Articles | Volume 22, issue 23
https://doi.org/10.5194/acp-22-15313-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-15313-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Cluster-based characterization of multi-dimensional tropospheric ozone variability in coastal regions: an analysis of lidar measurements and model results
Claudia Bernier
Department of Earth and Atmospheric Science, University of Houston, Houston, Texas 77004, USA
Department of Earth and Atmospheric Science, University of Houston, Houston, Texas 77004, USA
Guillaume Gronoff
NASA Langley Research Center, Hampton, VA 23666, USA
Science Systems and Application Inc., Hampton, VA 23666, USA
Timothy Berkoff
NASA Langley Research Center, Hampton, VA 23666, USA
K. Emma Knowland
Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
Goddard Earth Science Technology & Research (GESTAR) II, Morgan State University,Baltimore, Maryland 21251, USA
John T. Sullivan
Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
Ruben Delgado
Joint Center for Earth Systems Technology, Baltimore, MD 21228, USA
University of Maryland, Baltimore County, Baltimore, MD 21250, USA
Vanessa Caicedo
Joint Center for Earth Systems Technology, Baltimore, MD 21228, USA
University of Maryland, Baltimore County, Baltimore, MD 21250, USA
Brian Carroll
NASA Langley Research Center, Hampton, VA 23666, USA
Joint Center for Earth Systems Technology, Baltimore, MD 21228, USA
Related authors
No articles found.
Fernando Chouza, Thierry Leblanc, Patrick Wang, Steven S. Brown, Kristen Zuraski, Wyndom Chace, Caroline C. Womack, Jeff Peischl, John Hair, Taylor Shingler, and John Sullivan
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-154, https://doi.org/10.5194/amt-2024-154, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
The JPL lidar group developed the SMOL (Small Mobile Ozone Lidar), an affordable ozone differential absorption lidar (DIAL) system covering all altitudes from 200 m to 10 km. a.g.l. The comparison with airborne in-situ and lidar measurements shows very good agreement. An additional comparison with nearby surface ozone measuring instruments indicates unbiased measurements by the SMOL lidars down to 200 m above ground level.
Andrew O. Langford, Raul J. Alvarez II, Kenneth C. Aikin, Sunil Baidar, W. Alan Brewer, Steven S. Brown, Matthew M. Coggan, Patrick D. Cullis, Jessica Gilman, Georgios I. Gkatzelis, Detlev Helmig, Bryan J. Johnson, K. Emma Knowland, Rajesh Kumar, Aaron D. Lamplugh, Audra McClure-Begley, Brandi J. McCarty, Ann M. Middlebrook, Gabriele Pfister, Jeff Peischl, Irina Petropavlovskikh, Pamela S. Rickley, Andrew W. Rollins, Scott P. Sandberg, Christoph J. Senff, and Carsten Warneke
EGUsphere, https://doi.org/10.5194/egusphere-2024-1938, https://doi.org/10.5194/egusphere-2024-1938, 2024
Short summary
Short summary
High ozone (O3) formed by reactions of nitrogen oxides (NOx) and volatile organic compounds (VOCs) can harm human health and welfare. High O3 is usually associated with hot summer days, but under certain conditions, high O3 can also form under winter conditions. In this study, we describe a high O3 event that occurred in Colorado during the COVID-19 quarantine that was caused in part by the decrease in traffic, and in part by a shallow inversion created by descent of stratospheric air.
Wei Li and Yuxuan Wang
Atmos. Chem. Phys., 24, 9339–9353, https://doi.org/10.5194/acp-24-9339-2024, https://doi.org/10.5194/acp-24-9339-2024, 2024
Short summary
Short summary
Droughts immensely increased organic aerosol (OA) in the contiguous United States in summer (1998–2019), notably in the Pacific Northwest (PNW) and Southeast (SEUS). The OA rise in the SEUS is driven by the enhanced formation of epoxydiol-derived secondary organic aerosol due to the increase in biogenic volatile organic compounds and sulfate, while in the PNW, it is caused by wildfires. A total of 10 climate models captured the OA increase in the PNW yet greatly underestimated it in the SEUS.
Akinleye Folorunsho, Jimy Dudhia, John Sullivan, Paul Walter, James Flynn, Travis Griggs, Rebecca Sheesley, Sascha Usenko, Guillaume Gronoff, Mark Estes, and Yang Li
EGUsphere, https://doi.org/10.5194/egusphere-2024-1190, https://doi.org/10.5194/egusphere-2024-1190, 2024
Short summary
Short summary
Our study investigates the factors driving high ozone levels over the Houston urban area. Using advanced modeling techniques and real-world measurements, we found vehicle and industrial emissions especially of highly reactive organic compounds play a key role in ozone formation. Our study highlights spatial and temporal changes in ozone sensitivity and variability of atmosphere's self-cleaning capacity to emissions, signifying effective ways of controlling emissions to mitigate urban ozone.
Matthew S. Johnson, Alexei Rozanov, Mark Weber, Nora Mettig, John Sullivan, Michael J. Newchurch, Shi Kuang, Thierry Leblanc, Fernando Chouza, Timothy A. Berkoff, Guillaume Gronoff, Kevin B. Strawbridge, Raul J. Alvarez, Andrew O. Langford, Christoph J. Senff, Guillaume Kirgis, Brandi McCarty, and Larry Twigg
Atmos. Meas. Tech., 17, 2559–2582, https://doi.org/10.5194/amt-17-2559-2024, https://doi.org/10.5194/amt-17-2559-2024, 2024
Short summary
Short summary
Monitoring tropospheric ozone (O3), a harmful pollutant negatively impacting human health, is primarily done using ground-based measurements and ozonesondes. However, these observation types lack the coverage to fully understand tropospheric O3. Satellites can retrieve tropospheric ozone with near-daily global coverage; however, they are known to have biases and errors. This study uses ground-based lidars to validate multiple satellites' ability to observe tropospheric O3.
Maurice Roots, John T. Sullivan, and Belay Demoz
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-37, https://doi.org/10.5194/amt-2024-37, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
This paper introduces a machine-learning approach to automatically isolate Nocturnal Low-Level Jets (NLLJs) using observations from Maryland’s Radar Wind Profiler (RWP) network. Initial findings identify 90 south-westerly NLLJs from May to September 2017–2021, showcasing core parameters and jet morphology. The research aims to establish a foundation for understanding the formation mechanisms of Mid-Atlantic NLLJs and their impact on air quality.
Fei Liu, Steffen Beirle, Joanna Joiner, Sungyeon Choi, Zhining Tao, K. Emma Knowland, Steven J. Smith, Daniel Q. Tong, Siqi Ma, Zachary T. Fasnacht, and Thomas Wagner
Atmos. Chem. Phys., 24, 3717–3728, https://doi.org/10.5194/acp-24-3717-2024, https://doi.org/10.5194/acp-24-3717-2024, 2024
Short summary
Short summary
Using satellite data, we developed a coupled method independent of the chemical transport model to map NOx emissions across US cities. After validating our technique with synthetic data, we charted NOx emissions from 2018–2021 in 39 cities. Our results closely matched EPA estimates but also highlighted some inconsistencies in both magnitude and spatial distribution. This research can help refine strategies for monitoring and managing air quality.
Wei Li, Yuxuan Wang, Xueying Liu, Ehsan Soleimanian, Travis Griggs, James Flynn, and Paul Walter
Atmos. Chem. Phys., 23, 13685–13699, https://doi.org/10.5194/acp-23-13685-2023, https://doi.org/10.5194/acp-23-13685-2023, 2023
Short summary
Short summary
This study examined high offshore ozone events in Galveston Bay and the Gulf of Mexico, using boat data and WRF–CAMx modeling during the TRACER-AQ 2021 field campaign. On average, high ozone is caused by chemistry due to the regional transport of volatile organic compounds and downwind advection of NOx from the ship channel. Two case studies show advection of ozone can be another process leading to high ozone, and accurate wind prediction is crucial for air quality forecasting in coastal areas.
Sujan Shrestha, Shan Zhou, Manisha Mehra, Meghan Guagenti, Subin Yoon, Sergio L. Alvarez, Fangzhou Guo, Chun-Ying Chao, James H. Flynn III, Yuxuan Wang, Robert J. Griffin, Sascha Usenko, and Rebecca J. Sheesley
Atmos. Chem. Phys., 23, 10845–10867, https://doi.org/10.5194/acp-23-10845-2023, https://doi.org/10.5194/acp-23-10845-2023, 2023
Short summary
Short summary
We evaluated different methods for assessing the influence of long-range transport of biomass burning (BB) plumes at a coastal site in Texas, USA. We show that the aerosol composition and optical properties exhibited good agreement, while CO and acetonitrile trends were less specific for assessing BB source influence. Our results demonstrate that the network of aerosol optical measurements can be useful for identifying the influence of aged BB plumes in anthropogenically influenced areas.
Xueying Liu, Yuxuan Wang, Shailaja Wasti, Wei Li, Ehsan Soleimanian, James Flynn, Travis Griggs, Sergio Alvarez, John T. Sullivan, Maurice Roots, Laurence Twigg, Guillaume Gronoff, Timothy Berkoff, Paul Walter, Mark Estes, Johnathan W. Hair, Taylor Shingler, Amy Jo Scarino, Marta Fenn, and Laura Judd
Geosci. Model Dev., 16, 5493–5514, https://doi.org/10.5194/gmd-16-5493-2023, https://doi.org/10.5194/gmd-16-5493-2023, 2023
Short summary
Short summary
With a comprehensive suite of ground-based and airborne remote sensing measurements during the 2021 TRacking Aerosol Convection ExpeRiment – Air Quality (TRACER-AQ) campaign in Houston, this study evaluates the simulation of the planetary boundary layer (PBL) height and the ozone vertical profile by a high-resolution (1.33 km) 3-D photochemical model Weather Research and Forecasting-driven GEOS-Chem (WRF-GC).
Matthew S. Johnson, Amir H. Souri, Sajeev Philip, Rajesh Kumar, Aaron Naeger, Jeffrey Geddes, Laura Judd, Scott Janz, Heesung Chong, and John Sullivan
Atmos. Meas. Tech., 16, 2431–2454, https://doi.org/10.5194/amt-16-2431-2023, https://doi.org/10.5194/amt-16-2431-2023, 2023
Short summary
Short summary
Satellites provide vital information for studying the processes controlling ozone formation. Based on the abundance of particular gases in the atmosphere, ozone formation is sensitive to specific human-induced and natural emission sources. However, errors and biases in satellite retrievals hinder this data source’s application for studying ozone formation sensitivity. We conducted a thorough statistical evaluation of two commonly applied satellites for investigating ozone formation sensitivity.
Yuxuan Wang, Nan Lin, Wei Li, Alex Guenther, Joey C. Y. Lam, Amos P. K. Tai, Mark J. Potosnak, and Roger Seco
Atmos. Chem. Phys., 22, 14189–14208, https://doi.org/10.5194/acp-22-14189-2022, https://doi.org/10.5194/acp-22-14189-2022, 2022
Short summary
Short summary
Drought can cause large changes in biogenic isoprene emissions. In situ field observations of isoprene emissions during droughts are confined by spatial coverage and, thus, provide limited constraints. We derived a drought stress factor based on satellite HCHO data for MEGAN2.1 in the GEOS-Chem model using water stress and temperature. This factor reduces the overestimation of isoprene emissions during severe droughts and improves the simulated O3 and organic aerosol responses to droughts.
Elizabeth Klovenski, Yuxuan Wang, Susanne E. Bauer, Kostas Tsigaridis, Greg Faluvegi, Igor Aleinov, Nancy Y. Kiang, Alex Guenther, Xiaoyan Jiang, Wei Li, and Nan Lin
Atmos. Chem. Phys., 22, 13303–13323, https://doi.org/10.5194/acp-22-13303-2022, https://doi.org/10.5194/acp-22-13303-2022, 2022
Short summary
Short summary
Severe drought stresses vegetation and causes reduced emission of isoprene. We study the impact of including a new isoprene drought stress (yd) parameterization in NASA GISS ModelE called DroughtStress_ModelE, which is specifically tuned for ModelE. Inclusion of yd leads to better simulated isoprene emissions at the MOFLUX site during the severe drought of 2012, reduced overestimation of OMI satellite ΩHCHO (formaldehyde column), and improved simulated O3 (ozone) during drought.
John T. Sullivan, Arnoud Apituley, Nora Mettig, Karin Kreher, K. Emma Knowland, Marc Allaart, Ankie Piters, Michel Van Roozendael, Pepijn Veefkind, Jerry R. Ziemke, Natalya Kramarova, Mark Weber, Alexei Rozanov, Laurence Twigg, Grant Sumnicht, and Thomas J. McGee
Atmos. Chem. Phys., 22, 11137–11153, https://doi.org/10.5194/acp-22-11137-2022, https://doi.org/10.5194/acp-22-11137-2022, 2022
Short summary
Short summary
A TROPOspheric Monitoring Instrument (TROPOMI) validation campaign (TROLIX-19) was held in the Netherlands in September 2019. The research presented here focuses on using ozone lidars from NASA’s Goddard Space Flight Center to better evaluate the characterization of ozone throughout TROLIX-19 as compared to balloon-borne, space-borne and ground-based passive measurements, as well as a global coupled chemistry meteorology model.
Wei Li and Yuxuan Wang
Atmos. Chem. Phys., 22, 7843–7859, https://doi.org/10.5194/acp-22-7843-2022, https://doi.org/10.5194/acp-22-7843-2022, 2022
Short summary
Short summary
Fine dust is an important component of PM2.5 and can be largely modulated by droughts. In contrast to the increase in dust in the southwest USA where major dust sources are located, dust in the southeast USA is affected more by long-range transport from Africa and decreases under droughts. Both the transport and emissions of African dust are weakened when the southeast USA is under droughts, which reveals how regional-scale droughts can influence aerosol abundance through long-range transport.
