Articles | Volume 21, issue 3
https://doi.org/10.5194/acp-21-1717-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-1717-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Atmospheric-methane source and sink sensitivity analysis using Gaussian process emulation
School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
Luke M. Western
School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
Tomás Sherwen
Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, YO10 5DD, UK
National Centre for Atmospheric Science, University of York, York, YO10 5DD, UK
School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
Related authors
Angharad C. Stell, Michael Bertolacci, Andrew Zammit-Mangion, Matthew Rigby, Paul J. Fraser, Christina M. Harth, Paul B. Krummel, Xin Lan, Manfredi Manizza, Jens Mühle, Simon O'Doherty, Ronald G. Prinn, Ray F. Weiss, Dickon Young, and Anita L. Ganesan
Atmos. Chem. Phys., 22, 12945–12960, https://doi.org/10.5194/acp-22-12945-2022, https://doi.org/10.5194/acp-22-12945-2022, 2022
Short summary
Short summary
Nitrous oxide is a potent greenhouse gas and ozone-depleting substance, whose atmospheric abundance has risen throughout the contemporary record. In this work, we carry out the first global hierarchical Bayesian inversion to solve for nitrous oxide emissions. We derive increasing global nitrous oxide emissions over 2011–2020, which are mainly driven by emissions between 0° and 30°N, with the highest emissions recorded in 2020.
Helen Walter-Terrinoni, John S. Daniel, Chelsea R. Thompson, and Luke M. Western
EGUsphere, https://doi.org/10.5194/egusphere-2025-297, https://doi.org/10.5194/egusphere-2025-297, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We have developed a model to improve our ability to estimate emissions of chemicals that are used as foam blowing agents. Some of these chemicals are ozone-depleting substances and some are greenhouse gases. For HCFC-141b, which is the focus of this study, we find that recent observations are inconsistent with our calculated emissions, with our emissions being lower. This mismatch is similar to previous findings and may have important implications for compliance with the Montreal Protocol.
Hanqin Tian, Naiqing Pan, Rona L. Thompson, Josep G. Canadell, Parvadha Suntharalingam, Pierre Regnier, Eric A. Davidson, Michael Prather, Philippe Ciais, Marilena Muntean, Shufen Pan, Wilfried Winiwarter, Sönke Zaehle, Feng Zhou, Robert B. Jackson, Hermann W. Bange, Sarah Berthet, Zihao Bian, Daniele Bianchi, Alexander F. Bouwman, Erik T. Buitenhuis, Geoffrey Dutton, Minpeng Hu, Akihiko Ito, Atul K. Jain, Aurich Jeltsch-Thömmes, Fortunat Joos, Sian Kou-Giesbrecht, Paul B. Krummel, Xin Lan, Angela Landolfi, Ronny Lauerwald, Ya Li, Chaoqun Lu, Taylor Maavara, Manfredi Manizza, Dylan B. Millet, Jens Mühle, Prabir K. Patra, Glen P. Peters, Xiaoyu Qin, Peter Raymond, Laure Resplandy, Judith A. Rosentreter, Hao Shi, Qing Sun, Daniele Tonina, Francesco N. Tubiello, Guido R. van der Werf, Nicolas Vuichard, Junjie Wang, Kelley C. Wells, Luke M. Western, Chris Wilson, Jia Yang, Yuanzhi Yao, Yongfa You, and Qing Zhu
Earth Syst. Sci. Data, 16, 2543–2604, https://doi.org/10.5194/essd-16-2543-2024, https://doi.org/10.5194/essd-16-2543-2024, 2024
Short summary
Short summary
Atmospheric concentrations of nitrous oxide (N2O), a greenhouse gas 273 times more potent than carbon dioxide, have increased by 25 % since the preindustrial period, with the highest observed growth rate in 2020 and 2021. This rapid growth rate has primarily been due to a 40 % increase in anthropogenic emissions since 1980. Observed atmospheric N2O concentrations in recent years have exceeded the worst-case climate scenario, underscoring the importance of reducing anthropogenic N2O emissions.
