Articles | Volume 21, issue 4
https://doi.org/10.5194/acp-21-3123-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-3123-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Biodegradation by bacteria in clouds: an underestimated sink for some organics in the atmospheric multiphase system
Amina Khaled
CORRESPONDING AUTHOR
Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de
Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
Minghui Zhang
Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de
Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
Pierre Amato
Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de
Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
Anne-Marie Delort
Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de
Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
Barbara Ervens
Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de
Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
Related authors
Amina Khaled, Minghui Zhang, and Barbara Ervens
Atmos. Chem. Phys., 22, 1989–2009, https://doi.org/10.5194/acp-22-1989-2022, https://doi.org/10.5194/acp-22-1989-2022, 2022
Short summary
Short summary
Chemical reactions with iron in clouds and aerosol form and cycle reactive oxygen species (ROS). Previous model studies assumed that all cloud droplets (particles) contain iron, while single-particle analyses showed otherwise. By means of a model, we explore the bias in predicted ROS budgets by distributing a given iron mass to either all or only a few droplets (particles). Implications for oxidation potential, radical loss and iron oxidation state are discussed.
Minghui Zhang, Amina Khaled, Pierre Amato, Anne-Marie Delort, and Barbara Ervens
Atmos. Chem. Phys., 21, 3699–3724, https://doi.org/10.5194/acp-21-3699-2021, https://doi.org/10.5194/acp-21-3699-2021, 2021
Short summary
Short summary
Although primary biological aerosol particles (PBAPs, bioaerosols) represent a small fraction of total atmospheric aerosol burden, they might affect climate and public health. We summarize which PBAP properties are important to affect their inclusion in clouds and interaction with light and might also affect their residence time and transport in the atmosphere. Our study highlights that not only chemical and physical but also biological processes can modify these physicochemical properties.
Saly Jaber, Muriel Joly, Maxence Brissy, Martin Leremboure, Amina Khaled, Barbara Ervens, and Anne-Marie Delort
Biogeosciences, 18, 1067–1080, https://doi.org/10.5194/bg-18-1067-2021, https://doi.org/10.5194/bg-18-1067-2021, 2021
Short summary
Short summary
Our study is of interest to atmospheric scientists and environmental microbiologists, as we show that clouds can be considered a medium where bacteria efficiently degrade and transform amino acids, in competition with chemical processes. As current atmospheric multiphase models are restricted to chemical degradation of organic compounds, our conclusions motivate further model development.
Raphaëlle Péguilhan, Florent Rossi, Muriel Joly, Engy Nasr, Bérénice Batut, François Enault, Barbara Ervens, and Pierre Amato
EGUsphere, https://doi.org/10.5194/egusphere-2024-2338, https://doi.org/10.5194/egusphere-2024-2338, 2024
Short summary
Short summary
Using comparative metagenomics/metatranscriptomics, we examined the functioning of airborne microorganisms in clouds and clear atmosphere; clouds are atmospheric volumes where multiple microbial processes are promoted compared with clear atmosphere; Overrepresented microbial functions of interest include the processing of chemical compounds, biomass production and the regulation of oxidants; - this has implications for biogeochemical cycles and microbial ecology.
Barbara Ervens, Pierre Amato, Kifle Aregahegn, Muriel Joly, Amina Khaled, Tiphaine Labed-Veydert, Frédéric Mathonat, Leslie Nuñez López, Raphaëlle Péguilhan, and Minghui Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2377, https://doi.org/10.5194/egusphere-2024-2377, 2024
Short summary
Short summary
Atmospheric microorganisms are a small fraction of Earth's microbiome, with bacteria being a significant part. Aerosolized bacteria are airborne for a few days encountering unique chemical and physical conditions affecting stress levels and survival. We explore chemical and microphysical conditions bacteria encounter, highlighting potential nutrient and oxidant limitations and diverse effects by pollutants, which may ultimately impact the microbiome's role in global ecosystems and biodiversity.
Barbara Ervens, Andrew Rickard, Bernard Aumont, William P. L. Carter, Max McGillen, Abdelwahid Mellouki, John Orlando, Bénédicte Picquet-Varrault, Paul Seakins, William Stockwell, Luc Vereecken, and Tim Wallington
EGUsphere, https://doi.org/10.5194/egusphere-2024-1316, https://doi.org/10.5194/egusphere-2024-1316, 2024
Short summary
Short summary
Chemical mechanisms describe the chemical processes in atmospheric models that are used to describe the changes of the atmospheric composition. Therefore, accurate chemical mechanisms are necessary to predict the evolution of air pollution and climate change. The article describes all steps that are needed to build chemical mechanisms and discusses advances and needs of experimental and theoretical research activities needed to build reliable chemical mechanisms.
Leslie Nuñez López, Pierre Amato, and Barbara Ervens
Atmos. Chem. Phys., 24, 5181–5198, https://doi.org/10.5194/acp-24-5181-2024, https://doi.org/10.5194/acp-24-5181-2024, 2024
Short summary
Short summary
Living bacteria comprise a small particle fraction in the atmosphere. Our model study shows that atmospheric bacteria in clouds may efficiently biodegrade formic and acetic acids that affect the acidity of rain. We conclude that current atmospheric models underestimate losses of these acids as they only consider chemical processes. We suggest that biodegradation can affect atmospheric concentration not only of formic and acetic acids but also of other volatile, moderately soluble organics.
Maud Leriche, Pierre Tulet, Laurent Deguillaume, Frédéric Burnet, Aurélie Colomb, Agnès Borbon, Corinne Jambert, Valentin Duflot, Stéphan Houdier, Jean-Luc Jaffrezo, Mickaël Vaïtilingom, Pamela Dominutti, Manon Rocco, Camille Mouchel-Vallon, Samira El Gdachi, Maxence Brissy, Maroua Fathalli, Nicolas Maury, Bert Verreyken, Crist Amelynck, Niels Schoon, Valérie Gros, Jean-Marc Pichon, Mickael Ribeiro, Eric Pique, Emmanuel Leclerc, Thierry Bourrianne, Axel Roy, Eric Moulin, Joël Barrie, Jean-Marc Metzger, Guillaume Péris, Christian Guadagno, Chatrapatty Bhugwant, Jean-Mathieu Tibere, Arnaud Tournigand, Evelyn Freney, Karine Sellegri, Anne-Marie Delort, Pierre Amato, Muriel Joly, Jean-Luc Baray, Pascal Renard, Angelica Bianco, Anne Réchou, and Guillaume Payen
Atmos. Chem. Phys., 24, 4129–4155, https://doi.org/10.5194/acp-24-4129-2024, https://doi.org/10.5194/acp-24-4129-2024, 2024
Short summary
Short summary
Aerosol particles in the atmosphere play a key role in climate change and air pollution. A large number of aerosol particles are formed from the oxidation of volatile organic compounds (VOCs and secondary organic aerosols – SOA). An important field campaign was organized on Réunion in March–April 2019 to understand the formation of SOA in a tropical atmosphere mostly influenced by VOCs emitted by forest and in the presence of clouds. This work synthesizes the results of this campaign.