Liqiao Lei, Timothy A. Berkoff, Guillaume Gronoff, Jia Su, Amin R. Nehrir, Yonghua Wu, Fred Moshary, and Shi Kuang
Atmos. Meas. Tech., 15, 2465–2478, https://doi.org/10.5194/amt-15-2465-2022, https://doi.org/10.5194/amt-15-2465-2022, 2022
Short summary
Short summary
Aerosol extinction in the UVB (280–315 nm) is difficult to retrieve using simple lidar techniques due to the lack of lidar ratios at those wavelengths. The 2018 Long Island Sound Tropospheric Ozone Study (LISTOS) in the New York City region provided the opportunity to characterize the lidar ratio for UVB aerosol retrieval for the Langley Mobile Ozone Lidar (LMOL). A 292 nm aerosol product comparison between the NASA Langley High Altitude Lidar Observatory (HALO) and LMOL was also carried out.
Fei Liu, Zhining Tao, Steffen Beirle, Joanna Joiner, Yasuko Yoshida, Steven J. Smith, K. Emma Knowland, and Thomas Wagner
Atmos. Chem. Phys., 22, 1333–1349, https://doi.org/10.5194/acp-22-1333-2022, https://doi.org/10.5194/acp-22-1333-2022, 2022
Short summary
Short summary
In this work, we present a novel method to infer NOx emissions and lifetimes based on tropospheric NO2 observations together with reanalysis wind fields for cities located in polluted backgrounds. We evaluate the accuracy of the method using synthetic NO2 observations derived from a high-resolution model simulation. Our work provides an estimate for uncertainties in satellite-derived emissions inferred from chemical transport model (CTM)-independent approaches.
Michael A. Battaglia Jr., Nicholas Balasus, Katherine Ball, Vanessa Caicedo, Ruben Delgado, Annmarie G. Carlton, and Christopher J. Hennigan
Atmos. Chem. Phys., 21, 18271–18281, https://doi.org/10.5194/acp-21-18271-2021, https://doi.org/10.5194/acp-21-18271-2021, 2021
Short summary
Short summary
This study characterizes aerosol liquid water content and aerosol pH at a land–water transition site near Baltimore, Maryland. We characterize the effects of unique meteorology associated with the close proximity to the Chesapeake Bay and episodic NH3 events derived from industrial and agricultural sources on aerosol chemistry during the summer. We also examine two events where primary Bay emissions underwent aging in the polluted urban atmosphere.
Siqi Ma, Daniel Tong, Lok Lamsal, Julian Wang, Xuelei Zhang, Youhua Tang, Rick Saylor, Tianfeng Chai, Pius Lee, Patrick Campbell, Barry Baker, Shobha Kondragunta, Laura Judd, Timothy A. Berkoff, Scott J. Janz, and Ivanka Stajner
Atmos. Chem. Phys., 21, 16531–16553, https://doi.org/10.5194/acp-21-16531-2021, https://doi.org/10.5194/acp-21-16531-2021, 2021
Short summary
Short summary
Predicting high ozone gets more challenging as urban emissions decrease. How can different techniques be used to foretell the quality of air to better protect human health? We tested four techniques with the CMAQ model against observations during a field campaign over New York City. The new system proves to better predict the magnitude and timing of high ozone. These approaches can be extended to other regions to improve the predictability of high-O3 episodes in contemporary urban environments.
Nicholas Balasus, Michael A. Battaglia Jr., Katherine Ball, Vanessa Caicedo, Ruben Delgado, Annmarie G. Carlton, and Christopher J. Hennigan
Atmos. Chem. Phys., 21, 13051–13065, https://doi.org/10.5194/acp-21-13051-2021, https://doi.org/10.5194/acp-21-13051-2021, 2021
Short summary
Short summary
Measurements of aerosol and gas composition were carried out at a land–water transition site near Baltimore, MD. Gas-phase ammonia concentrations were highly elevated compared to measurements at a nearby inland site. Our analysis reveals that NH2 was from both industrial and agricultural sources. This had a pronounced effect on aerosol chemical composition at the site, most notably contributing to episodic spikes of aerosol nitrate.
Jianfeng Li, Yuhang Wang, Ruixiong Zhang, Charles Smeltzer, Andrew Weinheimer, Jay Herman, K. Folkert Boersma, Edward A. Celarier, Russell W. Long, James J. Szykman, Ruben Delgado, Anne M. Thompson, Travis N. Knepp, Lok N. Lamsal, Scott J. Janz, Matthew G. Kowalewski, Xiong Liu, and Caroline R. Nowlan
Atmos. Chem. Phys., 21, 11133–11160, https://doi.org/10.5194/acp-21-11133-2021, https://doi.org/10.5194/acp-21-11133-2021, 2021
Short summary
Short summary
Comprehensive evaluations of simulated diurnal cycles of NO2 and NOy concentrations, vertical profiles, and tropospheric vertical column densities at two different resolutions with various measurements during the DISCOVER-AQ 2011 campaign show potential distribution biases of NOx emissions in the National Emissions Inventory 2011 at both 36 and 4 km resolutions, providing another possible explanation for the overestimation of model results.
Jia Su, M. Patrick McCormick, Matthew S. Johnson, John T. Sullivan, Michael J. Newchurch, Timothy A. Berkoff, Shi Kuang, and Guillaume P. Gronoff
Atmos. Meas. Tech., 14, 4069–4082, https://doi.org/10.5194/amt-14-4069-2021, https://doi.org/10.5194/amt-14-4069-2021, 2021
Short summary
Short summary
A new technique using a three-wavelength differential absorption lidar (DIAL) technique based on an optical parametric oscillator (OPO) laser is proposed to obtain more accurate measurements of NO2. The retrieval uncertainties in aerosol extinction using the three-wavelength DIAL technique are reduced to less than 2 % of those when using the two-wavelength DIAL technique. Hampton University (HU) lidar NO2 profiles are compared with simulated data from the WRF-Chem model, and they agree well.
Robin Wing, Sophie Godin-Beekmann, Wolfgang Steinbrecht, Thomas J. McGee, John T. Sullivan, Sergey Khaykin, Grant Sumnicht, and Laurence Twigg
Atmos. Meas. Tech., 14, 3773–3794, https://doi.org/10.5194/amt-14-3773-2021, https://doi.org/10.5194/amt-14-3773-2021, 2021
Short summary
Short summary
This paper is a validation study of the newly installed ozone and temperature lidar at Hohenpeißenberg, Germany. As part of the Network for the Detection of Atmospheric Composition Change (NDACC), lidar stations are routinely compared against a travelling reference lidar operated by NASA. We have also attempted to assess potential biases in the reference lidar by comparing the results of this validation campaign with a previous campaign at the Observatoire de Haute-Provence, France.
Dianne Sanchez, Roger Seco, Dasa Gu, Alex Guenther, John Mak, Youngjae Lee, Danbi Kim, Joonyoung Ahn, Don Blake, Scott Herndon, Daun Jeong, John T. Sullivan, Thomas Mcgee, Rokjin Park, and Saewung Kim
Atmos. Chem. Phys., 21, 6331–6345, https://doi.org/10.5194/acp-21-6331-2021, https://doi.org/10.5194/acp-21-6331-2021, 2021
Short summary
Short summary
We present observations of total reactive gases in a suburban forest observatory in the Seoul metropolitan area. The quantitative comparison with speciated trace gas observations illustrated significant underestimation in atmospheric reactivity from the speciated trace gas observational dataset. We present scientific discussion about potential causes.
Christoph A. Keller, Mathew J. Evans, K. Emma Knowland, Christa A. Hasenkopf, Sruti Modekurty, Robert A. Lucchesi, Tomohiro Oda, Bruno B. Franca, Felipe C. Mandarino, M. Valeria Díaz Suárez, Robert G. Ryan, Luke H. Fakes, and Steven Pawson
Atmos. Chem. Phys., 21, 3555–3592, https://doi.org/10.5194/acp-21-3555-2021, https://doi.org/10.5194/acp-21-3555-2021, 2021
Short summary
Short summary
This study combines surface observations and model simulations to quantify the impact of COVID-19 restrictions on air quality across the world. The presented methodology removes the confounding impacts of meteorology on air pollution. Our results indicate that surface concentrations of nitrogen dioxide, an important air pollutant emitted during the combustion of fossil fuels, declined by up to 60 % following the implementation of COVID-19 containment measures.
Andrew Tangborn, Belay Demoz, Brian J. Carroll, Joseph Santanello, and Jeffrey L. Anderson
Atmos. Meas. Tech., 14, 1099–1110, https://doi.org/10.5194/amt-14-1099-2021, https://doi.org/10.5194/amt-14-1099-2021, 2021
Short summary
Short summary
Accurate prediction of the planetary boundary layer is essential to both numerical weather prediction (NWP) and pollution forecasting. This paper presents a methodology to combine these measurements with the models through a statistical data assimilation approach that calculates the correlation between the PBLH and variables like temperature and moisture in the model. The model estimates of these variables can be improved via this method, and this will enable increased forecast accuracy.
Robin Wing, Wolfgang Steinbrecht, Sophie Godin-Beekmann, Thomas J. McGee, John T. Sullivan, Grant Sumnicht, Gérard Ancellet, Alain Hauchecorne, Sergey Khaykin, and Philippe Keckhut
Atmos. Meas. Tech., 13, 5621–5642, https://doi.org/10.5194/amt-13-5621-2020, https://doi.org/10.5194/amt-13-5621-2020, 2020
Short summary
Short summary
A lidar intercomparison campaign was conducted over a period of 28 nights at Observatoire de Haute-Provence (OHP) in 2017 and 2018. The objective is to validate the ozone and temperature profiles at OHP to ensure the quality of data submitted to the NDACC database remains high. A mobile reference lidar operated by NASA was transported to OHP and operated concurrently with the French lidars. Agreement for ozone was better than 5 % between 20 and 40 km, and temperatures were equal within 3 K.
Shi Kuang, Bo Wang, Michael J. Newchurch, Kevin Knupp, Paula Tucker, Edwin W. Eloranta, Joseph P. Garcia, Ilya Razenkov, John T. Sullivan, Timothy A. Berkoff, Guillaume Gronoff, Liqiao Lei, Christoph J. Senff, Andrew O. Langford, Thierry Leblanc, and Vijay Natraj
Atmos. Meas. Tech., 13, 5277–5292, https://doi.org/10.5194/amt-13-5277-2020, https://doi.org/10.5194/amt-13-5277-2020, 2020
Short summary
Short summary
Ozone lidar is a state-of-the-art remote-sensing instrument to measure atmospheric ozone concentrations with high spatiotemporal resolution. In this study, we show that an ozone lidar can also provide reliable aerosol measurements through intercomparison with colocated aerosol lidar observations.
Sally S.-C. Wang and Yuxuan Wang
Atmos. Chem. Phys., 20, 11065–11087, https://doi.org/10.5194/acp-20-11065-2020, https://doi.org/10.5194/acp-20-11065-2020, 2020
Short summary
Short summary
A model consisting of multiple machine learning algorithms is developed to predict wildfire burned area over the south central US and explains key environmental drivers. The developed model alleviates the issue of unevenly distributed data and predicts burned grids and burned areas with good accuracy. The model reveals climate variability such as relative humidity anomalies and antecedent drought severity contributes the most to the total burned area for winter–spring and summer fire season.
Li Zhang, Meiyun Lin, Andrew O. Langford, Larry W. Horowitz, Christoph J. Senff, Elizabeth Klovenski, Yuxuan Wang, Raul J. Alvarez II, Irina Petropavlovskikh, Patrick Cullis, Chance W. Sterling, Jeff Peischl, Thomas B. Ryerson, Steven S. Brown, Zachary C. J. Decker, Guillaume Kirgis, and Stephen Conley
Atmos. Chem. Phys., 20, 10379–10400, https://doi.org/10.5194/acp-20-10379-2020, https://doi.org/10.5194/acp-20-10379-2020, 2020
Short summary
Short summary
Measuring and quantifying the sources of elevated springtime ozone in the southwestern US is challenging but relevant to the implications for control policy. Here we use intensive field measurements and two global models to study ozone sources in the region. We find that ozone from the stratosphere, wildfires, and Asia is an important source of high-ozone events in the region. Our analysis also helps understand the uncertainties in ozone simulations with individual models.
Archana Dayalu, J. William Munger, Yuxuan Wang, Steven C. Wofsy, Yu Zhao, Thomas Nehrkorn, Chris Nielsen, Michael B. McElroy, and Rachel Chang
Atmos. Chem. Phys., 20, 3569–3588, https://doi.org/10.5194/acp-20-3569-2020, https://doi.org/10.5194/acp-20-3569-2020, 2020
Short summary
Short summary
China has pledged to reduce carbon dioxide emissions per unit GDP by 60–65 % relative to 2005 levels, and to peak carbon emissions overall by 2030. Disagreement among available inventories of Chinese emissions makes it difficult for China to track progress toward its goals and evaluate the efficacy of regional control measures. This study uses a unique set of historical atmospheric observations for the key period from 2005 to 2009 to independently evaluate three different CO2 emission estimates.
Daun Jeong, Roger Seco, Dasa Gu, Youngro Lee, Benjamin A. Nault, Christoph J. Knote, Tom Mcgee, John T. Sullivan, Jose L. Jimenez, Pedro Campuzano-Jost, Donald R. Blake, Dianne Sanchez, Alex B. Guenther, David Tanner, L. Gregory Huey, Russell Long, Bruce E. Anderson, Samuel R. Hall, Kirk Ullmann, Hye-jung Shin, Scott C. Herndon, Youngjae Lee, Danbi Kim, Joonyoung Ahn, and Saewung Kim
Atmos. Chem. Phys., 19, 12779–12795, https://doi.org/10.5194/acp-19-12779-2019, https://doi.org/10.5194/acp-19-12779-2019, 2019
Jingyuan Shao, Qianjie Chen, Yuxuan Wang, Xiao Lu, Pengzhen He, Yele Sun, Viral Shah, Randall V. Martin, Sajeev Philip, Shaojie Song, Yue Zhao, Zhouqing Xie, Lin Zhang, and Becky Alexander
Atmos. Chem. Phys., 19, 6107–6123, https://doi.org/10.5194/acp-19-6107-2019, https://doi.org/10.5194/acp-19-6107-2019, 2019
Short summary
Short summary
Sulfate is a key species contributing to particle formation and growth during wintertime Chinese haze events. This study combines observations and modeling of oxygen isotope signatures in sulfate aerosol to investigate its formation mechanisms, with a focus on heterogeneous production on aerosol surface via H2O2, O3, and NO2 and trace metal catalyzed oxidation. Contributions from different formation pathways are presented.