Hannah Chawner, Eric Saboya, Karina E. Adcock, Tim Arnold, Yuri Artioli, Caroline Dylag, Grant L. Forster, Anita Ganesan, Heather Graven, Gennadi Lessin, Peter Levy, Ingrid T. Luijkx, Alistair Manning, Penelope A. Pickers, Chris Rennick, Christian Rödenbeck, and Matthew Rigby
Atmos. Chem. Phys., 24, 4231–4252, https://doi.org/10.5194/acp-24-4231-2024, https://doi.org/10.5194/acp-24-4231-2024, 2024
Short summary
Short summary
The quantity of atmospheric potential oxygen (APO), derived from coincident measurements of carbon dioxide (CO2) and oxygen (O2), has been proposed as a tracer for fossil fuel CO2 emissions. In this model sensitivity study, we examine the use of APO for this purpose in the UK and compare our model to observations. We find that our model simulations are most sensitive to uncertainties relating to ocean fluxes and boundary conditions.
Tanja J. Schuck, Johannes Degen, Eric Hintsa, Peter Hoor, Markus Jesswein, Timo Keber, Daniel Kunkel, Fred Moore, Florian Obersteiner, Matt Rigby, Thomas Wagenhäuser, Luke M. Western, Andreas Zahn, and Andreas Engel
Atmos. Chem. Phys., 24, 689–705, https://doi.org/10.5194/acp-24-689-2024, https://doi.org/10.5194/acp-24-689-2024, 2024
Short summary
Short summary
We study the interhemispheric gradient of sulfur hexafluoride (SF6), a strong long-lived greenhouse gas. Its emissions are stronger in the Northern Hemisphere; therefore, mixing ratios in the Southern Hemisphere lag behind. Comparing the observations to a box model, the model predicts air in the Southern Hemisphere to be older. For a better agreement, the emissions used as model input need to be increased (and their spatial pattern changed), and we need to modify north–south transport.
Alison L. Redington, Alistair J. Manning, Stephan Henne, Francesco Graziosi, Luke M. Western, Jgor Arduini, Anita L. Ganesan, Christina M. Harth, Michela Maione, Jens Mühle, Simon O'Doherty, Joseph Pitt, Stefan Reimann, Matthew Rigby, Peter K. Salameh, Peter G. Simmonds, T. Gerard Spain, Kieran Stanley, Martin K. Vollmer, Ray F. Weiss, and Dickon Young
Atmos. Chem. Phys., 23, 7383–7398, https://doi.org/10.5194/acp-23-7383-2023, https://doi.org/10.5194/acp-23-7383-2023, 2023
Short summary
Short summary
Chlorofluorocarbons (CFCs) were used in Europe pre-1990, damaging the stratospheric ozone layer. Legislation has controlled production and use, and global emissions have decreased sharply. The global rate of decline in CFC-11 recently slowed and was partly attributed to illegal emission in eastern China. This study concludes that emissions of CFC-11 in western Europe have not contributed to the unexplained part of the global increase in CFC-11 observed in the last decade.
Elena Fillola, Raul Santos-Rodriguez, Alistair Manning, Simon O'Doherty, and Matt Rigby
Geosci. Model Dev., 16, 1997–2009, https://doi.org/10.5194/gmd-16-1997-2023, https://doi.org/10.5194/gmd-16-1997-2023, 2023
Short summary
Short summary
Lagrangian particle dispersion models are used extensively for the estimation of greenhouse gas (GHG) fluxes using atmospheric observations. However, these models do not scale well as data volumes increase. Here, we develop a proof-of-concept machine learning emulator that can produce outputs similar to those of the dispersion model, but 50 000 times faster, using only meteorological inputs. This works demonstrates the potential of machine learning to accelerate GHG estimations across the globe.
Viral Shah, Daniel J. Jacob, Ruijun Dang, Lok N. Lamsal, Sarah A. Strode, Stephen D. Steenrod, K. Folkert Boersma, Sebastian D. Eastham, Thibaud M. Fritz, Chelsea Thompson, Jeff Peischl, Ilann Bourgeois, Ilana B. Pollack, Benjamin A. Nault, Ronald C. Cohen, Pedro Campuzano-Jost, Jose L. Jimenez, Simone T. Andersen, Lucy J. Carpenter, Tomás Sherwen, and Mat J. Evans
Atmos. Chem. Phys., 23, 1227–1257, https://doi.org/10.5194/acp-23-1227-2023, https://doi.org/10.5194/acp-23-1227-2023, 2023
Short summary
Short summary
NOx in the free troposphere (above 2 km) affects global tropospheric chemistry and the retrieval and interpretation of satellite NO2 measurements. We evaluate free tropospheric NOx in global atmospheric chemistry models and find that recycling NOx from its reservoirs over the oceans is faster than that simulated in the models, resulting in increases in simulated tropospheric ozone and OH. Over the U.S., free tropospheric NO2 contributes the majority of the tropospheric NO2 column in summer.