Pascal Renard, Maxence Brissy, Florent Rossi, Martin Leremboure, Saly Jaber, Jean-Luc Baray, Angelica Bianco, Anne-Marie Delort, and Laurent Deguillaume
Atmos. Chem. Phys., 22, 2467–2486, https://doi.org/10.5194/acp-22-2467-2022, https://doi.org/10.5194/acp-22-2467-2022, 2022
Short summary
Short summary
Amino acids (AAs) have been quantified in cloud water collected at the Puy de Dôme station (France). Concentrations and speciation of those compounds are highly variable among the samples. Sources from the sea surface and atmospheric transformations during the air mass transport, mainly in the free troposphere, have been shown to modulate AA levels in cloud water.
Amina Khaled, Minghui Zhang, and Barbara Ervens
Atmos. Chem. Phys., 22, 1989–2009, https://doi.org/10.5194/acp-22-1989-2022, https://doi.org/10.5194/acp-22-1989-2022, 2022
Short summary
Short summary
Chemical reactions with iron in clouds and aerosol form and cycle reactive oxygen species (ROS). Previous model studies assumed that all cloud droplets (particles) contain iron, while single-particle analyses showed otherwise. By means of a model, we explore the bias in predicted ROS budgets by distributing a given iron mass to either all or only a few droplets (particles). Implications for oxidation potential, radical loss and iron oxidation state are discussed.
Pamela A. Dominutti, Pascal Renard, Mickaël Vaïtilingom, Angelica Bianco, Jean-Luc Baray, Agnès Borbon, Thierry Bourianne, Frédéric Burnet, Aurélie Colomb, Anne-Marie Delort, Valentin Duflot, Stephan Houdier, Jean-Luc Jaffrezo, Muriel Joly, Martin Leremboure, Jean-Marc Metzger, Jean-Marc Pichon, Mickaël Ribeiro, Manon Rocco, Pierre Tulet, Anthony Vella, Maud Leriche, and Laurent Deguillaume
Atmos. Chem. Phys., 22, 505–533, https://doi.org/10.5194/acp-22-505-2022, https://doi.org/10.5194/acp-22-505-2022, 2022
Short summary
Short summary
We present here the results obtained during an intensive field campaign conducted in March to April 2019 in Reunion. Our study integrates a comprehensive chemical and microphysical characterization of cloud water. Our investigations reveal that air mass history and cloud microphysical properties do not fully explain the variability observed in their chemical composition. This highlights the complexity of emission sources, multiphasic exchanges, and transformations in clouds.
Ramon Campos Braga, Barbara Ervens, Daniel Rosenfeld, Meinrat O. Andreae, Jan-David Förster, Daniel Fütterer, Lianet Hernández Pardo, Bruna A. Holanda, Tina Jurkat-Witschas, Ovid O. Krüger, Oliver Lauer, Luiz A. T. Machado, Christopher Pöhlker, Daniel Sauer, Christiane Voigt, Adrian Walser, Manfred Wendisch, Ulrich Pöschl, and Mira L. Pöhlker
Atmos. Chem. Phys., 21, 17513–17528, https://doi.org/10.5194/acp-21-17513-2021, https://doi.org/10.5194/acp-21-17513-2021, 2021
Short summary
Short summary
Interactions of aerosol particles with clouds represent a large uncertainty in estimates of climate change. Properties of aerosol particles control their ability to act as cloud condensation nuclei. Using aerosol measurements in the Amazon, we performed model studies to compare predicted and measured cloud droplet number concentrations at cloud bases. Our results confirm previous estimates of particle hygroscopicity in this region.
Soleil E. Worthy, Anand Kumar, Yu Xi, Jingwei Yun, Jessie Chen, Cuishan Xu, Victoria E. Irish, Pierre Amato, and Allan K. Bertram
Atmos. Chem. Phys., 21, 14631–14648, https://doi.org/10.5194/acp-21-14631-2021, https://doi.org/10.5194/acp-21-14631-2021, 2021
Short summary
Short summary
We studied the effect of (NH4)2SO4 on the immersion freezing of non-mineral dust ice-nucleating substances (INSs) and mineral dusts. (NH4)2SO4 had no effect on the median freezing temperature of 9 of the 10 tested non-mineral dust INSs, slightly decreased that of the other, and increased that of all the mineral dusts. The difference in the response of mineral dust and non-mineral dust INSs to (NH4)2SO4 suggests that they nucleate ice and/or interact with (NH4)2SO4 via different mechanisms.
Ramon Campos Braga, Daniel Rosenfeld, Ovid O. Krüger, Barbara Ervens, Bruna A. Holanda, Manfred Wendisch, Trismono Krisna, Ulrich Pöschl, Meinrat O. Andreae, Christiane Voigt, and Mira L. Pöhlker
Atmos. Chem. Phys., 21, 14079–14088, https://doi.org/10.5194/acp-21-14079-2021, https://doi.org/10.5194/acp-21-14079-2021, 2021
Short summary
Short summary
Quantifying the precipitation within clouds is crucial for our understanding of the Earth's hydrological cycle. Using in situ measurements of cloud and rain properties over the Amazon Basin and Atlantic Ocean, we show here a linear relationship between the effective radius (re) and precipitation water content near the tops of convective clouds for different pollution states and temperature levels. Our results emphasize the role of re to determine both initiation and amount of precipitation.
Mira L. Pöhlker, Minghui Zhang, Ramon Campos Braga, Ovid O. Krüger, Ulrich Pöschl, and Barbara Ervens
Atmos. Chem. Phys., 21, 11723–11740, https://doi.org/10.5194/acp-21-11723-2021, https://doi.org/10.5194/acp-21-11723-2021, 2021
Short summary
Short summary
Clouds cool our atmosphere. The role of small aerosol particles in affecting them represents one of the largest uncertainties in current estimates of climate change. Traditionally it is assumed that cloud droplets only form particles of diameters ~ 100 nm (
accumulation mode). Previous studies suggest that this can also occur in smaller particles (
Aitken mode). Our study provides a general framework to estimate under which aerosol and cloud conditions Aitken mode particles affect clouds.
