., Alexander, P., and de la Torre, A.: Stratospheric gravity wave
momentum flux from radio occultations, J. Geophys. Res.-Atmos., 121, 4443–4467, https://doi.org/10.1002/2015JD024135, 2016. a
Schreiner, W., Weiss, J., Anthes, R., Braun, J., Chu, V., Fong, J., Hunt, D.,
Kuo, Y.-H., Meehan, T., Serafino, W., Sjoberg, J., Sokolovskiy, S., Talaat,
E., Wee, T., and Zeng, Z.: COSMIC-2 Radio Occultation Constellation: First
Results, Geophys. Res. Lett., 47, e2019GL086841, https://doi.org/10.1029/2019GL086841,
2020. a
Shi, C., Zhao, Q., Geng, J., Lou, Y., Ge, M., and Liu, J.: Recent development
of PANDA software in GNSS data processing, in: International Conference on
Earth Observation Data Processing and Analysis (ICEODPA), edited by Li, D.,
Gong, J., and Wu, H., vol. 7285, International Society for
Optics and Photonics, SPIE, 558–566, https://doi.org/10.1117/12.816261, 2008. a
Shiotani, M., Gille, J. G., and Roche, A. E.: Kelvin waves in the equatorial
lower stratosphere as revealed by cryogenic limb array etalon spectrometer
temperature data, J. Geophys. Res.-Atmos., 102,
26131–26140, https://doi.org/10.1029/96JD04012, 1997. a
Simmons, A. J. and Burridge, D. M.: An Energy and Angular-Momentum Conserving
Vertical Finite-Difference Scheme and Hybrid Vertical Coordinates, Mon. Weather Rev., 109, 758–766, 1981. a
Srikanth, R. and Ortland, D. A.: Analysis of Kelvin waves in High-Resolution
Doppler Imager and Microwave Limb Sounder stratosphere measurements using a
constrained least squares method, J. Geophys. Res.-Atmos., 103, 23131–23151, https://doi.org/10.1029/98JD02020, 1998. a
Syndergaard, S.: Modeling the impact of the Earth's oblateness on the
retrieval of temperature and pressure profiles from limb sounding, J. Atmos. Sol.-Terr. Phy., 60, 171–180,
https://doi.org/10.1016/S1364-6826(97)00056-4, 1998. a, b
Trenberth, K. E., Berry, J. C., and Buja, L. E.: Vertical Interpolation and
Truncation of Model-coordinate Data (No. NCAR/TN-396+STR), Tech. rep.,
University Corporation for Atmospheric Research, https://doi.org/10.5065/D6HX19NH,
1993. a
Tsuda, T., Murayama, Y., Wiryosumarto, H., Harijono, W. B., and Kato, S.:
Radiosonde observations of equatorial atmosphere dynamics over Indonesia: 1.
Equatorial waves and diurnal tides, J. Geophys. Res.-Atmos., 99, 10491–10505, https://doi.org/10.1029/94JD00355, 1994.
a
Tsuda, T., Nishida, M., Rocken, C., and Ware, R. H.: A global morphology of
gravity wave activity in the stratosphere revealed by the GPS occultation
data (GPS/MET), J. Geophys. Res., 105, 7257–7273, 2000. a
Tsuda, T., Lin, X., Hayashi, H., and Noersomadi: Analysis of vertical wave number spectrum of atmospheric gravity waves in the stratosphere using COSMIC GPS radio occultation data, Atmos. Meas. Tech., 4, 1627–1636, https://doi.org/10.5194/amt-4-1627-2011, 2011. a
UCAR COSMIC Program: COSMIC-2 Data Products, UCAR/NCAR-COSMIC [data set], https://doi.org/10.5065/T353-C093 (last access: 1 May 2020), 2019. a
Vincent, R. A. and Alexander, M. J.: Balloon-Borne Observations of Short
Vertical Wavelength Gravity Waves and Interaction With QBO Winds, J.
Geophys. Res.-Atmos., 125, e2020JD032779, https://doi.org/10.1029/2020JD032779, 2020. a, b
Vincent, R. A. and Hertzog, A.: The response of superpressure balloons to gravity wave motions, Atmos. Meas. Tech., 7, 1043–1055, https://doi.org/10.5194/amt-7-1043-2014, 2014. a
Vorobév, V. V. and Krasilńikova, T. G.: Estimation of the accuracy of the
atmospheric refractive index recovery from Doppler shift measurements at
frequencies used in the NAVSTAR system, Phys. Atmos. Ocean,
29, 602–609, 1994. a
Weiss, J.-P., Schreiner, W. S., Braun, J. J., Xia-Serafino, W., and Huang,
C.-Y.: COSMIC-2 Mission Summary at Three Years in Orbit, Atmosphere, 13, 1409,
https://doi.org/10.3390/atmos13091409, 2022. a
Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F., and Tian, D.: The Generic Mapping Tools version 6, Geochem. Geophys. Geosys., 20, 5556–5564, https://doi.org/10.1029/2019GC008515, 2019. a
Wright, C. J., Rivas, M. B., and Gille, J. C.: Intercomparisons of HIRDLS, COSMIC and SABER for the detection of stratospheric gravity waves, Atmos. Meas. Tech., 4, 1581–1591, https://doi.org/10.5194/amt-4-1581-2011, 2011. a
Xie, F., Haase, J. S., and Syndergaard, S.: Profiling the Atmosphere Using the
Airborne GPS Radio Occultation Technique: A Sensitivity Study, IEEE
T. Geosci. Remote Sens., 46, 3424–3435,
https://doi.org/10.1109/TGRS.2008.2004713, 2008. a, b, c
Zeng, Z., Ho, S.-P., Sokolovskiy, S., and Kuo, Y.-H.: Structural evolution of
the Madden-Julian Oscillation from COSMIC radio occultation data, J.
Geophys. Res.-Atmos., 117, D22108, https://doi.org/10.1029/2012JD017685, 2012. a
Zhang, W., Haase, J. S., Hertzog, A., Lou, Y., and Vincent, R.: Improvement of
stratospheric balloon GPS positioning and the impact on gravity wave
parameter estimation for the Concordiasi campaign in Antarctica, J.
Geophys. Res.-Atmos., 121, 9977–9997,
https://doi.org/10.1002/2015JD024596, 2016. a, b
Short summary
Atmospheric waves that carry momentum from tropospheric weather systems into the equatorial stratosphere modify the winds there. The Strateole-2 2019 campaign launched long-duration stratospheric superpressure balloons to measure these equatorial waves. We deployed a GPS receiver on one of the balloons to measure atmospheric temperature profiles beneath the balloon. Temperature variations in the retrieved profiles show planetary-scale waves with a 20 d period and 3–4 d period waves.
Atmospheric waves that carry momentum from tropospheric weather systems into the equatorial...
Altmetrics
Final-revised paper
Preprint