Simone T. Andersen, Beth S. Nelson, Katie A. Read, Shalini Punjabi, Luis Neves, Matthew J. Rowlinson, James Hopkins, Tomás Sherwen, Lisa K. Whalley, James D. Lee, and Lucy J. Carpenter
Atmos. Chem. Phys., 22, 15747–15765, https://doi.org/10.5194/acp-22-15747-2022, https://doi.org/10.5194/acp-22-15747-2022, 2022
Short summary
Short summary
The cycling of NO and NO2 is important to understand to be able to predict O3 concentrations in the atmosphere. We have used long-term measurements from the Cape Verde Atmospheric Observatory together with model outputs to investigate the cycling of nitrogen oxide (NO) and nitrogen dioxide (NO2) in very clean marine air. This study shows that we understand the processes occurring in very clean air, but with small amounts of pollution in the air, known chemistry cannot explain what is observed.
William F. Swanson, Chris D. Holmes, William R. Simpson, Kaitlyn Confer, Louis Marelle, Jennie L. Thomas, Lyatt Jaeglé, Becky Alexander, Shuting Zhai, Qianjie Chen, Xuan Wang, and Tomás Sherwen
Atmos. Chem. Phys., 22, 14467–14488, https://doi.org/10.5194/acp-22-14467-2022, https://doi.org/10.5194/acp-22-14467-2022, 2022
Short summary
Short summary
Radical bromine molecules are seen at higher concentrations during the Arctic spring. We use the global model GEOS-Chem to test whether snowpack and wind-blown snow sources can explain high bromine concentrations. We run this model for the entire year of 2015 and compare results to observations of bromine from floating platforms on the Arctic Ocean and at Utqiaġvik. We find that the model performs best when both sources are enabled but may overestimate bromine production in summer and fall.
Angharad C. Stell, Michael Bertolacci, Andrew Zammit-Mangion, Matthew Rigby, Paul J. Fraser, Christina M. Harth, Paul B. Krummel, Xin Lan, Manfredi Manizza, Jens Mühle, Simon O'Doherty, Ronald G. Prinn, Ray F. Weiss, Dickon Young, and Anita L. Ganesan
Atmos. Chem. Phys., 22, 12945–12960, https://doi.org/10.5194/acp-22-12945-2022, https://doi.org/10.5194/acp-22-12945-2022, 2022
Short summary
Short summary
Nitrous oxide is a potent greenhouse gas and ozone-depleting substance, whose atmospheric abundance has risen throughout the contemporary record. In this work, we carry out the first global hierarchical Bayesian inversion to solve for nitrous oxide emissions. We derive increasing global nitrous oxide emissions over 2011–2020, which are mainly driven by emissions between 0° and 30°N, with the highest emissions recorded in 2020.
Luke M. Western, Alison L. Redington, Alistair J. Manning, Cathy M. Trudinger, Lei Hu, Stephan Henne, Xuekun Fang, Lambert J. M. Kuijpers, Christina Theodoridi, David S. Godwin, Jgor Arduini, Bronwyn Dunse, Andreas Engel, Paul J. Fraser, Christina M. Harth, Paul B. Krummel, Michela Maione, Jens Mühle, Simon O'Doherty, Hyeri Park, Sunyoung Park, Stefan Reimann, Peter K. Salameh, Daniel Say, Roland Schmidt, Tanja Schuck, Carolina Siso, Kieran M. Stanley, Isaac Vimont, Martin K. Vollmer, Dickon Young, Ronald G. Prinn, Ray F. Weiss, Stephen A. Montzka, and Matthew Rigby
Atmos. Chem. Phys., 22, 9601–9616, https://doi.org/10.5194/acp-22-9601-2022, https://doi.org/10.5194/acp-22-9601-2022, 2022
Short summary
Short summary
The production of ozone-destroying gases is being phased out. Even though production of one of the main ozone-depleting gases, called HCFC-141b, has been declining for many years, the amount that is being released to the atmosphere has been increasing since 2017. We do not know for sure why this is. A possible explanation is that HCFC-141b that was used to make insulating foams many years ago is only now escaping to the atmosphere, or a large part of its production is not being reported.