Minghui Zhang, Amina Khaled, Pierre Amato, Anne-Marie Delort, and Barbara Ervens
Atmos. Chem. Phys., 21, 3699–3724, https://doi.org/10.5194/acp-21-3699-2021, https://doi.org/10.5194/acp-21-3699-2021, 2021
Short summary
Short summary
Although primary biological aerosol particles (PBAPs, bioaerosols) represent a small fraction of total atmospheric aerosol burden, they might affect climate and public health. We summarize which PBAP properties are important to affect their inclusion in clouds and interaction with light and might also affect their residence time and transport in the atmosphere. Our study highlights that not only chemical and physical but also biological processes can modify these physicochemical properties.
Saly Jaber, Muriel Joly, Maxence Brissy, Martin Leremboure, Amina Khaled, Barbara Ervens, and Anne-Marie Delort
Biogeosciences, 18, 1067–1080, https://doi.org/10.5194/bg-18-1067-2021, https://doi.org/10.5194/bg-18-1067-2021, 2021
Short summary
Short summary
Our study is of interest to atmospheric scientists and environmental microbiologists, as we show that clouds can be considered a medium where bacteria efficiently degrade and transform amino acids, in competition with chemical processes. As current atmospheric multiphase models are restricted to chemical degradation of organic compounds, our conclusions motivate further model development.
Jean-Luc Baray, Laurent Deguillaume, Aurélie Colomb, Karine Sellegri, Evelyn Freney, Clémence Rose, Joël Van Baelen, Jean-Marc Pichon, David Picard, Patrick Fréville, Laëtitia Bouvier, Mickaël Ribeiro, Pierre Amato, Sandra Banson, Angelica Bianco, Agnès Borbon, Lauréline Bourcier, Yannick Bras, Marcello Brigante, Philippe Cacault, Aurélien Chauvigné, Tiffany Charbouillot, Nadine Chaumerliac, Anne-Marie Delort, Marc Delmotte, Régis Dupuy, Antoine Farah, Guy Febvre, Andrea Flossmann, Christophe Gourbeyre, Claude Hervier, Maxime Hervo, Nathalie Huret, Muriel Joly, Victor Kazan, Morgan Lopez, Gilles Mailhot, Angela Marinoni, Olivier Masson, Nadège Montoux, Marius Parazols, Frédéric Peyrin, Yves Pointin, Michel Ramonet, Manon Rocco, Martine Sancelme, Stéphane Sauvage, Martina Schmidt, Emmanuel Tison, Mickaël Vaïtilingom, Paolo Villani, Miao Wang, Camille Yver-Kwok, and Paolo Laj
Atmos. Meas. Tech., 13, 3413–3445, https://doi.org/10.5194/amt-13-3413-2020, https://doi.org/10.5194/amt-13-3413-2020, 2020
Short summary
Short summary
CO-PDD (Cézeaux-Aulnat-Opme-puy de Dôme) is a fully instrumented platform for atmospheric research. The four sites located at different altitudes from 330 to 1465 m around Clermont-Ferrand (France) host in situ and remote sensing instruments to measure atmospheric composition, including long-term trends and variability, to study interconnected processes (microphysical, chemical, biological, chemical, and dynamical) and to provide a reference point for climate models.
Saly Jaber, Audrey Lallement, Martine Sancelme, Martin Leremboure, Gilles Mailhot, Barbara Ervens, and Anne-Marie Delort
Atmos. Chem. Phys., 20, 4987–4997, https://doi.org/10.5194/acp-20-4987-2020, https://doi.org/10.5194/acp-20-4987-2020, 2020
Short summary
Short summary
Current atmospheric multiphase models do not include biotransformations of organic compounds by bacteria, although many previous studies of our and other research groups have shown microbial activity in cloud water. The current lab/model study shows that for water-soluble aromatic compounds, biodegradation by bacteria may be as efficient as chemical reactions in cloud water.
Barbara Ervens and Pierre Amato
Atmos. Chem. Phys., 20, 1777–1794, https://doi.org/10.5194/acp-20-1777-2020, https://doi.org/10.5194/acp-20-1777-2020, 2020
Short summary
Short summary
Bacteria in the atmosphere are important due to their potential adverse health effects and as initiators of ice cloud formation. Observational studies suggest that bacterial cells grow and multiply in clouds and also consume organic compounds.
We estimate the role of microbial processes in the atmosphere for (i) the increase in biological aerosol mass by cell growth and multiplication and (ii) the sink strength of organics in clouds as a loss process in addition to chemical reactions.
Valentin Duflot, Pierre Tulet, Olivier Flores, Christelle Barthe, Aurélie Colomb, Laurent Deguillaume, Mickael Vaïtilingom, Anne Perring, Alex Huffman, Mark T. Hernandez, Karine Sellegri, Ellis Robinson, David J. O'Connor, Odessa M. Gomez, Frédéric Burnet, Thierry Bourrianne, Dominique Strasberg, Manon Rocco, Allan K. Bertram, Patrick Chazette, Julien Totems, Jacques Fournel, Pierre Stamenoff, Jean-Marc Metzger, Mathilde Chabasset, Clothilde Rousseau, Eric Bourrianne, Martine Sancelme, Anne-Marie Delort, Rachel E. Wegener, Cedric Chou, and Pablo Elizondo
Atmos. Chem. Phys., 19, 10591–10618, https://doi.org/10.5194/acp-19-10591-2019, https://doi.org/10.5194/acp-19-10591-2019, 2019
Short summary
Short summary
The Forests gAses aeRosols Clouds Exploratory (FARCE) campaign was conducted in March–April 2015 on the tropical island of La Réunion. For the first time, several scientific teams from different disciplines collaborated to provide reference measurements and characterization of La Réunion vegetation, volatile organic compounds (VOCs), biogenic VOCs (BVOCs), (bio)aerosols and composition of clouds, with a strong focus on the Maïdo mount slope area.
Barbara Ervens, Armin Sorooshian, Abdulmonam M. Aldhaif, Taylor Shingler, Ewan Crosbie, Luke Ziemba, Pedro Campuzano-Jost, Jose L. Jimenez, and Armin Wisthaler
Atmos. Chem. Phys., 18, 16099–16119, https://doi.org/10.5194/acp-18-16099-2018, https://doi.org/10.5194/acp-18-16099-2018, 2018
Short summary
Short summary
The paper presents a new framework that can be used to identify emission scenarios in which aerosol populations are most likely modified by chemical processes in clouds. We show that in neither very polluted nor in very clean air masses is this the case. Only if the ratio of possible aerosol mass precursors (sulfur dioxide, some organics) and preexisting aerosol mass is sufficiently high will aerosol particles show substantially modified physicochemical properties upon cloud processing.
