Articles | Volume 22, issue 16
https://doi.org/10.5194/acp-22-10623-2022
https://doi.org/10.5194/acp-22-10623-2022
Research article
 | 
22 Aug 2022
Research article |  | 22 Aug 2022

Impact of urban heat island on inorganic aerosol in the lower free troposphere: a case study in Hangzhou, China

Hanqing Kang, Bin Zhu, Gerrit de Leeuw, Bu Yu, Ronald J. van der A, and Wen Lu

Related authors

Impact of aerosol optics on vertical distribution of ozone in autumn over Yangtze River Delta
Shuqi Yan, Bin Zhu, Shuangshuang Shi, Wen Lu, Jinhui Gao, Hanqing Kang, and Duanyang Liu
Atmos. Chem. Phys., 23, 5177–5190, https://doi.org/10.5194/acp-23-5177-2023,https://doi.org/10.5194/acp-23-5177-2023, 2023
Short summary
Potential impacts of cold frontal passage on air quality over the Yangtze River Delta, China
Hanqing Kang, Bin Zhu, Jinhui Gao, Yao He, Honglei Wang, Jifeng Su, Chen Pan, Tong Zhu, and Bu Yu
Atmos. Chem. Phys., 19, 3673–3685, https://doi.org/10.5194/acp-19-3673-2019,https://doi.org/10.5194/acp-19-3673-2019, 2019
Short summary
Effects of black carbon and boundary layer interaction on surface ozone in Nanjing, China
Jinhui Gao, Bin Zhu, Hui Xiao, Hanqing Kang, Chen Pan, Dongdong Wang, and Honglei Wang
Atmos. Chem. Phys., 18, 7081–7094, https://doi.org/10.5194/acp-18-7081-2018,https://doi.org/10.5194/acp-18-7081-2018, 2018
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Impact of solar geoengineering on wildfires in the 21st century in CESM2/WACCM6
Wenfu Tang, Simone Tilmes, David M. Lawrence, Fang Li, Cenlin He, Louisa K. Emmons, Rebecca R. Buchholz, and Lili Xia
Atmos. Chem. Phys., 23, 5467–5486, https://doi.org/10.5194/acp-23-5467-2023,https://doi.org/10.5194/acp-23-5467-2023, 2023
Short summary
Linking gas, particulate, and toxic endpoints to air emissions in the Community Regional Atmospheric Chemistry Multiphase Mechanism (CRACMM)
Havala O. T. Pye, Bryan K. Place, Benjamin N. Murphy, Karl M. Seltzer, Emma L. D'Ambro, Christine Allen, Ivan R. Piletic, Sara Farrell, Rebecca H. Schwantes, Matthew M. Coggon, Emily Saunders, Lu Xu, Golam Sarwar, William T. Hutzell, Kristen M. Foley, George Pouliot, Jesse Bash, and William R. Stockwell
Atmos. Chem. Phys., 23, 5043–5099, https://doi.org/10.5194/acp-23-5043-2023,https://doi.org/10.5194/acp-23-5043-2023, 2023
Short summary
Contribution of regional aerosol nucleation to low-level CCN in an Amazonian deep convective environment: results from a regionally nested global model
Xuemei Wang, Hamish Gordon, Daniel P. Grosvenor, Meinrat O. Andreae, and Ken S. Carslaw
Atmos. Chem. Phys., 23, 4431–4461, https://doi.org/10.5194/acp-23-4431-2023,https://doi.org/10.5194/acp-23-4431-2023, 2023
Short summary
Coarse particulate matter air quality in East Asia: implications for fine particulate nitrate
Shixian Zhai, Daniel J. Jacob, Drew C. Pendergrass, Nadia K. Colombi, Viral Shah, Laura Hyesung Yang, Qiang Zhang, Shuxiao Wang, Hwajin Kim, Yele Sun, Jin-Soo Choi, Jin-Soo Park, Gan Luo, Fangqun Yu, Jung-Hun Woo, Younha Kim, Jack E. Dibb, Taehyoung Lee, Jin-Seok Han, Bruce E. Anderson, Ke Li, and Hong Liao
Atmos. Chem. Phys., 23, 4271–4281, https://doi.org/10.5194/acp-23-4271-2023,https://doi.org/10.5194/acp-23-4271-2023, 2023
Short summary
Foreign emissions exacerbate PM2.5 pollution in China through nitrate chemistry
Jun-Wei Xu, Jintai Lin, Gan Luo, Jamiu Adeniran, and Hao Kong
Atmos. Chem. Phys., 23, 4149–4163, https://doi.org/10.5194/acp-23-4149-2023,https://doi.org/10.5194/acp-23-4149-2023, 2023
Short summary

Cited articles

Aan de Brugh, J. M. J., Henzing, J. S., Schaap, M., Morgan, W. T., van Heerwaarden, C. C., Weijers, E. P., Coe, H., and Krol, M. C.: Modelling the partitioning of ammonium nitrate in the convective boundary layer, Atmos. Chem. Phys., 12, 3005–3023, https://doi.org/10.5194/acp-12-3005-2012, 2012. 
Baik, J. J., Kim, Y. H., Kim, J. J., and Han, J. Y.: Effects of boundary-layer stability on urban heat island-induced circulation, Theor. Appl. Climatol., 89, 73–81, https://doi.org/10.1007/s00704-006-0254-4, 2006. 
Changnon, S. A.: Rainfall Changes in Summer Caused by St. Louis, Science, 205, 402–404, https://doi.org/10.1126/science.205.4404.402, 1979. 
Crutzen, P.: New Directions: The growing urban heat and pollution “island” effect – impact on chemistry and climate, Atmos. Environ., 38, 3539–3540, https://doi.org/10.1016/s1352-2310(04)00297-3, 2004. 
Curci, G., Ferrero, L., Tuccella, P., Barnaba, F., Angelini, F., Bolzacchini, E., Carbone, C., Denier van der Gon, H. A. C., Facchini, M. C., Gobbi, G. P., Kuenen, J. P. P., Landi, T. C., Perrino, C., Perrone, M. G., Sangiorgi, G., and Stocchi, P.: How much is particulate matter near the ground influenced by upper-level processes within and above the PBL? A summertime case study in Milan (Italy) evidences the distinctive role of nitrate, Atmos. Chem. Phys., 15, 2629–2649, https://doi.org/10.5194/acp-15-2629-2015, 2015. 
Download
Short summary
This study quantified the contribution of each urban-induced meteorological effect (temperature, humidity, and circulation) to aerosol concentration. We found that the urban heat island (UHI) circulation dominates the UHI effects on aerosol. The UHI circulation transports aerosol and its precursor gases from the warmer lower boundary layer to the colder lower free troposphere and promotes the secondary formation of ammonium nitrate aerosol in the cold atmosphere.
Altmetrics
Final-revised paper
Preprint