Guus J. M. Velders, John S. Daniel, Stephen A. Montzka, Isaac Vimont, Matthew Rigby, Paul B. Krummel, Jens Muhle, Simon O'Doherty, Ronald G. Prinn, Ray F. Weiss, and Dickon Young
Atmos. Chem. Phys., 22, 6087–6101, https://doi.org/10.5194/acp-22-6087-2022, https://doi.org/10.5194/acp-22-6087-2022, 2022
Short summary
Short summary
The emissions of hydrofluorocarbons (HFCs) have increased significantly in the past as a result of the phasing out of ozone-depleting substances. Observations indicate that HFCs are used much less in certain refrigeration applications than previously projected. Current policies are projected to reduce emissions and the surface temperature contribution of HFCs from 0.28–0.44 °C to 0.14–0.31 °C in 2100. The Kigali Amendment is projected to reduce the contributions further to 0.04 °C in 2100.
Alice E. Ramsden, Anita L. Ganesan, Luke M. Western, Matthew Rigby, Alistair J. Manning, Amy Foulds, James L. France, Patrick Barker, Peter Levy, Daniel Say, Adam Wisher, Tim Arnold, Chris Rennick, Kieran M. Stanley, Dickon Young, and Simon O'Doherty
Atmos. Chem. Phys., 22, 3911–3929, https://doi.org/10.5194/acp-22-3911-2022, https://doi.org/10.5194/acp-22-3911-2022, 2022
Short summary
Short summary
Quantifying methane emissions from different sources is a key focus of current research. We present a method for estimating sectoral methane emissions that uses ethane as a tracer for fossil fuel methane. By incorporating variable ethane : methane emission ratios into this model, we produce emissions estimates with improved uncertainty characterisation. This method will be particularly useful for studying methane emissions in areas with complex distributions of sources.
Jens Mühle, Lambert J. M. Kuijpers, Kieran M. Stanley, Matthew Rigby, Luke M. Western, Jooil Kim, Sunyoung Park, Christina M. Harth, Paul B. Krummel, Paul J. Fraser, Simon O'Doherty, Peter K. Salameh, Roland Schmidt, Dickon Young, Ronald G. Prinn, Ray H. J. Wang, and Ray F. Weiss
Atmos. Chem. Phys., 22, 3371–3378, https://doi.org/10.5194/acp-22-3371-2022, https://doi.org/10.5194/acp-22-3371-2022, 2022
Short summary
Short summary
Emissions of the strong greenhouse gas perfluorocyclobutane (c-C4F8) into the atmosphere have been increasing sharply since the early 2000s. These c-C4F8 emissions are highly correlated with the amount of hydrochlorofluorocarbon-22 produced to synthesize polytetrafluoroethylene (known for its non-stick properties) and related chemicals. From this process, c-C4F8 by-product is vented to the atmosphere. Avoiding these unnecessary c-C4F8 emissions could reduce the climate impact of this industry.
Andrew Zammit-Mangion, Michael Bertolacci, Jenny Fisher, Ann Stavert, Matthew Rigby, Yi Cao, and Noel Cressie
Geosci. Model Dev., 15, 45–73, https://doi.org/10.5194/gmd-15-45-2022, https://doi.org/10.5194/gmd-15-45-2022, 2022
Short summary
Short summary
We present a framework for estimating the sources and sinks (flux) of carbon dioxide from satellite data. The framework is statistical and yields measures of uncertainty alongside all estimates of flux and other parameters in the underlying model. It also allows us to generate other insights, such as the size of errors and biases in the data. The primary aim of this research was to develop a fully statistical flux inversion framework for use by atmospheric scientists.