Audrey Lallement, Ludovic Besaury, Elise Tixier, Martine Sancelme, Pierre Amato, Virginie Vinatier, Isabelle Canet, Olga V. Polyakova, Viatcheslay B. Artaev, Albert T. Lebedev, Laurent Deguillaume, Gilles Mailhot, and Anne-Marie Delort
Biogeosciences, 15, 5733–5744, https://doi.org/10.5194/bg-15-5733-2018, https://doi.org/10.5194/bg-15-5733-2018, 2018
Short summary
Short summary
The main objective of this work was to evaluate the potential degradation of phenol, a highly toxic pollutant, by cloud microorganisms. Phenol concentrations measured on five cloud samples collected at the PUY station in France were from 0.15 to 0.74 µg L−1. Metatranscriptomic analysis suggested that phenol could be biodegraded directly in clouds, likely by Gammaproteobacteria. A large screening showed that 93 % of 145 bacterial strains isolated from clouds were able to degrade phenol.
Nolwenn Wirgot, Virginie Vinatier, Laurent Deguillaume, Martine Sancelme, and Anne-Marie Delort
Atmos. Chem. Phys., 17, 14841–14851, https://doi.org/10.5194/acp-17-14841-2017, https://doi.org/10.5194/acp-17-14841-2017, 2017
Short summary
Short summary
This article highlights the interactions between H2O2 and microorganisms within the cloud system. Experiments performed in microcosms with bacterial strains isolated from clouds showed that H2O2 strongly impacted the microbial energetic state. The ATP depletion measured in the presence of H2O2 was not due to the loss of cell viability. The strong correlation between ATP and H2O2 based on the analysis of 37 real cloud samples confirmed that H2O2 modulates the metabolism of cloud microorganisms.
B. Ervens, P. Renard, S. Tlili, S. Ravier, J.-L. Clément, and A. Monod
Atmos. Chem. Phys., 15, 9109–9127, https://doi.org/10.5194/acp-15-9109-2015, https://doi.org/10.5194/acp-15-9109-2015, 2015
Short summary
Short summary
A detailed chemical mechanism is developed based on laboratory studies that predicts the formation of high molecular weight compounds in the aqueous phase of atmospheric aerosol particles. Model simulations using this mechanism for atmospheric conditions show that these pathways are likely not a substantial source of particle mass, unless unidentified precursors for these compounds exist that were not taken into account so far and/or the solubility of oxygen in aerosol water is overestimated.
B. Yuan, P. R. Veres, C. Warneke, J. M. Roberts, J. B. Gilman, A. Koss, P. M. Edwards, M. Graus, W. C. Kuster, S.-M. Li, R. J. Wild, S. S. Brown, W. P. Dubé, B. M. Lerner, E. J. Williams, J. E. Johnson, P. K. Quinn, T. S. Bates, B. Lefer, P. L. Hayes, J. L. Jimenez, R. J. Weber, R. Zamora, B. Ervens, D. B. Millet, B. Rappenglück, and J. A. de Gouw
Atmos. Chem. Phys., 15, 1975–1993, https://doi.org/10.5194/acp-15-1975-2015, https://doi.org/10.5194/acp-15-1975-2015, 2015
Short summary
Short summary
In this work, secondary formation of formic acid at an urban site and a site in an oil and gas production region is studied. We investigated various gas phase formation pathways of formic acid, including those recently proposed, using a box model. The contributions from aerosol-related processes, fog events and air-snow exchange to formic acid are also quantified.
B. Ervens, Y. Wang, J. Eagar, W. R. Leaitch, A. M. Macdonald, K. T. Valsaraj, and P. Herckes
Atmos. Chem. Phys., 13, 5117–5135, https://doi.org/10.5194/acp-13-5117-2013, https://doi.org/10.5194/acp-13-5117-2013, 2013
Related subject area
Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Bacteria in clouds biodegrade atmospheric formic and acetic acids
Long-term variability in immersion-mode marine ice-nucleating particles from climate model simulations and observations
Trifluoroacetic acid deposition from emissions of HFO-1234yf in India, China, and the Middle East
Convective uplift of pollution from the Sichuan Basin into the Asian monsoon anticyclone during the StratoClim aircraft campaign
Global modeling of cloud water acidity, precipitation acidity, and acid inputs to ecosystems
Modeling the partitioning of organic chemical species in cloud phases with CLEPS (1.1)
Thermodynamic derivation of the activation energy for ice nucleation
Effects of aerosols on precipitation in north-eastern North America
The role of horizontal model resolution in assessing the transport of CO in a middle latitude cyclone using WRF-Chem
Structure–activity relationship for the estimation of OH-oxidation rate constants of carbonyl compounds in the aqueous phase
Explicit modeling of volatile organic compounds partitioning in the atmospheric aqueous phase
Possible catalytic effects of ice particles on the production of NOx by lightning discharges
Evaluation of cloud convection and tracer transport in a three-dimensional chemical transport model
Regional scale effects of the aerosol cloud interaction simulated with an online coupled comprehensive chemistry model
Representation of tropical deep convection in atmospheric models – Part 1: Meteorology and comparison with satellite observations
Structure-activity relationships to estimate the effective Henry's law constants of organics of atmospheric interest
Uncertainties in atmospheric chemistry modelling due to convection parameterisations and subsequent scavenging
A meteorological overview of the ARCTAS 2008 mission
Leslie Nuñez López, Pierre Amato, and Barbara Ervens
Atmos. Chem. Phys., 24, 5181–5198, https://doi.org/10.5194/acp-24-5181-2024, https://doi.org/10.5194/acp-24-5181-2024, 2024
Short summary
Short summary
Living bacteria comprise a small particle fraction in the atmosphere. Our model study shows that atmospheric bacteria in clouds may efficiently biodegrade formic and acetic acids that affect the acidity of rain. We conclude that current atmospheric models underestimate losses of these acids as they only consider chemical processes. We suggest that biodegradation can affect atmospheric concentration not only of formic and acetic acids but also of other volatile, moderately soluble organics.
Aishwarya Raman, Thomas Hill, Paul J. DeMott, Balwinder Singh, Kai Zhang, Po-Lun Ma, Mingxuan Wu, Hailong Wang, Simon P. Alexander, and Susannah M. Burrows
Atmos. Chem. Phys., 23, 5735–5762, https://doi.org/10.5194/acp-23-5735-2023, https://doi.org/10.5194/acp-23-5735-2023, 2023
Short summary
Short summary
Ice-nucleating particles (INPs) play an important role in cloud processes and associated precipitation. Yet, INPs are not accurately represented in climate models. This study attempts to uncover these gaps by comparing model-simulated INP concentrations against field campaign measurements in the SO for an entire year, 2017–2018. Differences in INP concentrations and variability between the model and observations have major implications for modeling cloud properties in high latitudes.