John T. Sullivan, Thomas J. McGee, Ryan M. Stauffer, Anne M. Thompson, Andrew Weinheimer, Christoph Knote, Scott Janz, Armin Wisthaler, Russell Long, James Szykman, Jinsoo Park, Youngjae Lee, Saewung Kim, Daun Jeong, Dianne Sanchez, Laurence Twigg, Grant Sumnicht, Travis Knepp, and Jason R. Schroeder
Atmos. Chem. Phys., 19, 5051–5067, https://doi.org/10.5194/acp-19-5051-2019, https://doi.org/10.5194/acp-19-5051-2019, 2019
Short summary
Short summary
During the May–June 2016 International Cooperative Air Quality Field Study in Korea (KORUS-AQ), pollution reached the remote Taehwa Research Forest (TRF) site. Two case studies are examined and observations clearly identify TRF and the surrounding rural areas as long-term receptor sites for severe urban pollution events. In summary, domestic emissions may be causing more pollution than by transboundary pathways, which have been historically believed to be the major source of air pollution.
Shaojie Song, Meng Gao, Weiqi Xu, Yele Sun, Douglas R. Worsnop, John T. Jayne, Yuzhong Zhang, Lei Zhu, Mei Li, Zhen Zhou, Chunlei Cheng, Yibing Lv, Ying Wang, Wei Peng, Xiaobin Xu, Nan Lin, Yuxuan Wang, Shuxiao Wang, J. William Munger, Daniel J. Jacob, and Michael B. McElroy
Atmos. Chem. Phys., 19, 1357–1371, https://doi.org/10.5194/acp-19-1357-2019, https://doi.org/10.5194/acp-19-1357-2019, 2019
Short summary
Short summary
Chemistry responsible for sulfate production in northern China winter haze remains mysterious. We propose a potentially key pathway through the reaction of formaldehyde and sulfur dioxide that has not been accounted for in previous studies. The special atmospheric conditions favor the formation and existence of their complex, hydroxymethanesulfonate (HMS).
Betsy M. Farris, Guillaume P. Gronoff, William Carrion, Travis Knepp, Margaret Pippin, and Timothy A. Berkoff
Atmos. Meas. Tech., 12, 363–370, https://doi.org/10.5194/amt-12-363-2019, https://doi.org/10.5194/amt-12-363-2019, 2019
Short summary
Short summary
During the 2017 Ozone Water Land Environmental Transition Study (OWLETS), the Langley mobile ozone lidar system utilized a new small diameter receiver to improve the retrieval of near-surface signals from 0.1 to 1 km in altitude. This allowed for improved near-surface ozone concentration measurements, those most important to human health, while also measuring profiles up to stratospheric altitudes. OWLETS provided multiple instrument comparisons for validation of the system improvement.
Lu Shen, Daniel J. Jacob, Loretta J. Mickley, Yuxuan Wang, and Qiang Zhang
Atmos. Chem. Phys., 18, 17489–17496, https://doi.org/10.5194/acp-18-17489-2018, https://doi.org/10.5194/acp-18-17489-2018, 2018
Archana Dayalu, J. William Munger, Steven C. Wofsy, Yuxuan Wang, Thomas Nehrkorn, Yu Zhao, Michael B. McElroy, Chris P. Nielsen, and Kristina Luus
Biogeosciences, 15, 6713–6729, https://doi.org/10.5194/bg-15-6713-2018, https://doi.org/10.5194/bg-15-6713-2018, 2018
Short summary
Short summary
Accounting for the vegetation signal is critical for comprehensive CO2 budget assessment in China. We model and evaluate hourly vegetation carbon dioxide (CO2) exchange (mass per unit area per unit time) in northern China from 2005 to 2009. The model is driven by satellite and meteorological data, is linked to ground-level ecosystem observations, and is applicable to other time periods. We find vegetation uptake of CO2 in summer is comparable to emissions from fossil fuels in northern China.
Thierry Leblanc, Mark A. Brewer, Patrick S. Wang, Maria Jose Granados-Muñoz, Kevin B. Strawbridge, Michael Travis, Bernard Firanski, John T. Sullivan, Thomas J. McGee, Grant K. Sumnicht, Laurence W. Twigg, Timothy A. Berkoff, William Carrion, Guillaume Gronoff, Ali Aknan, Gao Chen, Raul J. Alvarez, Andrew O. Langford, Christoph J. Senff, Guillaume Kirgis, Matthew S. Johnson, Shi Kuang, and Michael J. Newchurch
Atmos. Meas. Tech., 11, 6137–6162, https://doi.org/10.5194/amt-11-6137-2018, https://doi.org/10.5194/amt-11-6137-2018, 2018
Short summary
Short summary
This article reviews the capability of five ozone lidars from the North American TOLNet lidar network. These ground-based laser remote-sensing instruments typically measure ozone in the troposphere with a precision of 5 % and vertical and time resolutions of 100 m and 10 min, respectively. Understanding ozone variability at high spatiotemporal scales is essential for monitoring air quality, human health, and climate. The article shows that the TOLNet lidars are very well suited for this purpose.
Matthew S. Johnson, Xiong Liu, Peter Zoogman, John Sullivan, Michael J. Newchurch, Shi Kuang, Thierry Leblanc, and Thomas McGee
Atmos. Meas. Tech., 11, 3457–3477, https://doi.org/10.5194/amt-11-3457-2018, https://doi.org/10.5194/amt-11-3457-2018, 2018
Short summary
Short summary
This research was conducted to determine the impact of multiple a priori ozone (O3) profile products on Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite retrievals. It was determined that non-climatological model predictions, in particular those from a chemical transport model, when applied as the a priori profile improved the accuracy of TEMPO tropospheric O3 retrievals in comparison to the TB-Clim product that is currently suggested for use in the TEMPO retrieval algorithm.
Shaojie Song, Meng Gao, Weiqi Xu, Jingyuan Shao, Guoliang Shi, Shuxiao Wang, Yuxuan Wang, Yele Sun, and Michael B. McElroy
Atmos. Chem. Phys., 18, 7423–7438, https://doi.org/10.5194/acp-18-7423-2018, https://doi.org/10.5194/acp-18-7423-2018, 2018
Short summary
Short summary
Severe haze events occur frequently over northern China, especially in winter. Acidity plays a critical role in the formation of secondary PM2.5 and its toxicity. Using field measurements of gases and particles to critically evaluate two thermodynamic models routinely employed to determine particle acidity, we found that China's winter haze particles are generally within a moderately acidic range (pH 4–5) and not highly acidic (0) or neutral (7) as has been previously reported in the literature.
Martine De Mazière, Anne M. Thompson, Michael J. Kurylo, Jeannette D. Wild, Germar Bernhard, Thomas Blumenstock, Geir O. Braathen, James W. Hannigan, Jean-Christopher Lambert, Thierry Leblanc, Thomas J. McGee, Gerald Nedoluha, Irina Petropavlovskikh, Gunther Seckmeyer, Paul C. Simon, Wolfgang Steinbrecht, and Susan E. Strahan
Atmos. Chem. Phys., 18, 4935–4964, https://doi.org/10.5194/acp-18-4935-2018, https://doi.org/10.5194/acp-18-4935-2018, 2018
Short summary
Short summary
This paper serves as an introduction to the special issue "Twenty-five years of operations of the Network for the Detection of Atmospheric Composition Change (NDACC)". It describes the origins of the network, its actual status, and some perspectives for its future evolution in the context of atmospheric sciences.
Yuxuan Wang, Yuanyu Xie, Wenhao Dong, Yi Ming, Jun Wang, and Lu Shen
Atmos. Chem. Phys., 17, 12827–12843, https://doi.org/10.5194/acp-17-12827-2017, https://doi.org/10.5194/acp-17-12827-2017, 2017
Short summary
Short summary
Besides the well-known large impact on agriculture and water resources, drought is associated with significant adverse effects on air quality. Drought-induced degradation of air quality is largely due to natural processes, offsetting the effort of anthropogenic emission reduction during the past decades. Such adverse impacts should be included in modeling processes under current and future climate for mitigation policy.
Travis N. Knepp, James J. Szykman, Russell Long, Rachelle M. Duvall, Jonathan Krug, Melinda Beaver, Kevin Cavender, Keith Kronmiller, Michael Wheeler, Ruben Delgado, Raymond Hoff, Timothy Berkoff, Erik Olson, Richard Clark, Daniel Wolfe, David Van Gilst, and Doreen Neil
Atmos. Meas. Tech., 10, 3963–3983, https://doi.org/10.5194/amt-10-3963-2017, https://doi.org/10.5194/amt-10-3963-2017, 2017
Short summary
Short summary
Herein we compare the mixed-layer data products from differing ceilometer instruments and meteorological sondes.
Lihua Wang, Michael J. Newchurch, Raul J. Alvarez II, Timothy A. Berkoff, Steven S. Brown, William Carrion, Russell J. De Young, Bryan J. Johnson, Rene Ganoe, Guillaume Gronoff, Guillaume Kirgis, Shi Kuang, Andrew O. Langford, Thierry Leblanc, Erin E. McDuffie, Thomas J. McGee, Denis Pliutau, Christoph J. Senff, John T. Sullivan, Grant Sumnicht, Laurence W. Twigg, and Andrew J. Weinheimer
Atmos. Meas. Tech., 10, 3865–3876, https://doi.org/10.5194/amt-10-3865-2017, https://doi.org/10.5194/amt-10-3865-2017, 2017
Short summary
Short summary
Intercomparisons have been made between three TOLNet ozone lidars and between the lidars and other ozone instruments during the 2014 DISCOVER-AQ and FRAPPÉ campaigns in Colorado. Overall, the TOLNet lidars are capable of measuring 5 min tropospheric ozone variations with accuracy better than ±15 % in terms of their vertical resolving capability and better than ±5 % in terms of their column average measurement. These results indicate very good measurement accuracy for the three TOLNet lidars.
K. Emma Knowland, Ruth M. Doherty, Kevin I. Hodges, and Lesley E. Ott
Atmos. Chem. Phys., 17, 12421–12447, https://doi.org/10.5194/acp-17-12421-2017, https://doi.org/10.5194/acp-17-12421-2017, 2017
Short summary
Short summary
First study to our knowledge to quantify the influence extratropical cyclones have on the temporal variability of springtime surface ozone (O3) measured on the west coast of Europe when cyclones are nearby. We show passing cyclones have a discernible influence on surface O3 concentrations. In-depth findings from four case studies, using a combination of reanalyses and a modeled tracer, demonstrate there are several transport pathways before O3-rich air eventually reaches the surface.
Laura Bianco, Katja Friedrich, James M. Wilczak, Duane Hazen, Daniel Wolfe, Ruben Delgado, Steven P. Oncley, and Julie K. Lundquist
Atmos. Meas. Tech., 10, 1707–1721, https://doi.org/10.5194/amt-10-1707-2017, https://doi.org/10.5194/amt-10-1707-2017, 2017
Short summary
Short summary
XPIA is a study held in 2015 at NOAA's Boulder Atmospheric Observatory facility, aimed at assessing remote-sensing capabilities for wind energy applications. We use well-defined reference systems to validate temperature retrieved by two microwave radiometers (MWRs) and virtual temperature measured by wind profiling radars with radio acoustic sounding systems (RASSs). Water vapor density and relative humidity by the MWRs were also compared with similar measurements from the reference systems.
Vanessa Caicedo, Bernhard Rappenglück, Barry Lefer, Gary Morris, Daniel Toledo, and Ruben Delgado
Atmos. Meas. Tech., 10, 1609–1622, https://doi.org/10.5194/amt-10-1609-2017, https://doi.org/10.5194/amt-10-1609-2017, 2017
Short summary
Short summary
Three methods for estimating the boundary layer height using aerosol backscatter measurements are evaluated here. Radiosonde profiles are used to evaluate aerosol-backscatter-derived boundary layer heights. Overall good agreement between radiosonde and all aerosol-derived boundary layer heights was found, and specific limitations to each method are discussed. A recommended method is given for future aerosol backscatter retrieval of the boundary layer height.
Mithu Debnath, Giacomo Valerio Iungo, W. Alan Brewer, Aditya Choukulkar, Ruben Delgado, Scott Gunter, Julie K. Lundquist, John L. Schroeder, James M. Wilczak, and Daniel Wolfe
Atmos. Meas. Tech., 10, 1215–1227, https://doi.org/10.5194/amt-10-1215-2017, https://doi.org/10.5194/amt-10-1215-2017, 2017
Short summary
Short summary
The XPIA experiment was conducted in 2015 at the Boulder Atmospheric Observatory to estimate capabilities of various remote-sensing techniques for the characterization of complex atmospheric flows. Among different tests, XPIA provided the unique opportunity to perform simultaneous virtual towers with Ka-band radars and scanning Doppler wind lidars. Wind speed and wind direction were assessed against lidar profilers and sonic anemometer data, highlighting a good accuracy of the data retrieved.