Jan C. Minx, William F. Lamb, Robbie M. Andrew, Josep G. Canadell, Monica Crippa, Niklas Döbbeling, Piers M. Forster, Diego Guizzardi, Jos Olivier, Glen P. Peters, Julia Pongratz, Andy Reisinger, Matthew Rigby, Marielle Saunois, Steven J. Smith, Efisio Solazzo, and Hanqin Tian
Earth Syst. Sci. Data, 13, 5213–5252, https://doi.org/10.5194/essd-13-5213-2021, https://doi.org/10.5194/essd-13-5213-2021, 2021
Short summary
Short summary
We provide a synthetic dataset on anthropogenic greenhouse gas (GHG) emissions for 1970–2018 with a fast-track extension to 2019. We show that GHG emissions continued to rise across all gases and sectors. Annual average GHG emissions growth slowed, but absolute decadal increases have never been higher in human history. We identify a number of data gaps and data quality issues in global inventories and highlight their importance for monitoring progress towards international climate goals.
Mark F. Lunt, Alistair J. Manning, Grant Allen, Tim Arnold, Stéphane J.-B. Bauguitte, Hartmut Boesch, Anita L. Ganesan, Aoife Grant, Carole Helfter, Eiko Nemitz, Simon J. O'Doherty, Paul I. Palmer, Joseph R. Pitt, Chris Rennick, Daniel Say, Kieran M. Stanley, Ann R. Stavert, Dickon Young, and Matt Rigby
Atmos. Chem. Phys., 21, 16257–16276, https://doi.org/10.5194/acp-21-16257-2021, https://doi.org/10.5194/acp-21-16257-2021, 2021
Short summary
Short summary
We present an evaluation of the UK's methane emissions between 2013 and 2020 using a network of tall tower measurement sites. We find emissions that are consistent in both magnitude and trend with the UK's reported emissions, with a declining trend driven by a decrease in emissions from England. The impact of various components of the modelling set-up on these findings are explored through a number of sensitivity studies.
Arseniy Karagodin-Doyennel, Eugene Rozanov, Timofei Sukhodolov, Tatiana Egorova, Alfonso Saiz-Lopez, Carlos A. Cuevas, Rafael P. Fernandez, Tomás Sherwen, Rainer Volkamer, Theodore K. Koenig, Tanguy Giroud, and Thomas Peter
Geosci. Model Dev., 14, 6623–6645, https://doi.org/10.5194/gmd-14-6623-2021, https://doi.org/10.5194/gmd-14-6623-2021, 2021
Short summary
Short summary
Here, we present the iodine chemistry module in the SOCOL-AERv2 model. The obtained iodine distribution demonstrated a good agreement when validated against other simulations and available observations. We also estimated the iodine influence on ozone in the case of present-day iodine emissions, the sensitivity of ozone to doubled iodine emissions, and when considering only organic or inorganic iodine sources. The new model can be used as a tool for further studies of iodine effects on ozone.
Xuan Wang, Daniel J. Jacob, William Downs, Shuting Zhai, Lei Zhu, Viral Shah, Christopher D. Holmes, Tomás Sherwen, Becky Alexander, Mathew J. Evans, Sebastian D. Eastham, J. Andrew Neuman, Patrick R. Veres, Theodore K. Koenig, Rainer Volkamer, L. Gregory Huey, Thomas J. Bannan, Carl J. Percival, Ben H. Lee, and Joel A. Thornton
Atmos. Chem. Phys., 21, 13973–13996, https://doi.org/10.5194/acp-21-13973-2021, https://doi.org/10.5194/acp-21-13973-2021, 2021
Short summary
Short summary
Halogen radicals have a broad range of implications for tropospheric chemistry, air quality, and climate. We present a new mechanistic description and comprehensive simulation of tropospheric halogens in a global 3-D model and compare the model results with surface and aircraft measurements. We find that halogen chemistry decreases the global tropospheric burden of ozone by 11 %, NOx by 6 %, and OH by 4 %.