Liji M. David, Mary Barth, Lena Höglund-Isaksson, Pallav Purohit, Guus J. M. Velders, Sam Glaser, and A. R. Ravishankara
Atmos. Chem. Phys., 21, 14833–14849, https://doi.org/10.5194/acp-21-14833-2021, https://doi.org/10.5194/acp-21-14833-2021, 2021
Short summary
Short summary
We calculated the expected concentrations of trifluoroacetic acid (TFA) from the atmospheric breakdown of HFO-1234yf (CF3CF=CH2), a substitute for global warming hydrofluorocarbons, emitted now and in the future by India, China, and the Middle East. We used two chemical transport models. We conclude that the projected emissions through 2040 would not be detrimental, given the current knowledge of the effects of TFA on humans and ecosystems.
Keun-Ok Lee, Brice Barret, Eric L. Flochmoën, Pierre Tulet, Silvia Bucci, Marc von Hobe, Corinna Kloss, Bernard Legras, Maud Leriche, Bastien Sauvage, Fabrizio Ravegnani, and Alexey Ulanovsky
Atmos. Chem. Phys., 21, 3255–3274, https://doi.org/10.5194/acp-21-3255-2021, https://doi.org/10.5194/acp-21-3255-2021, 2021
Short summary
Short summary
This paper focuses on the emission sources and pathways of pollution from the boundary layer to the Asian monsoon anticyclone (AMA) during the StratoClim aircraft campaign period. Simulations with the Meso-NH cloud-chemistry model at a horizontal resolution of 15 km are performed over the Asian region to characterize the impact of monsoon deep convection on the composition of AMA and on the formation of the Asian tropopause aerosol layer during the StratoClim campaign.
Viral Shah, Daniel J. Jacob, Jonathan M. Moch, Xuan Wang, and Shixian Zhai
Atmos. Chem. Phys., 20, 12223–12245, https://doi.org/10.5194/acp-20-12223-2020, https://doi.org/10.5194/acp-20-12223-2020, 2020
Short summary
Short summary
Cloud water pH affects atmospheric chemistry, and acid rain damages ecosystems. We use model simulations along with observations to present a global view of cloud water and precipitation pH. Sulfuric acid, nitric acid, and ammonia control the pH in the northern midlatitudes, but carboxylic acids and dust cations are important in the tropics and subtropics. The acid inputs to many nitrogen-saturated ecosystems are high enough to cause acidification, with ammonium as the main acidifying species.
Clémence Rose, Nadine Chaumerliac, Laurent Deguillaume, Hélène Perroux, Camille Mouchel-Vallon, Maud Leriche, Luc Patryl, and Patrick Armand
Atmos. Chem. Phys., 18, 2225–2242, https://doi.org/10.5194/acp-18-2225-2018, https://doi.org/10.5194/acp-18-2225-2018, 2018
Short summary
Short summary
A detailed aqueous phase mechanism CLEPS 1.1 is coupled with warm microphysics including activation of aerosol particles into cloud droplets. Simulated aqueous concentrations of carboxylic acids are close to the long-term measurements conducted at Puy de Dôme (France). Sensitivity tests show that formic and acetic acids mainly originate from the gas phase with highly variable aqueous-phase reactivity depending on cloud pH, while C3–C4 carboxylic acids mainly originate from the particulate phase.
D. Barahona
Atmos. Chem. Phys., 15, 13819–13831, https://doi.org/10.5194/acp-15-13819-2015, https://doi.org/10.5194/acp-15-13819-2015, 2015
Short summary
Short summary
This paper describes the process of the transfer of water molecules between liquid and the ice during the early stages of ice formation. Using concepts of nonreversible thermodynamics, it is shown that the activation energy can be defined in terms of the bulk self-diffusivity of water and the probability of interface transfer. The application of this model to classical nucleation theory shows good agreement of measured nucleation rates with experimental results for temperatures as low as 190K.
R. Mashayekhi and J. J. Sloan
Atmos. Chem. Phys., 14, 5111–5125, https://doi.org/10.5194/acp-14-5111-2014, https://doi.org/10.5194/acp-14-5111-2014, 2014
C. A. Klich and H. E. Fuelberg
Atmos. Chem. Phys., 14, 609–627, https://doi.org/10.5194/acp-14-609-2014, https://doi.org/10.5194/acp-14-609-2014, 2014
J.-F. Doussin and A. Monod
Atmos. Chem. Phys., 13, 11625–11641, https://doi.org/10.5194/acp-13-11625-2013, https://doi.org/10.5194/acp-13-11625-2013, 2013
C. Mouchel-Vallon, P. Bräuer, M. Camredon, R. Valorso, S. Madronich, H. Herrmann, and B. Aumont
Atmos. Chem. Phys., 13, 1023–1037, https://doi.org/10.5194/acp-13-1023-2013, https://doi.org/10.5194/acp-13-1023-2013, 2013
H. S. Peterson and W. H. Beasley
Atmos. Chem. Phys., 11, 10259–10268, https://doi.org/10.5194/acp-11-10259-2011, https://doi.org/10.5194/acp-11-10259-2011, 2011
W. Feng, M. P. Chipperfield, S. Dhomse, B. M. Monge-Sanz, X. Yang, K. Zhang, and M. Ramonet
Atmos. Chem. Phys., 11, 5783–5803, https://doi.org/10.5194/acp-11-5783-2011, https://doi.org/10.5194/acp-11-5783-2011, 2011
M. Bangert, C. Kottmeier, B. Vogel, and H. Vogel
Atmos. Chem. Phys., 11, 4411–4423, https://doi.org/10.5194/acp-11-4411-2011, https://doi.org/10.5194/acp-11-4411-2011, 2011
M. R. Russo, V. Marécal, C. R. Hoyle, J. Arteta, C. Chemel, M. P. Chipperfield, O. Dessens, W. Feng, J. S. Hosking, P. J. Telford, O. Wild, X. Yang, and J. A. Pyle
Atmos. Chem. Phys., 11, 2765–2786, https://doi.org/10.5194/acp-11-2765-2011, https://doi.org/10.5194/acp-11-2765-2011, 2011
T. Raventos-Duran, M. Camredon, R. Valorso, C. Mouchel-Vallon, and B. Aumont
Atmos. Chem. Phys., 10, 7643–7654, https://doi.org/10.5194/acp-10-7643-2010, https://doi.org/10.5194/acp-10-7643-2010, 2010
H. Tost, M. G. Lawrence, C. Brühl, P. Jöckel, The GABRIEL Team, and The SCOUT-O3-DARWIN/ACTIVE Team
Atmos. Chem. Phys., 10, 1931–1951, https://doi.org/10.5194/acp-10-1931-2010, https://doi.org/10.5194/acp-10-1931-2010, 2010
H. E. Fuelberg, D. L. Harrigan, and W. Sessions
Atmos. Chem. Phys., 10, 817–842, https://doi.org/10.5194/acp-10-817-2010, https://doi.org/10.5194/acp-10-817-2010, 2010
Cited articles
Allou, L., El Maimouni, L., and Le Calvé, S.: Henry's law constant
measurements for formaldehyde and benzaldehyde as a function of temperature
and water composition, Atmos. Environ., 45, 2991–2998,
https://doi.org/10.1016/j.atmosenv.2010.05.044, 2011.