Mithu Debnath, G. Valerio Iungo, Ryan Ashton, W. Alan Brewer, Aditya Choukulkar, Ruben Delgado, Julie K. Lundquist, William J. Shaw, James M. Wilczak, and Daniel Wolfe
Atmos. Meas. Tech., 10, 431–444, https://doi.org/10.5194/amt-10-431-2017, https://doi.org/10.5194/amt-10-431-2017, 2017
Short summary
Short summary
Triple RHI scans were performed with three simultaneous scanning Doppler wind lidars and assessed with lidar profiler and sonic anemometer data. This test is part of the XPIA experiment. The scan strategy consists in two lidars performing co-planar RHI scans, while a third lidar measures the transversal velocity component. The results show that horizontal velocity and wind direction are measured with good accuracy, while the vertical velocity is typically measured with a significant error.
Yuxuan Wang, Beixi Jia, Sing-Chun Wang, Mark Estes, Lu Shen, and Yuanyu Xie
Atmos. Chem. Phys., 16, 15265–15276, https://doi.org/10.5194/acp-16-15265-2016, https://doi.org/10.5194/acp-16-15265-2016, 2016
Short summary
Short summary
This paper provides empirical evidence that the year-to-year variability of summertime ozone over Houston is linked to the Bermuda High (BH) large-scale circulation patterns. It identifies two BH indices that can explain up to 70 % of the interannual variability of summertime ozone in Houston and illustrates the mechanism underlying the BH and ozone linkage. Such a mechanism is tested for applicability to other coastal urban regions along the US Gulf Coast.
J.-W. Xu, R. V. Martin, A. van Donkelaar, J. Kim, M. Choi, Q. Zhang, G. Geng, Y. Liu, Z. Ma, L. Huang, Y. Wang, H. Chen, H. Che, P. Lin, and N. Lin
Atmos. Chem. Phys., 15, 13133–13144, https://doi.org/10.5194/acp-15-13133-2015, https://doi.org/10.5194/acp-15-13133-2015, 2015
Short summary
Short summary
1. GOCI (Geostationary Ocean Color Imager) retrieval of AOD is consistent with AERONET AOD (RMSE=0.08-0.1)
2. GOCI-derived PM2.5 is in significant agreement with in situ observations (r2=0.66, rRMSE=18.3%)
3. Population-weighted GOCI-derived PM2.5 over eastern China for 2013 is 53.8 μg/m3, threatening the health of its more than 400 million residents
4. Secondary inorganics (SO42-, NO3-, NH4+) & organic matter are the most significant components of GOCI-derived PM2.5.
J. T. Sullivan, T. J. McGee, T. Leblanc, G. K. Sumnicht, and L. W. Twigg
Atmos. Meas. Tech., 8, 4133–4143, https://doi.org/10.5194/amt-8-4133-2015, https://doi.org/10.5194/amt-8-4133-2015, 2015
Short summary
Short summary
This paper addresses the validation procedures for the GSFC TROPOZ DIAL retrieval algorithm and develops a primary standard for retrieval consistency and optimization within the Tropospheric Ozone Lidar Network (TOLNet). The methodology presented may be extended to most DIAL instruments, even if the atmospheric product of interest is not tropospheric ozone. The TROPOZ retrieval has been effective in retrieving ozone nearly 200m lower to the surface and has reduced the mean profile bias by 3.5%.
K. E. Knowland, R. M. Doherty, and K. I. Hodges
Atmos. Chem. Phys., 15, 3605–3628, https://doi.org/10.5194/acp-15-3605-2015, https://doi.org/10.5194/acp-15-3605-2015, 2015
Short summary
Short summary
Novel use of combined meteorology and composition reanalysis data and compositing methodologies to characterize pollutant distributions of ozone (O3) and carbon monoxide (CO) in "typical" intense springtime storms versus the background environment for the period 2003--2012. Clear signals of O3 and CO redistributed horizontally and vertically throughout storms. In particular, the lofting of CO-rich/O3-poor air in the warm conveyor belt and the descent of O3-rich/CO-poor air in the dry intrusion.
J. T. Sullivan, T. J. McGee, G. K. Sumnicht, L. W. Twigg, and R. M. Hoff
Atmos. Meas. Tech., 7, 3529–3548, https://doi.org/10.5194/amt-7-3529-2014, https://doi.org/10.5194/amt-7-3529-2014, 2014
Y. Wang, Q. Q. Zhang, K. He, Q. Zhang, and L. Chai
Atmos. Chem. Phys., 13, 2635–2652, https://doi.org/10.5194/acp-13-2635-2013, https://doi.org/10.5194/acp-13-2635-2013, 2013
Related subject area
Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Seasonal, regional, and vertical characteristics of high-carbon-monoxide plumes along with their associated ozone anomalies, as seen by IAGOS between 2002 and 2019
The potential of drone observations to improve air quality predictions by 4D-Var
Process analysis of elevated concentrations of organic acids at Whiteface Mountain, New York
Ozone source attribution in polluted European areas during summer 2017 as simulated with MECO(n)
Opinion: Challenges and needs of tropospheric chemical mechanism development
The atmospheric oxidizing capacity in China – Part 2: Sensitivity to emissions of primary pollutants
Role of chemical production and depositional losses on formaldehyde in the Community Regional Atmospheric Chemistry Multiphase Mechanism (CRACMM)
Review of source analyses of ambient volatile organic compounds considering reactive losses: methods of reducing loss effects, impacts of losses, and sources
Interpreting summertime hourly variation of NO2 columns with implications for geostationary satellite applications
An investigation into atmospheric nitrous acid (HONO) processes in South Korea
Performance evaluation of UKESM1 for surface ozone across the pan-tropics
Constraining light dependency in modeled emissions through comparison to observed biogenic volatile organic compound (BVOC) concentrations in a southeastern US forest
A global re-analysis of regionally resolved emissions and atmospheric mole fractions of SF6 for the period 2005–2021
Tropospheric ozone precursors: global and regional distributions, trends, and variability
The contribution of transport emissions to ozone mixing ratios and methane lifetime in 2015 and 2050 in the Shared Socioeconomic Pathways (SSPs)
Ether and ester formation from peroxy radical recombination: a qualitative reaction channel analysis
ACEIC: a comprehensive anthropogenic chlorine emission inventory for China
Impact of methane and other precursor emission reductions on surface ozone in Europe: scenario analysis using the European Monitoring and Evaluation Programme (EMEP) Meteorological Synthesizing Centre – West (MSC-W) model
Verifying national inventory-based combustion emissions of CO2 across the UK and mainland Europe using satellite observations of atmospheric CO and CO2
An improved estimate of inorganic iodine emissions from the ocean using a coupled surface microlayer box model
Impact of improved representation of volatile organic compound emissions and production of NOx reservoirs on modeled urban ozone production
The effect of different climate and air quality policies in China on in situ ozone production in Beijing
Assessing the relative impacts of satellite ozone and its precursor observations to improve global tropospheric ozone analysis using multiple chemical reanalysis systems
Evaluating present-day and future impacts of agricultural ammonia emissions on atmospheric chemistry and climate
Enhancing long-term trend simulation of the global tropospheric hydroxyl (TOH) and its drivers from 2005 to 2019: a synergistic integration of model simulations and satellite observations
Intercomparison of GEOS-Chem and CAM-chem tropospheric oxidant chemistry within the Community Earth System Model version 2 (CESM2)
Development of a detailed gaseous oxidation scheme of naphthalene for secondary organic aerosol (SOA) formation and speciation
Air pollution satellite-based CO2 emission inversion: system evaluation, sensitivity analysis, and future perspective
Anthropogenic emission controls reduce summertime ozone-temperature sensitivity in the United States
Large contributions of soil emissions to the atmospheric nitrogen budget and their impacts on air quality and temperature rise in North China
Why did ozone concentrations remain high during Shanghai's static management? A statistical and radical-chemistry perspective
Impact of introducing electric vehicles on ground-level O3 and PM2.5 in the Greater Tokyo Area: Yearly trends and the importance of changes in the Urban Heat Island effect
Revising VOC emissions speciation improves the simulation of global background ethane and propane
Changes in South American surface ozone trends: exploring the influences of precursors and extreme events
Evaluating NOx stack plume emissions using a high-resolution atmospheric chemistry model and satellite-derived NO2 columns
NOx emissions in France in 2019–2021 as estimated by the high-spatial-resolution assimilation of TROPOMI NO2 observations
Urban ozone formation and sensitivities to volatile chemical products, cooking emissions, and NOx across the Los Angeles Basin
Aggravated surface O3 pollution primarily driven by meteorological variations in China during the 2020 COVID-19 pandemic lockdown period
Identifying decadal trends in deweathered concentrations of criteria air pollutants in Canadian urban atmospheres with machine learning approaches
Evaluation of modelled versus observed non-methane volatile organic compounds at European Monitoring and Evaluation Programme sites in Europe
Constraining non-methane VOC emissions with TROPOMI HCHO observations: impact on summertime ozone simulation in August 2022 in China
Insights on ozone pollution control in urban areas by decoupling meteorological factors based on machine learning
Revealing the significant acceleration of hydrofluorocarbon (HFC) emissions in eastern Asia through long-term atmospheric observations
Interpreting Geostationary Environment Monitoring Spectrometer (GEMS) geostationary satellite observations of the diurnal variation in nitrogen dioxide (NO2) over East Asia
An intercomparison of satellite, airborne, and ground-level observations with WRF–CAMx simulations of NO2 columns over Houston, Texas, during the September 2021 TRACER-AQ campaign
Investigating processes influencing simulation of local Arctic wintertime anthropogenic pollution in Fairbanks, Alaska during ALPACA-2022
Interannual variability of summertime formaldehyde (HCHO) vertical column density and its main drivers at northern high latitudes
The impact of multi-decadal changes in VOC speciation on urban ozone chemistry: a case study in Birmingham, United Kingdom
Technical note: Challenges in detecting free tropospheric ozone trends in a sparsely sampled environment
Combined assimilation of NOAA surface and MIPAS satellite observations to constrain the global budget of carbonyl sulfide
Thibaut Lebourgeois, Bastien Sauvage, Pawel Wolff, Béatrice Josse, Virginie Marécal, Yasmine Bennouna, Romain Blot, Damien Boulanger, Hannah Clark, Jean-Marc Cousin, Philippe Nedelec, and Valérie Thouret
Atmos. Chem. Phys., 24, 13975–14004, https://doi.org/10.5194/acp-24-13975-2024, https://doi.org/10.5194/acp-24-13975-2024, 2024
Short summary
Short summary
Our study examines intense-carbon-monoxide (CO) pollution events measured by commercial aircraft from the In-service Aircraft for a Global Observing System (IAGOS) research infrastructure. We combine these measurements with the SOFT-IO model to trace the origin of the observed CO. A comprehensive analysis of the geographical origin, source type, seasonal variation, and ozone levels of these pollution events is provided.
Hassnae Erraji, Philipp Franke, Astrid Lampert, Tobias Schuldt, Ralf Tillmann, Andreas Wahner, and Anne Caroline Lange
Atmos. Chem. Phys., 24, 13913–13934, https://doi.org/10.5194/acp-24-13913-2024, https://doi.org/10.5194/acp-24-13913-2024, 2024
Short summary
Short summary
Four-dimensional variational data assimilation allows for the simultaneous optimisation of initial values and emission rates by using trace-gas profiles from drone observations in a regional air quality model. Assimilated profiles positively impact the representation of air pollutants in the model by improving their vertical distribution and ground-level concentrations. This case study highlights the potential of drone data to enhance air quality analyses including local emission evaluation.
Christopher Lawrence, Mary Barth, John Orlando, Paul Casson, Richard Brandt, Daniel Kelting, Elizabeth Yerger, and Sara Lance
Atmos. Chem. Phys., 24, 13693–13713, https://doi.org/10.5194/acp-24-13693-2024, https://doi.org/10.5194/acp-24-13693-2024, 2024
Short summary
Short summary
This work uses chemical transport and box modeling to study the gas- and aqueous-phase production of organic acid concentrations measured in cloud water at the summit of Whiteface Mountain on 1 July 2018. Isoprene was the major source of formic, acetic, and oxalic acid. Gas-phase chemistry greatly underestimated formic and acetic acid, indicating missing sources, while cloud chemistry was a key source of oxalic acid. More studies of organic acids are required to better constrain their sources.
Markus Kilian, Volker Grewe, Patrick Jöckel, Astrid Kerkweg, Mariano Mertens, Andreas Zahn, and Helmut Ziereis
Atmos. Chem. Phys., 24, 13503–13523, https://doi.org/10.5194/acp-24-13503-2024, https://doi.org/10.5194/acp-24-13503-2024, 2024
Short summary
Short summary
Anthropogenic emissions are a major source of precursors of tropospheric ozone. As ozone formation is highly non-linear, we apply a global–regional chemistry–climate model with a source attribution method (tagging) to quantify the contribution of anthropogenic emissions to ozone. Our analysis shows that the contribution of European anthropogenic emissions largely increases during large ozone periods, indicating that emissions from these sectors drive ozone values.
Barbara Ervens, Andrew Rickard, Bernard Aumont, William P. L. Carter, Max McGillen, Abdelwahid Mellouki, John Orlando, Bénédicte Picquet-Varrault, Paul Seakins, William R. Stockwell, Luc Vereecken, and Timothy J. Wallington
Atmos. Chem. Phys., 24, 13317–13339, https://doi.org/10.5194/acp-24-13317-2024, https://doi.org/10.5194/acp-24-13317-2024, 2024
Short summary
Short summary
Chemical mechanisms describe the chemical processes in atmospheric models that are used to describe the changes in the atmospheric composition. Therefore, accurate chemical mechanisms are necessary to predict the evolution of air pollution and climate change. The article describes all steps that are needed to build chemical mechanisms and discusses the advances and needs of experimental and theoretical research activities needed to build reliable chemical mechanisms.
Jianing Dai, Guy P. Brasseur, Mihalis Vrekoussis, Maria Kanakidou, Kun Qu, Yijuan Zhang, Hongliang Zhang, and Tao Wang
Atmos. Chem. Phys., 24, 12943–12962, https://doi.org/10.5194/acp-24-12943-2024, https://doi.org/10.5194/acp-24-12943-2024, 2024
Short summary
Short summary
This paper employs a regional chemical transport model to quantify the sensitivity of air pollutants and photochemical parameters to specified emission reductions in China for representative winter and summer conditions. The study provides insights into further air quality control in China with reduced primary emissions.