Daniel Say, Alistair J. Manning, Luke M. Western, Dickon Young, Adam Wisher, Matthew Rigby, Stefan Reimann, Martin K. Vollmer, Michela Maione, Jgor Arduini, Paul B. Krummel, Jens Mühle, Christina M. Harth, Brendan Evans, Ray F. Weiss, Ronald G. Prinn, and Simon O'Doherty
Atmos. Chem. Phys., 21, 2149–2164, https://doi.org/10.5194/acp-21-2149-2021, https://doi.org/10.5194/acp-21-2149-2021, 2021
Short summary
Short summary
Perfluorocarbons (PFCs) are potent greenhouse gases with exceedingly long lifetimes. We used atmospheric measurements from a global monitoring network to track the accumulation of these gases in the atmosphere. In the case of the two most abundant PFCs, recent measurements indicate that global emissions are increasing. In Europe, we used a model to estimate regional PFC emissions. Our results show that there was no significant decline in northwest European PFC emissions between 2010 and 2019.
Rachel L. Tunnicliffe, Anita L. Ganesan, Robert J. Parker, Hartmut Boesch, Nicola Gedney, Benjamin Poulter, Zhen Zhang, Jošt V. Lavrič, David Walter, Matthew Rigby, Stephan Henne, Dickon Young, and Simon O'Doherty
Atmos. Chem. Phys., 20, 13041–13067, https://doi.org/10.5194/acp-20-13041-2020, https://doi.org/10.5194/acp-20-13041-2020, 2020
Short summary
Short summary
This study quantifies Brazil’s emissions of a potent atmospheric greenhouse gas, methane. This is in the field of atmospheric modelling and uses remotely sensed data and surface measurements of methane concentrations as well as an atmospheric transport model to interpret the data. Because of Brazil’s large emissions from wetlands, agriculture and biomass burning, these emissions affect global methane concentrations and thus are of global significance.
Guillaume Monteil, Grégoire Broquet, Marko Scholze, Matthew Lang, Ute Karstens, Christoph Gerbig, Frank-Thomas Koch, Naomi E. Smith, Rona L. Thompson, Ingrid T. Luijkx, Emily White, Antoon Meesters, Philippe Ciais, Anita L. Ganesan, Alistair Manning, Michael Mischurow, Wouter Peters, Philippe Peylin, Jerôme Tarniewicz, Matt Rigby, Christian Rödenbeck, Alex Vermeulen, and Evie M. Walton
Atmos. Chem. Phys., 20, 12063–12091, https://doi.org/10.5194/acp-20-12063-2020, https://doi.org/10.5194/acp-20-12063-2020, 2020
Short summary
Short summary
The paper presents the first results from the EUROCOM project, a regional atmospheric inversion intercomparison exercise involving six European research groups. It aims to produce an estimate of the net carbon flux between the European terrestrial ecosystems and the atmosphere for the period 2006–2015, based on constraints provided by observed CO2 concentrations and using inverse modelling techniques. The use of six different models enables us to investigate the robustness of the results.
Swaleha Inamdar, Liselotte Tinel, Rosie Chance, Lucy J. Carpenter, Prabhakaran Sabu, Racheal Chacko, Sarat C. Tripathy, Anvita U. Kerkar, Alok K. Sinha, Parli Venkateswaran Bhaskar, Amit Sarkar, Rajdeep Roy, Tomás Sherwen, Carlos Cuevas, Alfonso Saiz-Lopez, Kirpa Ram, and Anoop S. Mahajan
Atmos. Chem. Phys., 20, 12093–12114, https://doi.org/10.5194/acp-20-12093-2020, https://doi.org/10.5194/acp-20-12093-2020, 2020
Short summary
Short summary
Iodine chemistry is generating a lot of interest because of its impacts on the oxidising capacity of the marine boundary and depletion of ozone. However, one of the challenges has been predicting the right levels of iodine in the models, which depend on parameterisations for emissions from the sea surface. This paper discusses the different parameterisations available and compares them with observations, showing that our current knowledge is still insufficient, especially on a regional scale.
Katherine R. Travis, Colette L. Heald, Hannah M. Allen, Eric C. Apel, Stephen R. Arnold, Donald R. Blake, William H. Brune, Xin Chen, Róisín Commane, John D. Crounse, Bruce C. Daube, Glenn S. Diskin, James W. Elkins, Mathew J. Evans, Samuel R. Hall, Eric J. Hintsa, Rebecca S. Hornbrook, Prasad S. Kasibhatla, Michelle J. Kim, