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Text S1. Description of input features 

 The K-means clustering algorithm require two inputs: the input features that will be used to cluster the data 

and the number of clusters. The input features were chosen explicitly based on the structure of the lidar 

measurements and the structure of the vertical and diurnal pattern of ozone development. The two altitude subsets 

were chosen to represent the structure of the vertical atmosphere. Therefore, we chose the altitude subset 0 – 2000 

meter to represent the complete evolution of the boundary layer, while the 2000 – 4000 meter subset represents the 

part of the vertical profile in which other factors such as longer range transport of pollutants would be of greater 

influence. A more in-depth analysis of the development of the boundary layer was out of the scope of this work. The 

4 time subsets were chosen to represent the common diurnal pattern of pollutant behavior. Tropospheric ozone has a 

common diurnal pattern that is greatly influenced by the presence of sunlight. The first subset of time (F1, F5), 

represent the early morning before the sunlight has reacted with precursor pollutants to create tropospheric ozone. 

The second time subset (F2, F6) represents the time of day in which the sun rising, and morning traffic have begun 

which both have an influence on ozone chemical reactions. The third subset of time (F3, F7) represents the midday 

time in which the sun is at its’ full peak. At this time of the day tropospheric ozone usually peaks and remains at the 

maximum concentration of the day. The final time subset (F4, F8) represents the evening time in which the sun 

has/begun to set, and ozone concentrations decrease. With the goal of clustering most efficiently, this is in part to 

simply the data so that the results of the clusters are not weakened by too many input features. But also, not 

oversimplify the data so that we lose the details of the lidar data.  

Text S2. Description of clustering algorithm and cluster efficacy tests 

Multiple tests were run on the initial data input features as well as the clustered results to test the efficacy 

of the clustering. Testing the cluster tendency of a dataset is important before applying a clustering algorithm to 

determine the cluster ability and efficacy of the dataset. A dataset that has random structures will not contain 

meaningful clusters. The Hopkins Statistic (Lawson and Jurs 1990) test the cluster tendency by measuring the 

probability of a dataset has uniform structures. A result higher than 0.50 signifies good cluster tendency and a value 

higher than 0.75 signifies a high cluster tendency (at the 90% confidence level) (Han, Kamber, and Pei 2012). The 

results of the Hopkins Statistic for the dataset in this study was 0.78. To visualize the cluster tendency of our dataset 

and the conclusions of the Hopkins Statistic, we applied the algorithm of the visual assessment of cluster tendency 

(VAT) approach (Bezdek and Hathaway, 2002) which uses the Euclidean distance measure to compute the 

dissimilarity matrix in the dataset and creates an ordered dissimilarity matrix image. Figure S2 shows the VAT 

approach results which indicates high similarity (red) and low similarity (blue) and confirms a cluster structure (not 

random) within our dataset.  

The elbow method, which looks at the percentage of variance based on the number of clusters, was one 

method used to determine the optimal number of clusters for the dataset (Figure S3). The number of clusters is 

determined once the percentage of variance drops therefore the addition of clusters will not add much more 

information. In this work, this happens once at 2 clusters and again 6 clusters. Another approach is the NbClust 

package (Charrad et al., 2014) in R which offers 30 different indices (e.g., Silhouette, Dindex, Hubert Statistic, etc.) 



for choosing the optimal number of clusters. The results of the indices concluded that 8 of the indices proposed 5 

clusters as the best number while 4 indices proposed 6 clusters as the best number. Based on the different tests as 

well as testing the quality of the clustering results using the silhouette method (Kaufman & Rousseeuw, 1990). 

The K-means algorithm begins by selecting the objects randomly from the dataset that will serve as the 

initial cluster centers (centroids or cluster means). After, each other datapoint is assigned to one of the centroids 

where it is closest to using the Euclidean distance between the centroid and the datapoint. The algorithm computes a 

new cluster mean for each cluster and using the recalculation, reassesses the assignments reassigning the clusters if 

needed. These steps are continuously repeated until the cluster assignments remain unchanged, and the clusters are 

finalized. The results of the K-means clustering algorithm (Figure S4), illustrates the distribution of the data and 

how the algorithm works in assigning the 6 clusters. The clustering can be further elucidated using principal 

component analysis (PCA) which demonstrates two of the dimensions in comparison (Figure S5). The PCA function 

does not show all the dimensions (input features) but rather two principal components that delineate the majority of 

the variance. 

 

 

Table S1. Calculated mean normalized bias and correlation coefficient (R) by cluster. a) Low-level GEOS-Chem, b) 

Mid-level GEOS-Chem; c) Low-level GEOS-CF and d) Mid-level GEOS-CF results. 

Table S1. Mean normalized bias & Correlation coefficient (R)

a) GEOS-Chem
Low-level

Cluster 1 -
HMO

Cluster 2 -
LLO

Cluster 3 -
MCO

Cluster 4 -
HLO

Cluster 5 -
LMO

Bias - 0.10 0.07 0.13 - 0.04 - 0.09

R 0.53 0.55 0.51 0.61 0.55

b) GEOS-Chem
Mid-level

Bias - 0.44 - 0.44 - 0.27 - 0.30 - 0.18

R - 0.002 - 0.033 - 0.26 0.11 0.23

c) GEOS-CF
Low-level

Bias 0.30 0.50 0.67 0.41 0.45

R 0.74 0.60 0.56 0.61 0.54

d) GEOS-CF
Mid-level

Bias - 0.22 - 0.07 0.05 0.02 0.28

R 0.51 0.14 - 0.24 0.21 0.74



 

Figure S1. Results from the clustering: Cluster 6 which was assigned only one date (2018-06-17). Considered an 

outlier and was removed from the analysis. 

 

Figure S2. Visual assessment of cluster tendency (VAT) approach. Dataset high similarity (red) and low similarity 

(blue). 
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Figure S3. Elbow Method: Assessing optimal number of clusters for dataset. 

 

Figure S4. K-means cluster results with original 6 clusters. 
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Figure S5. Principal component analysis results: two principal components. 

 

 

 

Figure S6. Percentage and pattern of missing data points by each feature used for clustering. 
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Figure S7. Overall O3 correlation between the lidar observations versus a) GEOS-Chem and b) GEOS-CF split by 

low-level (top panel) and mid-level (bottom panel). 

 

Figure S8. Aircraft measurements and GEOS-Chem simulated CO in the free troposphere during OWLETS-2. 

Measurements from the UMD Cessna 402B Research Aircraft. 
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