T. Nash Skipper, Emma L. D'Ambro, Forwood C. Wiser, V. Faye McNeill, Rebecca H. Schwantes, Barron H. Henderson, Ivan R. Piletic, Colleen B. Baublitz, Jesse O. Bash, Andrew R. Whitehill, Lukas C. Valin, Asher P. Mouat, Jennifer Kaiser, Glenn M. Wolfe, Jason M. St. Clair, Thomas F. Hanisco, Alan Fried, Bryan K. Place, and Havala O.T. Pye
Atmos. Chem. Phys., 24, 12903–12924, https://doi.org/10.5194/acp-24-12903-2024, https://doi.org/10.5194/acp-24-12903-2024, 2024
Short summary
Short summary
We develop the Community Regional Atmospheric Chemistry Multiphase Mechanism (CRACMM) version 2 to improve predictions of formaldehyde in ambient air compared to satellite-, aircraft-, and ground-based observations. With the updated chemistry, we estimate the cancer risk from inhalation exposure to ambient formaldehyde across the contiguous USA and predict that 40 % of this risk is controllable through reductions in anthropogenic emissions of nitrogen oxides and reactive organic carbon.
Baoshuang Liu, Yao Gu, Yutong Wu, Qili Dai, Shaojie Song, Yinchang Feng, and Philip K. Hopke
Atmos. Chem. Phys., 24, 12861–12879, https://doi.org/10.5194/acp-24-12861-2024, https://doi.org/10.5194/acp-24-12861-2024, 2024
Short summary
Short summary
Reactive loss of volatile organic compounds (VOCs) is a long-term issue yet to be resolved in VOC source analyses. We assess common methods of, and existing issues in, reducing losses, impacts of losses, and sources in current source analyses. We offer a potential supporting role for solving issues of VOC conversion. Source analyses of consumed VOCs that reacted to produce ozone and secondary organic aerosols can play an important role in the effective control of secondary pollution in air.
Deepangsu Chatterjee, Randall V. Martin, Chi Li, Dandan Zhang, Haihui Zhu, Daven K. Henze, James H. Crawford, Ronald C. Cohen, Lok N. Lamsal, and Alexander M. Cede
Atmos. Chem. Phys., 24, 12687–12706, https://doi.org/10.5194/acp-24-12687-2024, https://doi.org/10.5194/acp-24-12687-2024, 2024
Short summary
Short summary
We investigate the hourly variation of NO2 columns and surface concentrations by applying the GEOS-Chem model to interpret aircraft and ground-based measurements over the US and Pandora sun photometer measurements over the US, Europe, and Asia. Corrections to the Pandora columns and finer model resolution improve the modeled representation of the summertime hourly variation of total NO2 columns to explain the weaker hourly variation in NO2 columns than at the surface.
Kiyeon Kim, Kyung Man Han, Chul Han Song, Hyojun Lee, Ross Beardsley, Jinhyeok Yu, Greg Yarwood, Bonyoung Koo, Jasper Madalipay, Jung-Hun Woo, and Seogju Cho
Atmos. Chem. Phys., 24, 12575–12593, https://doi.org/10.5194/acp-24-12575-2024, https://doi.org/10.5194/acp-24-12575-2024, 2024
Short summary
Short summary
We incorporated each HONO process into the current CMAQ modeling framework to enhance the accuracy of HONO mixing ratio predictions. These results expand our understanding of HONO photochemistry and identify crucial sources of HONO that impact the total HONO budget in Seoul, South Korea. Through this investigation, we contribute to resolving discrepancies in understanding chemical transport models, with implications for better air quality management and environmental protection in the region.
Flossie Brown, Gerd Folberth, Stephen Sitch, Paulo Artaxo, Marijn Bauters, Pascal Boeckx, Alexander W. Cheesman, Matteo Detto, Ninong Komala, Luciana Rizzo, Nestor Rojas, Ines dos Santos Vieira, Steven Turnock, Hans Verbeeck, and Alfonso Zambrano
Atmos. Chem. Phys., 24, 12537–12555, https://doi.org/10.5194/acp-24-12537-2024, https://doi.org/10.5194/acp-24-12537-2024, 2024
Short summary
Short summary
Ozone is a pollutant that is detrimental to human and plant health. Ozone monitoring sites in the tropics are limited, so models are often used to understand ozone exposure. We use measurements from the tropics to evaluate ozone from the UK Earth system model, UKESM1. UKESM1 is able to capture the pattern of ozone in the tropics, except in southeast Asia, although it systematically overestimates it at all sites. This work highlights that UKESM1 can capture seasonal and hourly variability.
Namrata Shanmukh Panji, Deborah F. McGlynn, Laura E. R. Barry, Todd M. Scanlon, Manuel T. Lerdau, Sally E. Pusede, and Gabriel Isaacman-VanWertz
Atmos. Chem. Phys., 24, 12495–12507, https://doi.org/10.5194/acp-24-12495-2024, https://doi.org/10.5194/acp-24-12495-2024, 2024
Short summary
Short summary
Climate change will bring about changes in parameters that are currently used in global-scale models to calculate biogenic emissions. This study seeks to understand the factors driving these models by comparing long-term datasets of biogenic compounds to modeled emissions. We note that the light-dependent fractions currently used in models do not accurately represent regional observations. We provide evidence for the time-dependent variation in this parameter for future modifications to models.
Martin Vojta, Andreas Plach, Saurabh Annadate, Sunyoung Park, Gawon Lee, Pallav Purohit, Florian Lindl, Xin Lan, Jens Mühle, Rona L. Thompson, and Andreas Stohl
Atmos. Chem. Phys., 24, 12465–12493, https://doi.org/10.5194/acp-24-12465-2024, https://doi.org/10.5194/acp-24-12465-2024, 2024
Short summary
Short summary
We constrain the global emissions of the very potent greenhouse gas sulfur hexafluoride (SF6) between 2005 and 2021. We show that SF6 emissions are decreasing in the USA and in the EU, while they are substantially growing in China, leading overall to an increasing global emission trend. The national reports for the USA, EU, and China all underestimated their SF6 emissions. However, stringent mitigation measures can successfully reduce SF6 emissions, as can be seen in the EU emission trend.
Yasin Elshorbany, Jerald R. Ziemke, Sarah Strode, Hervé Petetin, Kazuyuki Miyazaki, Isabelle De Smedt, Kenneth Pickering, Rodrigo J. Seguel, Helen Worden, Tamara Emmerichs, Domenico Taraborrelli, Maria Cazorla, Suvarna Fadnavis, Rebecca R. Buchholz, Benjamin Gaubert, Néstor Y. Rojas, Thiago Nogueira, Thérèse Salameh, and Min Huang
Atmos. Chem. Phys., 24, 12225–12257, https://doi.org/10.5194/acp-24-12225-2024, https://doi.org/10.5194/acp-24-12225-2024, 2024
Short summary
Short summary
We investigated tropospheric ozone spatial variability and trends from 2005 to 2019 and related those to ozone precursors on global and regional scales. We also investigate the spatiotemporal characteristics of the ozone formation regime in relation to ozone chemical sources and sinks. Our analysis is based on remote sensing products of the tropospheric column of ozone and its precursors, nitrogen dioxide, formaldehyde, and total column CO, as well as ozonesonde data and model simulations.
Mariano Mertens, Sabine Brinkop, Phoebe Graf, Volker Grewe, Johannes Hendricks, Patrick Jöckel, Anna Lanteri, Sigrun Matthes, Vanessa S. Rieger, Mattia Righi, and Robin N. Thor
Atmos. Chem. Phys., 24, 12079–12106, https://doi.org/10.5194/acp-24-12079-2024, https://doi.org/10.5194/acp-24-12079-2024, 2024
Short summary
Short summary
We quantified the contributions of land transport, shipping, and aviation emissions to tropospheric ozone; its radiative forcing; and the reductions of the methane lifetime using chemistry-climate model simulations. The contributions were analysed for the conditions of 2015 and for three projections for the year 2050. The results highlight the challenges of mitigating ozone formed by emissions of the transport sector, caused by the non-linearitiy of the ozone chemistry and the long lifetime.
Lauri Franzon, Marie Camredon, Richard Valorso, Bernard Aumont, and Theo Kurtén
Atmos. Chem. Phys., 24, 11679–11699, https://doi.org/10.5194/acp-24-11679-2024, https://doi.org/10.5194/acp-24-11679-2024, 2024
Short summary
Short summary
In this article we investigate the formation of large, sticky molecules from various organic compounds entering the atmosphere as primary emissions and the degree to which these processes may contribute to organic aerosol particle mass. More specifically, we qualitatively investigate a recently discovered chemical reaction channel for one of the most important short-lived radical compounds, peroxy radicals, and discover which of these reactions are most atmospherically important.
Siting Li, Yiming Liu, Yuqi Zhu, Yinbao Jin, Yingying Hong, Ao Shen, Yifei Xu, Haofan Wang, Haichao Wang, Xiao Lu, Shaojia Fan, and Qi Fan
Atmos. Chem. Phys., 24, 11521–11544, https://doi.org/10.5194/acp-24-11521-2024, https://doi.org/10.5194/acp-24-11521-2024, 2024
Short summary
Short summary
This study establishes an inventory of anthropogenic chlorine emissions in China in 2019 with expanded species (HCl, Cl-, Cl2, HOCl) and sources (41 specific sources). The inventory is validated by a modeling study against the observations. This study enhances the understanding of anthropogenic chlorine emissions in the atmosphere, identifies key sources, and provides scientific support for pollution control and climate change.
Willem E. van Caspel, Zbigniew Klimont, Chris Heyes, and Hilde Fagerli
Atmos. Chem. Phys., 24, 11545–11563, https://doi.org/10.5194/acp-24-11545-2024, https://doi.org/10.5194/acp-24-11545-2024, 2024
Short summary
Short summary
Methane in the atmosphere contributes to the production of ozone gas – an air pollutant and greenhouse gas. Our results highlight that simultaneous reductions in methane emissions help avoid offsetting the air pollution benefits already achieved by the already-approved precursor emission reductions by 2050 in the European Monitoring and Evaluation Programme region, while also playing an important role in bringing air pollution further down towards World Health Organization guideline limits.
Tia R. Scarpelli, Paul I. Palmer, Mark Lunt, Ingrid Super, and Arjan Droste
Atmos. Chem. Phys., 24, 10773–10791, https://doi.org/10.5194/acp-24-10773-2024, https://doi.org/10.5194/acp-24-10773-2024, 2024
Short summary
Short summary
Under the Paris Agreement, countries must track their anthropogenic greenhouse gas emissions. This study describes a method to determine self-consistent estimates for combustion emissions and natural fluxes of CO2 from atmospheric data. We report consistent estimates inferred using this approach from satellite data and ground-based data over Europe, suggesting that satellite data can be used to determine national anthropogenic CO2 emissions for countries where ground-based CO2 data are absent.
Ryan J. Pound, Lucy V. Brown, Mat J. Evans, and Lucy J. Carpenter
Atmos. Chem. Phys., 24, 9899–9921, https://doi.org/10.5194/acp-24-9899-2024, https://doi.org/10.5194/acp-24-9899-2024, 2024
Short summary
Short summary
Iodine-mediated loss of ozone to the ocean surface and the subsequent emission of iodine species has a large effect on the troposphere. Here we combine recent experimental insights to develop a box model of the process, which we then parameterize and incorporate into the GEOS-Chem transport model. We find that these new insights have a small impact on the total emission of iodine but significantly change its distribution.
Katherine R. Travis, Benjamin A. Nault, James H. Crawford, Kelvin H. Bates, Donald R. Blake, Ronald C. Cohen, Alan Fried, Samuel R. Hall, L. Gregory Huey, Young Ro Lee, Simone Meinardi, Kyung-Eun Min, Isobel J. Simpson, and Kirk Ullman
Atmos. Chem. Phys., 24, 9555–9572, https://doi.org/10.5194/acp-24-9555-2024, https://doi.org/10.5194/acp-24-9555-2024, 2024
Short summary
Short summary
Human activities result in the emission of volatile organic compounds (VOCs) that contribute to air pollution. Detailed VOC measurements were taken during a field study in South Korea. When compared to VOC inventories, large discrepancies showed underestimates from chemical products, liquefied petroleum gas, and long-range transport. Improved emissions and chemistry of these VOCs better described urban pollution. The new chemical scheme is relevant to urban areas and other VOC sources.
Beth S. Nelson, Zhenze Liu, Freya A. Squires, Marvin Shaw, James R. Hopkins, Jacqueline F. Hamilton, Andrew R. Rickard, Alastair C. Lewis, Zongbo Shi, and James D. Lee
Atmos. Chem. Phys., 24, 9031–9044, https://doi.org/10.5194/acp-24-9031-2024, https://doi.org/10.5194/acp-24-9031-2024, 2024
Short summary
Short summary
The impact of combined air quality and carbon neutrality policies on O3 formation in Beijing was investigated. Emissions inventory data were used to estimate future pollutant mixing ratios relative to ground-level observations. O3 production was found to be most sensitive to changes in alkenes, but large reductions in less reactive compounds led to larger reductions in future O3 production. This study highlights the importance of understanding the emissions of organic pollutants.
Takashi Sekiya, Emanuele Emili, Kazuyuki Miyazaki, Antje Inness, Zhen Qu, R. Bradley Pierce, Dylan Jones, Helen Worden, William Y. Y. Cheng, Vincent Huijnen, and Gerbrand Koren
EGUsphere, https://doi.org/10.5194/egusphere-2024-2426, https://doi.org/10.5194/egusphere-2024-2426, 2024
Short summary
Short summary
Five global chemical reanalysis datasets were used to assess the relative impacts of assimilating satellite ozone and its precursors measurements on tropospheric ozone analyses for 2010. The multiple reanalysis system comparison allows for evaluating dependency of the impacts on different reanalysis systems. The results suggested the importance of satellite ozone and its precursor measurements for improving ozone analysis in the whole troposphere, with varying the magnitudes among the systems.