Amato, P., Demeer, F., Melaouhi, A., Fontanella, S., Martin-Biesse, A.-S., Sancelme, M., Laj, P., and Delort, A.-M.: A fate for organic acids, formaldehyde and methanol in cloud water: their biotransformation by micro-organisms, Atmos. Chem. Phys., 7, 4159–4169, https://doi.org/10.5194/acp-7-4159-2007, 2007a.
Amato, P., Parazols, M., Sancelme, M., Mailhot, G., Laj, P., and Delort, A.
M.: An important oceanic source of micro-organisms for cloud water at the
Puy de Dôme (France), Atmos. Environ., 41, 8253–8263,
https://doi.org/10.1016/j.atmosenv.2007.06.022, 2007b.
Amato, P., Parazols, M., Sancelme, M., Laj, P., Mailhot, G., and Delort, A.
M.: Microorganisms isolated from the water phase of tropospheric clouds at
the Puy de Dôme: Major groups and growth abilities at low temperatures,
FEMS Microbiol. Ecol., 59, 242–254,
https://doi.org/10.1111/j.1574-6941.2006.00199.x, 2007c.
Amato, P., Besaury, L., Joly, M., Penaud, B., Deguillaume, L., and Delort, A.
M.: Metatranscriptomic exploration of microbial functioning in clouds, Sci.
Rep.-UK, 9, 1–12, https://doi.org/10.1038/s41598-019-41032-4, 2019.
Anglada, J. M.: Complex mechanism of the gas phase reaction between formic
acid and hydroxyl radical. Proton coupled electron transfer versus radical
hydrogen abstraction mechanisms, J. Am. Chem. Soc., 126, 9809–9820,
https://doi.org/10.1021/ja0481169, 2004.
Arakaki, T., Anastasio, C., Kuroki, Y., Nakajima, H., Okada, K., Kotani, Y.,
Handa, D., Azechi, S., Kimura, T., Tsuhako, A., and Miyagi, Y.: A general
scavenging rate constant for reaction of hydroxyl radical with organic
carbon in atmospheric waters, Environ. Sci. Technol., 47, 8196–8203,
https://doi.org/10.1021/es401927b, 2013.
Ariya, P. A., Nepotchatykh, O., Ignatova, O., and Amyot, M.: Microbiological
degradation of atmospheric organic compounds, Geophys. Res. Lett., 29,
34–41, https://doi.org/10.1029/2002gl015637, 2002.
Aumont, B., Madronich, S., Bey, I., and Tyndall, G.: Contribution of
Secondary VOC to the Composition of Aqueous Atmospheric Particles: A
Modeling Approach, J. Atmos. Chem., 35, 59–75,
https://doi.org/10.1023/a:1006243509840, 2000.
Beard, K. V. and Ochs, H. T.: Collection and coalescence efficiencies for
accretion, J. Geophys. Res., 89, 7165–7169,
https://doi.org/10.1029/JD089iD05p07165, 1984.
Butkovskaya, N. I., Kukui, A., Pouvesle, N., and Le Bras, G.: Rate constant
and mechanism of the reaction of OH radicals with acetic acid in the
temperature range of 229–300 K, J. Phys. Chem. A, 108, 7021–7026,
https://doi.org/10.1021/jp048444v, 2004.
Cabelli, D. E. and Bielski, B. H.: pulse radiolysis study of some
dicarboxylic acids of the citric acid cycle. The kinetics and spectral
properties of the free radicals formed by reactions with the HO radical,
Z. Naturforsch. B, 40, 1731–1737,
https://doi.org/10.1515/znb-1985-1223, 1985.
Cantrell, C. A., Shetter, R. E., Calvert, J. G., Eisele, F. L., and Tanner,
D. J.: Some considerations of the origin of nighttime peroxy radicals
observed in MLOPEX 2c, J. Geophys. Res.-Atmos., 102, 15899–15913,
https://doi.org/10.1029/97jd01120, 1997.
Decesari, S., Facchini, M. C., Fuzzi, S., and Tagliavini, E.:
Characterization of water-soluble organic compounds in atmospheric aerosol:
A new approach, J. Geophys. Res.-Atmos., 105, 1481–1489,
https://doi.org/10.1029/1999JD900950, 2000.
Deguillaume, L., Charbouillot, T., Joly, M., Vaïtilingom, M., Parazols, M., Marinoni, A., Amato, P., Delort, A.-M., Vinatier, V., Flossmann, A., Chaumerliac, N., Pichon, J. M., Houdier, S., Laj, P., Sellegri, K., Colomb, A., Brigante, M., and Mailhot, G.: Classification of clouds sampled at the puy de Dôme (France) based on 10 yr of monitoring of their physicochemical properties, Atmos. Chem. Phys., 14, 1485–1506, https://doi.org/10.5194/acp-14-1485-2014 2014.
Delort, A.-M., Vaïtilingom, M., Amato, P., Sancelme, M., Parazols, M.,
Mailhot, G., Laj, P., and Deguillaume, L.: A short overview of the microbial
population in clouds: Potential roles in atmospheric chemistry and
nucleation processes, Atmos. Res., 98, 249–260,
https://doi.org/10.1016/j.atmosres.2010.07.004, 2010.
Delort, A.-M., Deguillaume, L., Renard, P., Vinatier, V., Canet, I.,
Vaïtilingom, M., and Chaumerliac, N.: Impacts on Cloud Chemistry, in:
Microbiology of Aerosols, edited by: Delort, A. M. and Amato, P., John Wiley & Sons, Inc., Hoboken, NJ, 221–248, https://doi.org/10.1002/9781119132318.ch3b,
2017.
Ervens, B.: Modeling the Processing of Aerosol and Trace Gases in Clouds and
Fogs, Chem. Rev., 115, 4157–4198, https://doi.org/10.1021/cr5005887, 2015.
Ervens, B. and Amato, P.: The global impact of bacterial processes on carbon mass, Atmos. Chem. Phys., 20, 1777–1794, https://doi.org/10.5194/acp-20-1777-2020, 2020.
Ervens, B., George, C., Williams, J. E., Buxton, G. V., Salmon, G. A.,
Bydder, M., Wilkinson, F., Dentener, F., Mirabel, P., Wolke, R., and
Herrmann, H.: CAPRAM 2.4 (MODAC mechanism): An extended and condensed
tropospheric aqueous phase mechanism and its application, J. Geophys. Res.-Atmos., 108, 4426, https://doi.org/10.1029/2002jd002202, 2003a.