Maureen Beaudor, Didier Hauglustaine, Juliette Lathière, Martin Van Damme, Lieven Clarisse, and Nicolas Vuichard
EGUsphere, https://doi.org/10.5194/egusphere-2024-2022, https://doi.org/10.5194/egusphere-2024-2022, 2024
Short summary
Short summary
Agriculture is the biggest ammonia (NH3) source, impacting air quality, climate, and ecosystems. Because of food demand, NH3 emissions are projected to rise by 2100. Using a global model, we analyzed the impact of present and future NH3 emissions generated from a land model. Our results show improved ammonia patterns compared to a reference inventory. Future scenarios predict up to 70 % increase in global NH3 burden, significant changes in radiative forcing, and could significantly elevate N2O.
Amir H. Souri, Bryan N. Duncan, Sarah A. Strode, Daniel C. Anderson, Michael E. Manyin, Junhua Liu, Luke D. Oman, Zhen Zhang, and Brad Weir
Atmos. Chem. Phys., 24, 8677–8701, https://doi.org/10.5194/acp-24-8677-2024, https://doi.org/10.5194/acp-24-8677-2024, 2024
Short summary
Short summary
We explore a new method of using the wealth of information obtained from satellite observations of Aura OMI NO2, HCHO, and MERRA-2 reanalysis in NASA’s GEOS model equipped with an efficient tropospheric OH (TOH) estimator to enhance the representation of TOH spatial distribution and its long-term trends. This new framework helps us pinpoint regional inaccuracies in TOH and differentiate between established prior knowledge and newly acquired information from satellites on TOH trends.
Haipeng Lin, Louisa K. Emmons, Elizabeth W. Lundgren, Laura Hyesung Yang, Xu Feng, Ruijun Dang, Shixian Zhai, Yunxiao Tang, Makoto M. Kelp, Nadia K. Colombi, Sebastian D. Eastham, Thibaud M. Fritz, and Daniel J. Jacob
Atmos. Chem. Phys., 24, 8607–8624, https://doi.org/10.5194/acp-24-8607-2024, https://doi.org/10.5194/acp-24-8607-2024, 2024
Short summary
Short summary
Tropospheric ozone is a major air pollutant, a greenhouse gas, and a major indicator of model skill. Global atmospheric chemistry models show large differences in simulations of tropospheric ozone, but isolating sources of differences is complicated by different model environments. By implementing the GEOS-Chem model side by side to CAM-chem within a common Earth system model, we identify and evaluate specific differences between the two models and their impacts on key chemical species.
Victor Lannuque and Karine Sartelet
Atmos. Chem. Phys., 24, 8589–8606, https://doi.org/10.5194/acp-24-8589-2024, https://doi.org/10.5194/acp-24-8589-2024, 2024
Short summary
Short summary
Large uncertainties remain in understanding secondary organic aerosol (SOA) formation and speciation from naphthalene oxidation. This study details the development of the first near-explicit chemical scheme for naphthalene oxidation by OH, which includes kinetic and mechanistic data, and is able to reproduce most of the experimentally identified products in both gas and particle phases.
Hui Li, Jiaxin Qiu, and Bo Zheng
EGUsphere, https://doi.org/10.5194/egusphere-2024-1986, https://doi.org/10.5194/egusphere-2024-1986, 2024
Short summary
Short summary
We conduct a sensitivity analysis on various factors including prior, model resolution, satellite constraint, and inversion system configuration to assess the vulnerability of emission estimates across temporal, sectoral, and regional dimensions. Our analysis first reveals the robustness of emissions estimated by this air pollution satellite sensor-based CO2 emission inversion system, with relative change between tests and Base inversion below 4.0 % for national annual NOx and CO2 emissions.
Shuai Li, Xiao Lu, and Haolin Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1889, https://doi.org/10.5194/egusphere-2024-1889, 2024
Short summary
Short summary
We report that the summertime ozone-temperature sensitivity decreased by 50 % from 3.0 ppbv/K in 1990 to 1.5 ppb/K in 2021 in the US. GEOS-Chem simulations show that anthropogenic NOx emission reduction is the dominant driver of the ozone-temperature sensitivity decline, through influencing both the temperature-direct and temperature-indirect processes. Reduced ozone-temperature sensitivity has decreased the ozone enhancement from low to high temperatures by an average of 6.8 ppbv across the US.
Tong Sha, Siyu Yang, Qingcai Chen, Liangqing Li, Xiaoyan Ma, Yan-Lin Zhang, Zhaozhong Feng, K. Folkert Boersma, and Jun Wang
Atmos. Chem. Phys., 24, 8441–8455, https://doi.org/10.5194/acp-24-8441-2024, https://doi.org/10.5194/acp-24-8441-2024, 2024
Short summary
Short summary
Using an updated soil reactive nitrogen emission scheme in the Unified Inputs for Weather Research and Forecasting coupled with Chemistry (UI-WRF-Chem) model, we investigate the role of soil NO and HONO (Nr) emissions in air quality and temperature in North China. Contributions of soil Nr emissions to O3 and secondary pollutants are revealed, exceeding effects of soil NOx or HONO emission. Soil Nr emissions play an important role in mitigating O3 pollution and addressing climate change.
Jian Zhu, Shanshan Wang, Chuanqi Gu, Zhiwen Jiang, Sanbao Zhang, Ruibin Xue, Yuhao Yan, and Bin Zhou
Atmos. Chem. Phys., 24, 8383–8395, https://doi.org/10.5194/acp-24-8383-2024, https://doi.org/10.5194/acp-24-8383-2024, 2024
Short summary
Short summary
In 2022, Shanghai implemented city-wide static management measures during the high-ozone season in April and May, providing a chance to study ozone pollution control. Despite significant emissions reductions, ozone levels increased by 23 %. Statistically, the number of days with higher ozone diurnal variation types increased during the lockdown period. The uneven decline in VOC and NO2 emissions led to heightened photochemical processes, resulting in the observed ozone level rise.
Hiroo Hata, Norifumi Mizushima, and Tomohiko Ihara
EGUsphere, https://doi.org/10.5194/egusphere-2024-1961, https://doi.org/10.5194/egusphere-2024-1961, 2024
Short summary
Short summary
The introduction of battery electric vehicles (BEV) is expected to reduce the primary air pollutants from vehicular exhaust and evaporative emissions while reducing the anthropogenic heat produced by vehicles, ultimately decreasing the urban heat island effect (UHI). This study revealed the impact of introducing BEVs on the decrease in UHI and the effects of BEVs on the formation of tropospheric ozone and fine particulate matter in the Greater Tokyo Area of Japan.
Matthew J. Rowlinson, Mat J. Evans, Lucy J. Carpenter, Katie A. Read, Shalini Punjabi, Adedayo Adedeji, Luke Fakes, Ally Lewis, Ben Richmond, Neil Passant, Tim Murrells, Barron Henderson, Kelvin H. Bates, and Detlev Helmig
Atmos. Chem. Phys., 24, 8317–8342, https://doi.org/10.5194/acp-24-8317-2024, https://doi.org/10.5194/acp-24-8317-2024, 2024
Short summary
Short summary
Ethane and propane are volatile organic compounds emitted from human activities which help to form ozone, a pollutant and greenhouse gas, and also affect the chemistry of the lower atmosphere. Atmospheric models tend to do a poor job of reproducing the abundance of these compounds in the atmosphere. By using regional estimates of their emissions, rather than globally consistent estimates, we can significantly improve the simulation of ethane in the model and make some improvement for propane.
Rodrigo J. Seguel, Lucas Castillo, Charlie Opazo, Néstor Y. Rojas, Thiago Nogueira, María Cazorla, Mario Gavidia-Calderón, Laura Gallardo, René Garreaud, Tomás Carrasco-Escaff, and Yasin Elshorbany
Atmos. Chem. Phys., 24, 8225–8242, https://doi.org/10.5194/acp-24-8225-2024, https://doi.org/10.5194/acp-24-8225-2024, 2024
Short summary
Short summary
Trends of surface ozone were examined across South America. Our findings indicate that ozone trends in major South American cities either increase or remain steady, with no signs of decline. The upward trends can be attributed to chemical regimes that efficiently convert nitric oxide into nitrogen dioxide. Additionally, our results suggest a climate penalty for ozone driven by meteorological conditions that favor wildfire propagation in Chile and extensive heat waves in southern Brazil.
Maarten Krol, Bart van Stratum, Isidora Anglou, and Klaas Folkert Boersma
Atmos. Chem. Phys., 24, 8243–8262, https://doi.org/10.5194/acp-24-8243-2024, https://doi.org/10.5194/acp-24-8243-2024, 2024
Short summary
Short summary
This paper presents detailed plume simulations of nitrogen oxides and carbon dioxide that are emitted from four large industrial facilities world-wide. Results from the high-resolution simulations that include atmospheric chemistry are compared to nitrogen dioxide observations from satellites. We find good performance of the model and show that common assumptions that are used in simplified models need revision. This work is important for the monitoring of emissions using satellite data.
Robin Plauchu, Audrey Fortems-Cheiney, Grégoire Broquet, Isabelle Pison, Antoine Berchet, Elise Potier, Gaëlle Dufour, Adriana Coman, Dilek Savas, Guillaume Siour, and Henk Eskes
Atmos. Chem. Phys., 24, 8139–8163, https://doi.org/10.5194/acp-24-8139-2024, https://doi.org/10.5194/acp-24-8139-2024, 2024
Short summary
Short summary
This study uses the Community Inversion Framework and CHIMERE model to assess the potential of TROPOMI-S5P PAL NO2 tropospheric column data to estimate NOx emissions in France (2019–2021). Results show a 3 % decrease in average emissions compared to the 2016 CAMS-REG/INS, lower than the 14 % decrease from CITEPA. The study highlights challenges in capturing emission anomalies due to limited data coverage and error levels but shows promise for local inventory improvements.
Chelsea E. Stockwell, Matthew M. Coggon, Rebecca H. Schwantes, Colin Harkins, Bert Verreyken, Congmeng Lyu, Qindan Zhu, Lu Xu, Jessica B. Gilman, Aaron Lamplugh, Jeff Peischl, Michael A. Robinson, Patrick R. Veres, Meng Li, Andrew W. Rollins, Kristen Zuraski, Sunil Baidar, Shang Liu, Toshihiro Kuwayama, Steven S. Brown, Brian C. McDonald, and Carsten Warneke
EGUsphere, https://doi.org/10.5194/egusphere-2024-1899, https://doi.org/10.5194/egusphere-2024-1899, 2024
Short summary
Short summary
In urban areas, emissions from everyday products like paints, cleaners, and personal care products, along with non-traditional sources such as cooking are important sources that impact air quality. This study used a model to evaluate how these emissions impact ozone in the Los Angeles Basin, and quantifies the impact of gaseous cooking emissions for the first time. Accurate representation of these and other man-made sources in inventories is crucial to inform effective air quality policies.
Zhendong Lu, Jun Wang, Yi Wang, Daven K. Henze, Xi Chen, Tong Sha, and Kang Sun
Atmos. Chem. Phys., 24, 7793–7813, https://doi.org/10.5194/acp-24-7793-2024, https://doi.org/10.5194/acp-24-7793-2024, 2024
Short summary
Short summary
In contrast with past work showing that the reduction of emissions was the dominant factor for the nationwide increase of surface O3 during the lockdown in China, this study finds that the variation in meteorology (temperature and other parameters) plays a more important role. This result is obtained through sensitivity simulations using a chemical transport model constrained by satellite (TROPOMI) data and calibrated with surface observations.
Xiaohong Yao and Leiming Zhang
Atmos. Chem. Phys., 24, 7773–7791, https://doi.org/10.5194/acp-24-7773-2024, https://doi.org/10.5194/acp-24-7773-2024, 2024
Short summary
Short summary
This study investigates long-term trends of criteria air pollutants, including NO2, CO, SO2, O3 and PM2.5, and NO2+O3 measured in 10 Canadian cities during the last 2 to 3 decades. We also investigate associated driving forces in terms of emission reductions, perturbations from varying weather conditions and large-scale wildfires, as well as changes in O3 sources and sinks.
Yao Ge, Sverre Solberg, Mathew R. Heal, Stefan Reimann, Willem van Caspel, Bryan Hellack, Thérèse Salameh, and David Simpson
Atmos. Chem. Phys., 24, 7699–7729, https://doi.org/10.5194/acp-24-7699-2024, https://doi.org/10.5194/acp-24-7699-2024, 2024
Short summary
Short summary
Atmospheric volatile organic compounds (VOCs) constitute many species, acting as precursors to ozone and aerosol. Given the uncertainties in VOC emissions, lack of evaluation studies, and recent changes in emissions, this work adapts the EMEP MSC-W to evaluate emission inventories in Europe. We focus on the varying agreement between modelled and measured VOCs across different species and underscore potential inaccuracies in total and sector-specific emission estimates.
Shuzhuang Feng, Fei Jiang, Tianlu Qian, Nan Wang, Mengwei Jia, Songci Zheng, Jiansong Chen, Fang Ying, and Weimin Ju
Atmos. Chem. Phys., 24, 7481–7498, https://doi.org/10.5194/acp-24-7481-2024, https://doi.org/10.5194/acp-24-7481-2024, 2024
Short summary
Short summary
We developed a multi-air-pollutant inversion system to estimate non-methane volatile organic compound (NMVOC) emissions using TROPOMI formaldehyde retrievals. We found that the inversion significantly improved formaldehyde simulations and reduced NMVOC emission uncertainties. The optimized NMVOC emissions effectively corrected the overestimation of O3 levels, mainly by decreasing the rate of the RO2 + NO reaction and increasing the rate of the NO2 + OH reaction.
Yuqing Qiu, Xin Li, Wenxuan Chai, Yi Liu, Mengdi Song, Xudong Tian, Qiaoli Zou, Wenjun Lou, Wangyao Zhang, Juan Li, and Yuanhang Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1576, https://doi.org/10.5194/egusphere-2024-1576, 2024
Short summary
Short summary
The chemical reactions of ozone (O3) formation are related to meteorology and local emissions. Here, a random forest approach was used to eliminate the effects of meteorological factors (dispersion or transport) on O3 and its precursors. Variations in the sensitivity of O3 formation and the apportionment of emission sources were revealed after meteorological normalization. Our results suggest that meteorological variations should be considered when diagnosing O3 formation.
Haklim Choi, Alison L. Redington, Hyeri Park, Jooil Kim, Rona L. Thompson, Jens Mühle, Peter K. Salameh, Christina M. Harth, Ray F. Weiss, Alistair J. Manning, and Sunyoung Park
Atmos. Chem. Phys., 24, 7309–7330, https://doi.org/10.5194/acp-24-7309-2024, https://doi.org/10.5194/acp-24-7309-2024, 2024
Short summary
Short summary
We analyzed with an inversion model the atmospheric abundance of hydrofluorocarbons (HFCs), potent greenhouse gases, from 2008 to 2020 at Gosan station in South Korea and revealed a significant increase in emissions, especially from eastern China and Japan. This increase contradicts reported data, underscoring the need for accurate monitoring and reporting. Our findings are crucial for understanding and managing global HFCs emissions, highlighting the importance of efforts to reduce HFCs.
Laura Hyesung Yang, Daniel J. Jacob, Ruijun Dang, Yujin J. Oak, Haipeng Lin, Jhoon Kim, Shixian Zhai, Nadia K. Colombi, Drew C. Pendergrass, Ellie Beaudry, Viral Shah, Xu Feng, Robert M. Yantosca, Heesung Chong, Junsung Park, Hanlim Lee, Won-Jin Lee, Soontae Kim, Eunhye Kim, Katherine R. Travis, James H. Crawford, and Hong Liao
Atmos. Chem. Phys., 24, 7027–7039, https://doi.org/10.5194/acp-24-7027-2024, https://doi.org/10.5194/acp-24-7027-2024, 2024
Short summary
Short summary
The Geostationary Environment Monitoring Spectrometer (GEMS) provides hourly measurements of NO2. We use the chemical transport model to find how emissions, chemistry, and transport drive the changes in NO2 observed by GEMS at different times of the day. In winter, the chemistry plays a minor role, and high daytime emissions dominate the diurnal variation in NO2, balanced by transport. In summer, emissions, chemistry, and transport play an important role in shaping the diurnal variation in NO2.
M. Omar Nawaz, Jeremiah Johnson, Greg Yarwood, Benjamin de Foy, Laura Judd, and Daniel L. Goldberg
Atmos. Chem. Phys., 24, 6719–6741, https://doi.org/10.5194/acp-24-6719-2024, https://doi.org/10.5194/acp-24-6719-2024, 2024
Short summary
Short summary
NO2 is a gas with implications for air pollution. A campaign conducted in Houston provided an opportunity to compare NO2 from different instruments and a model. Aircraft and satellite observations agreed well with measurements on the ground; however, the latter estimated lower values. We find that model-simulated NO2 was lower than observations, especially downtown, suggesting that NO2 sources associated with the urban core of Houston, such as vehicle emissions, may be underestimated.
Natalie Brett, Kathy S. Law, Steve R. Arnold, Javier G. Fochesatto, Jean-Christophe Raut, Tatsuo Onishi, Robert Gilliam, Kathleen Fahey, Deanna Huff, George Pouliot, Brice Barret, Elsa Dieudonne, Roman Pohorsky, Julia Schmale, Andrea Baccarini, Slimane Bekki, Gianluca Pappaccogli, Federico Scoto, Stefano Decesari, Antonio Donateo, Meeta Cesler-Maloney, William Simpson, Patrice Medina, Barbara D'Anna, Brice Temime-Roussel, Joel Savarino, Sarah Albertin, Jingqiu Mao, Becky Alexander, Allison Moon, Peter F. DeCarlo, Vanessa Selimovic, Robert Yokelson, and Ellis S. Robinson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1450, https://doi.org/10.5194/egusphere-2024-1450, 2024
Short summary
Short summary
Processes influencing dispersion of local anthropogenic emissions in Arctic wintertime are investigated with dispersion model simulations. Modelled power plant plume rise that considers surface and elevated temperature inversions improves results compared to observations. Modelled near-surface concentrations are improved by representation of vertical mixing and emission estimates. Large increases in diesel vehicle emissions at temperatures reaching -35 °C are required to reproduce observed NOx.
Tianlang Zhao, Jingqiu Mao, Zolal Ayazpour, Gonzalo González Abad, Caroline R. Nowlan, and Yiqi Zheng
Atmos. Chem. Phys., 24, 6105–6121, https://doi.org/10.5194/acp-24-6105-2024, https://doi.org/10.5194/acp-24-6105-2024, 2024
Short summary
Short summary
HCHO variability is a key tracer in understanding VOC emissions in response to climate change. We investigate the role of methane oxidation and biogenic and wildfire emissions in HCHO interannual variability over northern high latitudes in summer, emphasizing wildfires as a key driver of HCHO interannual variability in Alaska, Siberia and northern Canada using satellite HCHO and SIF retrievals and then GEOS-Chem model. We show SIF is a tool to understand biogenic HCHO variability in this region.
Jianghao Li, Alastair C. Lewis, Jim R. Hopkins, Stephen J. Andrews, Tim Murrells, Neil Passant, Ben Richmond, Siqi Hou, William J. Bloss, Roy M. Harrison, and Zongbo Shi
Atmos. Chem. Phys., 24, 6219–6231, https://doi.org/10.5194/acp-24-6219-2024, https://doi.org/10.5194/acp-24-6219-2024, 2024
Short summary
Short summary
A summertime ozone event at an urban site in Birmingham is sensitive to volatile organic compounds (VOCs) – particularly those of oxygenated VOCs. The roles of anthropogenic VOC sources in urban ozone chemistry are examined by integrating the 1990–2019 national atmospheric emission inventory into model scenarios. Road transport remains the most powerful means of further reducing ozone in this case study, but the benefits may be offset if solvent emissions of VOCs continue to increase.
Kai-Lan Chang, Owen R. Cooper, Audrey Gaudel, Irina Petropavlovskikh, Peter Effertz, Gary Morris, and Brian C. McDonald
Atmos. Chem. Phys., 24, 6197–6218, https://doi.org/10.5194/acp-24-6197-2024, https://doi.org/10.5194/acp-24-6197-2024, 2024
Short summary
Short summary
A great majority of observational trend studies of free tropospheric ozone use sparsely sampled ozonesonde and aircraft measurements as reference data sets. A ubiquitous assumption is that trends are accurate and reliable so long as long-term records are available. We show that sampling bias due to sparse samples can persistently reduce the trend accuracy, and we highlight the importance of maintaining adequate frequency and continuity of observations.
Jin Ma, Linda M. J. Kooijmans, Norbert Glatthor, Stephen A. Montzka, Marc von Hobe, Thomas Röckmann, and Maarten C. Krol
Atmos. Chem. Phys., 24, 6047–6070, https://doi.org/10.5194/acp-24-6047-2024, https://doi.org/10.5194/acp-24-6047-2024, 2024
Short summary
Short summary
The global budget of atmospheric COS can be optimised by inverse modelling using TM5-4DVAR, with the co-constraints of NOAA surface observations and MIPAS satellite data. We found reduced COS biosphere uptake from inversions and improved land and ocean separation using MIPAS satellite data assimilation. Further improvements are expected from better quantification of COS ocean and biosphere fluxes.
Cited articles
Air Quality System: AQS observations data, United States EPA [data set], https://aqs.epa.gov/aqsweb/airdata/download_files.html (last access: 17 December 2020), 2018.
Aksoy, S. and Haralick, R. M.: Feature normalization and likelihood‐based similarity measures for image retrieval, Pattern Recogn. Lett., 22, 563–582, https://doi.org/10.1016/s0167‐8655(00)00112‐4, 2001.
Alonso, A. M., Berrendero, J. R., Hernández, A., and Justel, A.:
Time Series Clustering Based on Forecast Densities, Comput. Stat. Data An., 51, 762–776., https://doi.org/10.1016/j.csda.2006.04.035, 2006.
Banta, R. M., Senff, C. J., Nielsen-Gammon, J., Darby, L. S., Ryerson, T. B., Alvarez, R. J., Sandberg, S. P., Williams, E. J., and Trainer, M: A bad air day in Houston, B. Am. Meteorol. Soc., 86, 657–670. https://doi.org/10.1175/BAMS-86-5-657, 2005.
Bernier, C.: GEOS-Chem model input, Harvard Dataverse [data set], https://doi.org/10.7910/DVN/V99LHT, 2022.
Bernier, C., Wang, Y., Estes, M., Lei, R., Jia, B., Wang, S., and Sun, J.:
Clustering Surface Ozone Diurnal Cycles to Understand the Impact of Circulation Patterns in Houston, TX, J. Geophys. Res.-Atmos, 124, 13457–13474., https://doi.org/10.1029/2019jd031725, 2019.
Caicedo, V., Rappenglueck, B., Cuchiara, G., Flynn, J., Ferrare, R., Scarino, A. J., Berkoff, T., Senff, C., Langford, A., and Lefer, B.:
Bay Breeze and Sea Breeze Circulation Impacts on the Planetary Boundary Layer and Air Quality from an Observed and Modeled Discover-AQ Texas Case Study, J. Geophys. Res.-Atmos, 124, 7359–7378, https://doi.org/10.1029/2019jd030523, 2019.
Christiansen, B.:
Atmospheric Circulation Regimes: Can Cluster Analysis Provide the Number?, J. Climate, 20, 2229–2250., https://doi.org/10.1175/jcli4107.1, 2007.
Coggon, M. M., Gkatzelis, G. I., McDonald, B. C., Gilman, J. B., Schwantes, R. H., Abuhassan, N., Aikin, K. C., Arend, M. F., Berkoff, T. A., and Brown, S. S.:
Volatile chemical product emissions enhance ozone and modulate urban chemistry, P. Natl. Acad. Sci. USA, 118, 32, https://doi.org/10.1073/pnas.2026653118, 2021.
Couillard, M. H., Schwab, M. J., Schwab, J. J., Lu, C. H., Joseph, E., Stutsrim, B., Shrestha, B., Zhang, J., Knepp, T. N., and Gronoff, G. P.: Vertical Profiles of Ozone Concentrations in the Lower Troposphere Downwind of New York City during LISTOS 2018-2019, J. Geophys. Res.-Atmos, 126, e2021JD035108, https://doi.org/10.1029/2021JD035108, 2021.
Dacic, N., Sullivan, J. T., Knowland, K. E., Wolfe, G. M., Oman, L. D., Berkoff, T. A., and Gronoff, G. P.: Evaluation of NASA's high-resolution global composition simulations: Understanding a pollution event in the Chesapeake Bay during the summer 2017 OWLETS campaign, Atmos. Environ., 222, 117133, https://doi.org/10.1016/j.atmosenv.2019.117133, 2020.
Darby, L. S.:
Cluster Analysis of Surface Winds in Houston, Texas, and the Impact of Wind Patterns on Ozone, J. Appl. Meteorol., 44, 1788–1806, https://doi.org/10.1175/jam2320.1, 2005.
Davis, R. E., Normile, C. P., Sitka, L., Hondula, D. M., Knight, D. B., Gawtry, S. P., and Stenger, P. J.:
A Comparison of Trajectory and Air Mass Approaches to Examine Ozone Variability, Atmos. Environ., 44, 64–74., https://doi.org/10.1016/j.atmosenv.2009.09.038, 2010.
Delgado, R.: OWLETS-2 UMBC Doppler Wind Lidar measurements, NASA Airborne Science Data for Atmospheric Composition [data set], https://www-air.larc.nasa.gov/cgi-bin/ArcView/owlets.2018?WIND-LIDAR=1 (last access: 21 November 2021), 2018.
De Young, R., Carrion, W., Ganoe, R., Pliutau, D., Gronoff, G., Berkoff, T., and Kuang, S.:
Langley Mobile Ozone LIDAR: Ozone and Aerosol Atmospheric Profiling for Air Quality Research, Appl. Optics, 56, 721, https://doi.org/10.1364/ao.56.000721, 2017.
Dickerson, R.: OWLETS-2 UMD Cessna 402B Research Aircraft measurements, NASA Airborne Science Data for Atmospheric Composition, [data set], https://www-air.larc.nasa.gov/cgi-bin/ArcView/owlets.2018?AIRCRAFT=1 (last access: 28 September 2022), 2018.
Donders A. R., van der Heijden, G. J., Stijnen, T., and Moons, K, G.: Review: a gentle introduction to imputation of missing values, J. Clin. Epidemiol., 59, 1087–1091, https://doi.org/10.1016/j.jclinepi.2006.01.014, 2006.
Dreessen, J., Orozco, D., Boyle, J., Szymborski, J., Lee, P., Flores, A., and Sakai, R. K.:
Observed Ozone over the Chesapeake Bay Land-Water Interface: The Hart-Miller Island Pilot Project, J. Air Waste Manage. Assoc., 69, 1312–1330, https://doi.org/10.1080/10962247.2019.1668497, 2019.
EPA NEI (National Emissions Inventory v1):
Air Pollutant Emission Trends Data, http://www.epa.gov/ttn/chief/trends/index.html (last access: 23 June 2015), 2015.
Farris, B. M., Gronoff, G. P., Carrion, W., Knepp, T., Pippin, M., and Berkoff, T. A.: Demonstration of an off-axis parabolic receiver for near-range retrieval of lidar ozone profiles, Atmos. Meas. Tech., 12, 363–370, https://doi.org/10.5194/amt-12-363-2019, 2019.