Ervens, B., Herckes, P., Feingold, G., Lee, T., Collett, J. L., and
Kreidenweis, S. M.: On the drop-size dependence of organic acid and
formaldehyde concentrations in fog, J. Atmos. Chem., 46, 239–269,
https://doi.org/10.1023/A:1026393805907, 2003b.
Ervens, B., Gligorovski, S. and Herrmann, H.: Temperature-dependent rate
constants for hydroxyl radical reactions with organic compounds in aqueous
solutions, Phys. Chem. Chem. Phys., 5, 1811–1824, https://doi.org/10.1039/b300072a,
2003c.
Ervens, B., Feingold, G., Frost, G. J., and Kreidenweis, S. M.: A modeling of
study of aqueous production of dicarboxylic acids: 1. Chemical pathways and
speciated organic mass production, J. Geophys. Res., 109, D15205,
https://doi.org/10.1029/2003JD004387, 2004.
Ervens, B., Carlton, A. G., Turpin, B. J., Altieri, K. E., Kreidenweis, S.
M., and Feingold, G.: Secondary organic aerosol yields from cloud-processing
of isoprene oxidation products, Geophys. Res. Lett., 35, L02816,
https://doi.org/10.1029/2007GL031828, 2008.
Exner, M., Herrmann, H., and Zellner, R.: Rate constants for the reactions of
the NO3 radical with and in aqueous solution between 278 and 328 K, J. Atmos. Chem., 18, 359–378, https://doi.org/10.1007/BF00712451, 1994.
Fankhauser, A. M., Antonio, D. D., Krell, A., Alston, S. J., Banta, S., and
McNeill, V. F.: Constraining the Impact of Bacteria on the Aqueous
Atmospheric Chemistry of Small Organic Compounds, ACS Earth Sp. Chem., 3,
1485–1491, https://doi.org/10.1021/acsearthspacechem.9b00054, 2019.
Fu, P., Kawamura, K., Usukura, K., and Miura, K.: Dicarboxylic acids,
ketocarboxylic acids and glyoxal in the marine aerosols collected during a
round-the-world cruise, Mar. Chem., 148, 22–32,
https://doi.org/10.1016/j.marchem.2012.11.002, 2013.
Gaillard De Sémainville, P., Hoffmann, D., George, C. and Herrmann, H.:
Study of nitrate radical (NO3) reactions with carbonyls and acids in aqueous
solution as a function of temperature, Phys. Chem. Chem. Phys., 9,
958–968, https://doi.org/10.1039/b613956f, 2007.
Gao, Y., Lee, S. C., Huang, Y., Chow, J. C., and Watson, J. G.: Chemical
characterization and source apportionment of size-resolved particles in Hong
Kong sub-urban area, Atmos. Res., 170, 112–122,
https://doi.org/10.1016/j.atmosres.2015.11.015, 2016.
Guan, N. and Liu, L.: Microbial response to acid stress: mechanisms and
applications, Appl. Microbiol. Biotechnol., 51–65,
https://doi.org/10.1007/s00253-019-10226-1, 2020.
Haddrell, A. E. and Thomas, R. J.: Aerobiology: Experimental considerations,
observations, and future tools, Appl. Environ. Microbiol., 83, e00809-17,
https://doi.org/10.1128/AEM.00809-17, 2017.
Herckes, P., Valsaraj, K. T., and Collett, J. L.: A review of observations of
organic matter in fogs and clouds: Origin, processing and fate, Atmos. Res., 132–133, 434–449, https://doi.org/10.1016/j.atmosres.2013.06.005, 2013.
Herlihy, L. J., Galloway, J. N., and Mills, A. L.: Bacterial utilization of
formic and acetic acid in rainwater, Atmos. Environ., 21, 2397–2402,
https://doi.org/10.1016/0004-6981(87)90374-X, 1987.
Herrmann, H.: Kinetics of Aqueous Phase Reactions Relevant for Atmospheric
Chemistry, Chem. Rev., 103, 4691–4716, https://doi.org/10.1021/cr020658q, 2003.
Hoffmann, E. H., Tilgner, A., Wolke, R., Böge, O., Walter, A., and
Herrmann, H.: Oxidation of substituted aromatic hydrocarbons in the
tropospheric aqueous phase: Kinetic mechanism development and modelling,
Phys. Chem. Chem. Phys., 20, 10960–10977, https://doi.org/10.1039/c7cp08576a, 2018.
Hu, W., Niu, H., Murata, K., Wu, Z., Hu, M., Kojima, T., and Zhang, D.:
Bacteria in atmospheric waters: Detection, characteristics and implications,
Atmos. Environ., 179, 201–221, https://doi.org/10.1016/j.atmosenv.2018.02.026, 2018.
Husárová, S., Vaïtilingom, M., Deguillaume, L., Traikia, M.,
Vinatier, V., Sancelme, M., Amato, P., Matulová, M., and Delort, A. M.:
Biotransformation of methanol and formaldehyde by bacteria isolated from
clouds. Comparison with radical chemistry, Atmos. Environ., 45,
6093–6102, https://doi.org/10.1016/j.atmosenv.2011.06.035, 2011.
Jaber, S., Lallement, A., Sancelme, M., Leremboure, M., Mailhot, G., Ervens, B., and Delort, A.-M.: Biodegradation of phenol and catechol in cloud water: comparison to chemical oxidation in the atmospheric multiphase system, Atmos. Chem. Phys., 20, 4987–4997, https://doi.org/10.5194/acp-20-4987-2020, 2020.
Jacob, D. J.: Chemistry of OH in remote clouds and its role in the
production of formic acid and peroxymonosulfate, J. Geophys. Res., 91,
9807–9826, https://doi.org/10.1029/jd091id09p09807, 1986.
Johnson, B. J., Betterton, E. A., and Craig, D.: Henry's Law coefficients of
formic and acetic acids, J. Atmos. Chem., 24, 113–119,
https://doi.org/10.1007/BF00162406, 1996.
Kaprelyants, A. S. and Kell, D. B.: Dormancy in stationary-phase cultures of
Micrococcus luteus: Flow cytometric analysis of starvation and
resuscitation, Appl. Environ. Microbiol., 59, 3187–3196,
https://doi.org/10.1128/aem.59.10.3187-3196.1993, 1993.
Kawamura, K. and Ikushima, K.: Seasonal Changes in the Distribution of
Dicarboxylic Acids in the Urban Atmosphere, Environ. Sci. Technol., 27,
2227–2235, https://doi.org/10.1021/es00047a033, 1993.