Gelaro, R., Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G. Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim, G-K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., and Zhao, B.:
The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (Merra-2), J. Climate, 30, 5419–5454, https://doi.org/10.1175/jcli-d-16-0758.1, 2017.
Gronoff, G., Robinson, J., Berkoff, T., Swap, R., Farris, B., Schroeder, J., Halliday, H. S., Knepp, T., Spinei, E., Carrion, W., Adcock, E. E., Johns, Z., Allen, D., and Pippin, M.:
A Method for Quantifying near Range Point Source Induced O3 Titration Events Using Co-Located Lidar and Pandora Measurements, Atmos. Environ., 204, 43–52, https://doi.org/10.1016/j.atmosenv.2019.01.052, 2019.
Gronoff, G., Berkoff, T., Knowland, K. E., Lei, L., Shook, M., Fabbri, B., Carrion, W., and Langford, A. O.:
Case study of stratospheric Intrusion above Hampton, Virginia: lidar-observation and modeling analysis, Atmos. Environ., 259, 1352–2310, https://doi.org/10.1016/j.atmosenv.2021.118498, 2021.
Holmes, C. D., Bertram, T. H., Confer, K. L., Graham, K. A., Ronan, A. C., Wirks, C. K., and Shah, V.:
The Role of Clouds in the Tropospheric NOx Cycle: A New Modeling Approach for Cloud Chemistry and Its Global Implications, Geophys. Res. Lett., 46, 4980–4990, https://doi.org/10.1029/2019GL081990, 2019.
Keller, C. A., Knowland, K. E., Duncan, B. N., Liu, J., Anderson, D. C., Das, S., Lucchesi, R. A., Lundgren, E. W., Nicely, J. M., Nielsen, E., Ott, L. E., Saunders, E., Strode, S. A., Wales, P. A., Jacob, D. J., and Pawson, S.:
Description of the NASA Geos Composition Forecast Modeling System GEOS-CF v1.0, J. Adv. Model. Earth Sy., 13, e2020MS002413, https://doi.org/10.1029/2020ms002413, 2021.
Knowland, K. E., Keller, C. A., Wales, P. A., Wargan, K., Coy, L., Johnson, M. S., Liu, J., Lucchesi, R. A., Eastham, S. D., Fleming, E. L., Liang, Q., Leblanc, T., Livesey, N. J., Walker, K. A., Ott, L. E., and Pawson, S.:
NASA GEOS Composition Forecast Modeling System GEOS-CF v1.0: Stratospheric Composition, Earth and Space Science Open Archive (ESSOAr), 14, e2021MS002852, https://doi.org/10.1002/essoar.10508148.1, 2021.
Larose, D. T.: Discovering knowledge in data: An introduction to data mining, Hoboken, NJ, Wiley‐Interscience, ISBN 9780471687535 / 0471687537, 2005.
Leblanc, T., Brewer, M. A., Wang, P. S., Granados-Muñoz, M. J., Strawbridge, K. B., Travis, M., Firanski, B., Sullivan, J. T., McGee, T. J., Sumnicht, G. K., Twigg, L. W., Berkoff, T. A., Carrion, W., Gronoff, G., Aknan, A., Chen, G., Alvarez, R. J., Langford, A. O., Senff, C. J., Kirgis, G., Johnson, M. S., Kuang, S., and Newchurch, M. J.:
Validation of the TOLNet lidars: the Southern California Ozone Observation Project (SCOOP), Atmos. Meas. Tech., 11, 6137–6162, https://doi.org/10.5194/amt-11-6137-2018, 2018.
Li, W., Wang, Y., Bernier, C., and Estes, M.:
Identification of Sea Breeze Recirculation and Its Effects on Ozone in Houston, TX, during Discover-Aq 2013, J. Geophys. Res.-Atmos, 125, e2020JD033165, https://doi.org/10.1029/2020jd033165, 2020.
Little R. J. A. and Rubin D., B.: Statistical Analysis with Missing Data, Hoboken, John Wiley & Sons, ISBN 9781118625880 / 1118625889, 2014.
Loughner, C. P., Tzortziou, M., Follette-Cook, M., Pickering, K. E., Goldberg, D., Satam, C., Weinheimer, A., Crawford, J. H., Knapp, D. J., Montzka, D. D., Diskin, G. S., and Dickerson, R. R.:
Impact of Bay-Breeze Circulations on Surface Air Quality and Boundary Layer Export, J. Appl. Meteorol. Clim., 53, 1697–1713, https://doi.org/10.1175/jamc-d-13-0323.1, 2014.
Mao, J., Zhao, T., Keller, C. A., Wang, X., McFarland, P. J., Jenkins, J. M., and Brune, W. H.:
Global Impact of Lightning- Produced Oxidants, Geophys. Res. Lett., 48, e2021GL095740, https://doi.org/10.1029/2021GL095740, 2021.
Martins, D. K., Stauffer, R., Thompson, A. M., Pippin, M., and Knepp, T.: Surface ozone at a coastal suburban site in 2009 and 2010: Relationships to chemical and meteorological processes, J. Geophys. Res., 117, D05306, https://doi.org/10.1029/2011JD016828, 2012.
McDuffie, E. E., Smith, S. J., O'Rourke, P., Tibrewal, K., Venkataraman, C., Marais, E. A., Zheng, B., Crippa, M., Brauer, M., and Martin, R. V.:
A global anthropogenic emission inventory of atmospheric pollutants from sector- and fuel-specific sources (1970–2017): an application of the Community Emissions Data System (CEDS), Earth Syst. Sci. Data, 12, 3413–3442, https://doi.org/10.5194/essd-12-3413-2020, 2020.
NASA: TOLNet – Tropospheric Ozone Lidar Network [data set], https://www-air.larc.nasa.gov/missions/TOLNet/data.html (last access: 20 January 2021), 2018.
NASA: OWLETS and LISTOS campaigns, NASA Airborne Science Data for Atmospheric Composition [data set], https://www-air.larc.nasa.gov (last access: 20 January 2021), 2018b.
NASA GEOS Composition Forecast Modeling System: GEOS-CF model output, NASA Center Global Modeling and Assimilation Office (GMAO) at the Goddard Space Flight Center, MD, USA [data set], https://portal.nccs.nasa.gov/datashare/gmao/geos-cf/v1/das/ (last access: 2 February 2022), 2021.
Neuman, J. A., Trainer, M. Aikin, K., Brioude, J. Brown, S., de Gouw, J., Dube, W., Flynn, J., Graus, M., Holloway, J., Lefer, B., Nedelec P., Nowak, J., Parrish, D., Pollack, I., Roberts, J., Ryerson, T., Smit, H., Thouret, V., and Wagner, N.:
Observations of Ozone Transport from the Free Troposphere to the Los Angeles Basin, J. Geophys. Res.-Atmos, 117, D00V09, https://doi.org/10.1029/2011jd016919, 2012.
Orbe, C., Oman, L. D., Strahan, S. E., Waugh, D. W., Pawson, S., Takacs, L. L., and Molod, A. M.:
Large-scale atmospheric transport in GEOS replay simulations, J. Adv. Model. Earth Sy., 9, 2545–2560, https://doi.org/10.1002/2017MS001053, 2017.
Ring, A. M., Canty, T. P., Anderson, D. C., Vinciguerra, T. P., He, H., Goldberg, D. L., Ehrman, S. H., Dickerson, R. R., and Salawitch, R. J.:
Evaluating commercial marine emissions and their role in air quality policy using observations and the CMAQ model, Atmos. Environ., 173, 96–107, https://doi.org/10.1016/j.atmosenv.2017.10.037, 2018.
Stauffer, R. M., Thompson, A., N., Martins, D., K., Clark, R., D., Goldberg, D., L., Loughner, C., P., Delgado, R., Dickerson, R., R., Stehr, J., W., and Tzortziou, M., A.: Bay Breeze Influence on Surface Ozone at Edgewood, MD during July 2011, J. Atmos. Chem., 72, 335–353, https://doi.org/10.1007/s10874-012-9241-6, 2012.
Stauffer R. M., Thompson A. M., and Witte J. C.:
Characterizing Global Ozonesonde Profile Variability from Surface to the UT/LS with a Clustering Technique and MERRA-2 Reanalysis, J. Geophys. Res.-Atmos., 123, 6213–6229, https://doi.org/10.1029/2018JD028465, 2018.
Strode, S. A., Ziemke, J. R., Oman, L. D., Lamsal, L. N., Olsen, M. A., and Liu, J.:
Global changes in the diurnal cycle of surface ozone, Atmos. Environ., 199, 323–333, https://doi.org/10.1016/j.atmosenv.2018.11.028, 2019.
Sullivan, J. T., McGee, T. J., Sumnicht, G. K., Twigg, L. W., and Hoff, R. M.: A mobile differential absorption lidar to measure sub-hourly fluctuation of tropospheric ozone profiles in the Baltimore–Washington, D.C. region, Atmos. Meas. Tech., 7, 3529–3548, https://doi.org/10.5194/amt-7-3529-2014, 2014.
Sullivan, J. T., McGee, T. J., DeYoung, R., Twigg, L. W., Sumnicht, G. K., Pliutau, D., Knepp, T., and Carrion, W.:
Results from the NASA GSFC and LaRC Ozone Lidar intercomparison: new mobile tools for atmospheric research, J. Atmos. Ocean. Techn., 32, 1779–1795, https://doi.org/10.1175/JTECH-D-14-00193.1, 2015a.
Sullivan, J. T., McGee, T. J., Leblanc, T., Sumnicht, G. K., and Twigg, L. W.:
Optimization of the GSFC TROPOZ DIAL retrieval using synthetic lidar returns and ozonesondes – Part 1: Algorithm validation, Atmos. Meas. Tech., 8, 4133–4143, https://doi.org/10.5194/amt-8-4133-2015, 2015b.
Sullivan, J. T., Berkoff, T., Gronoff, G., Knepp, T., Pippin, M., Allen, D., Twigg, L., Swap, R., Tzortziou, M., Thompson, A. M., and Stauffer, R. M.: The ozone water–land environmental transition study: An innovative strategy for understanding Chesapeake Bay pollution events, B. Am. Meteorol. Soc., 100, 291–306, 2019.
Thompson, A. M., Stauffer, R. M., Miller, S. K., Martins, D. K., Joseph, E., Weinheimer, A. J., and Diskin, G. S.:
Ozone profiles in the Baltimore-Washington region (2006-2011): satellite comparisons and DISCOVER-AQ observations, J. Atmos. Chem., 72, 393–422, https://doi.org/10.1007/s10874-014-9283-z, 2015.
Torgo, L.: Data Mining with R: Learning with Case Studies (1st Edn.), Chapman & Hall/CRC, New York, NY, https://doi.org/10.1201/b10328, 2011.
Travis, K. R. and Jacob, D. J.: Systematic bias in evaluating chemical transport models with maximum daily 8 h average (MDA8) surface ozone for air quality applications: a case study with GEOS-Chem v9.02, Geosci. Model Dev., 12, 3641–3648, https://doi.org/10.5194/gmd-12-3641-2019, 2019.
Tucker, S., C., Banta, R., M., Langford, A., O., Senff, C., J., Brewer, W., A., Williams, E., J., Lerner, B., M., Osthoff, H., D., and Hardesty, R., M.: Relationships of Coastal Nocturnal Boundary Layer Winds and Turbulence to Houston Ozone Concentrations during TexAQS 2006, J. Geophys. Res.-Atmos, 115, D10304, https://doi.org/10.1029/2009jd013169, 2010.
Wang, L., Newchurch, M. J., Alvarez II, R. J., Berkoff, T. A., Brown, S. S., Carrion, W., De Young, R. J., Johnson, B. J., Ganoe, R., Gronoff, G., Kirgis, G., Kuang, S., Langford, A. O., Leblanc, T., McDuffie, E. E., McGee, T. J., Pliutau, D., Senff, C. J., Sullivan, J. T., Sumnicht, G., Twigg, L. W., and Weinheimer, A. J.:
Quantifying TOLNet ozone lidar accuracy during the 2014 DISCOVER-AQ and FRAPPÉ campaigns, Atmos. Meas. Tech., 10, 3865–3876, https://doi.org/10.5194/amt-10-3865-2017, 2017.
Wang, X., Jacob, D. J., Downs, W., Zhai, S., Zhu, L., Shah, V., Holmes, C. D., Sherwen, T., Alexander, B., Evans, M. J., Eastham, S. D., Neuman, J. A., Veres, P. R., Koenig, T. K., Volkamer, R., Huey, L. G., Bannan, T. J., Percival, C. J., Lee, B. H., and Thornton, J. A.:
Global tropospheric halogen (Cl, Br, I) chemistry and its impact on oxidants, Atmos. Chem. Phys., 21, 13973–13996, https://doi.org/10.5194/acp-21-13973-2021, 2021.
Wu, Y., Nehrir, A. R., Ren, X., Dickerson, R. R., Huang, J., Stratton, P. R., Gronoff, G., Kooi, S. A., Collins, J. E., and Berkoff, T. A.:
Synergistic aircraft and ground observations of transported wildfire smoke and its impact on air quality in New York City during the summer 2018 LISTOS campaign, Sci. Total Environ., 773, 145030, https://doi.org/10.1016/j.scitotenv.2021.145030, 2021.
Short summary
Coastal regions are susceptible to variable and high ozone which is difficult to simulate. We developed a method to characterize large datasets of multi-dimensional measurements from lidar instruments taken in coastal regions. Using the clustered ozone groups, we evaluated model performance in simulating the coastal ozone variability vertically and diurnally. The approach allowed us to pinpoint areas where the models succeed in simulating coastal ozone and areas where there are still gaps.
Coastal regions are susceptible to variable and high ozone which is difficult to simulate. We...
Altmetrics
Final-revised paper
Preprint