Khan, M. A. H., Ashfold, M. J., Nickless, G., Martin, D., Watson, L. A.,
Hamer, P. D., Wayne, R. P., Canosa-Mas, C. E., and Shallcross, D. E.:
Night-time NO3 and OH radical concentrations in the United Kingdom inferred from hydrocarbon measurements, Atmos. Sci. Lett., 9, 140–146,
https://doi.org/10.1002/asl.175, 2008.
Khare, P., Kumar, N., Kumari, K. M., and Srivastava, S. S.: Atmospheric
formic and acetic acids: An overview, Rev. Geophys., 37, 227–248,
https://doi.org/10.1029/1998RG900005, 1999.
Krumins, V., Mainelis, G., Kerkhof, L. J., and Fennell, D. E.:
Substrate-Dependent rRNA Production in an Airborne Bacterium, Environ. Sci.
Technol. Lett., 1, 376–381, https://doi.org/10.1021/ez500245y, 2014a.
Krumins, V., Mainelis, G., Kerkhof, L. J., and Fennell, D. E.:
Substrate-Dependent rRNA Production in an Airborne Bacterium, Environ. Sci.
Technol. Lett., 1, 376–381, https://doi.org/10.1021/ez500245y, 2014b.
Lelieveld, J. and Crutzen, P. J.: The role of clouds in tropospheric
photochemistry, J. Atmos. Chem., 12, 229–267, https://doi.org/10.1007/BF00048075,
1991.
Löflund, M., Kasper-Giebl, A., Schuster, B., Giebl, H., Hitzenberger, R.,
and Puxbaum, H.: Formic, acetic, oxalic, malonic and succinic acid
concentrations and their contribution to organic carbon in cloud water,
Atmos. Environ., 36, 1553–1558, https://doi.org/10.1016/S1352-2310(01)00573-8, 2002.
Lu, P., Ma, D., Chen, Y., Guo, Y., Chen, G. Q., Deng, H., and Shi, Y.:
L-glutamine provides acid resistance for Escherichia coli through enzymatic
release of ammonia, Cell Res., 23, 635–644, https://doi.org/10.1038/cr.2013.13, 2013.
Madronich, S. and Calvert, J. G.: The NCAR Master Mechanism of the Gas Phase Chemistry – Version 2.0, No. NCAR/TN-333+STR, University Corporation for Atmospheric Research, https://doi.org/doi10.5065/D6HD7SKH, 1989.
Mezyk, S. P., Cullen, T. D., Rickman, K. A., and Mincher, B. J.: The
Reactivity of the Nitrate Radical (NO3) in Aqueous and Organic Solutions,
Int. J. Chem. Kinet., 49, 635–642, https://doi.org/10.1002/kin.21103, 2017.
Mouchel-Vallon, C., Deguillaume, L., Monod, A., Perroux, H., Rose, C., Ghigo, G., Long, Y., Leriche, M., Aumont, B., Patryl, L., Armand, P., and Chaumerliac, N.: CLEPS 1.0: A new protocol for cloud aqueous phase oxidation of VOC mechanisms, Geosci. Model Dev., 10, 1339–1362, https://doi.org/10.5194/gmd-10-1339-2017, 2017.
Pillar, E. A., Camm, R. C., and Guzman, M. I.: Catechol oxidation by ozone
and hydroxyl radicals at the air-water interface, Environ. Sci. Technol.,
48, 14352–14360, https://doi.org/10.1021/es504094x, 2014.
Razika, B., Abbes, B., Messaoud, C., and Soufi, K.: Phenol and Benzoic Acid
Degradation by Pseudomonas aeruginosa, J. Water Resour. Prot., 2, 1–4,
https://doi.org/10.4236/jwarp.2010.29092, 2010.
Sander, R.: Compilation of Henry's law constants (version 4.0) for water as solvent, Atmos. Chem. Phys., 15, 4399–4981, https://doi.org/10.5194/acp-15-4399-2015, 2015.
Sattler, B., Puxbaum, H., and Psenner, R.: Bacterial growth in supercooled
cloud droplets, Geophys. Res. Lett., 28, 239–242, https://doi.org/10.1029/2000GL011684, 2001.
Schwartz, S. E.: Mass-Transport Considerations Pertinent to Aqueous Phase Reactions of Gases in Liquid-Water Clouds, in: Chemistry of Multiphase Atmospheric Systems, edited by: Jaeschke, W., Springer, Berlin, Heidelberg, NATO ASI Series, Series G: Ecological Sciences, vol 6., https://doi.org/10.1007/978-3-642-70627-1_16, 1986.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics, John
Wiley & Sons, New York, 1998.
Sun, X., Wang, Y., Li, H., Yang, X., Sun, L., Wang, X., Wang, T., and Wang,
W.: Organic acids in cloud water and rainwater at a mountain site in acid
rain areas of South China, Environ. Sci. Pollut. Res., 23, 9529–9539,
https://doi.org/10.1007/s11356-016-6038-1, 2016.
Tilgner, A., Bräuer, P., Wolke, R., and Herrmann, H.: Modelling
multiphase chemistry in deliquescent aerosols and clouds using CAPRAM3.0i,
J. Atmos. Chem., 70, 221–256, https://doi.org/10.1007/s10874-013-9267-4, 2013.
Vaïtilingom, M., Amato, P., Sancelme, M., Laj, P., Leriche, M., and
Delort, A. M.: Contribution of microbial activity to carbon chemistry in
clouds, Appl. Environ. Microbiol., 76, 23–29, https://doi.org/10.1128/AEM.01127-09,
2010.
Vaïtilingom, M., Charbouillot, T., Deguillaume, L., Maisonobe, R., Parazols, M., Amato, P., Sancelme, M., and Delort, A.-M.: Atmospheric chemistry of carboxylic acids: microbial implication versus photochemistry, Atmos. Chem. Phys., 11, 8721–8733, https://doi.org/10.5194/acp-11-8721-2011, 2011.
Vaïtilingom, M., Deguillaume, L., Vinatier, V., Sancelme, M., Amato,
P., Chaumerliac, N., and Delort, A.-M.: Potential impact of microbial
activity on the oxidant capacity and organic carbon budget in clouds, P.
Natl. Acad. Sci. USA, 110, 559–564, https://doi.org/10.1073/pnas.1205743110, 2013.
Woo, J. L. and McNeill, V. F.: simpleGAMMA v1.0 – a reduced model of secondary organic aerosol formation in the aqueous aerosol phase (aaSOA), Geosci. Model Dev., 8, 1821–1829, https://doi.org/10.5194/gmd-8-1821-2015, 2015.
Zhang, M., Khaled, A., Amato, P., Delort, A.-M., and Ervens, B.: The effect of biological particles and their ageing processes on aerosol radiative properties: Model sensitivity studies, Atmos. Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-2020-781, in review, 2020.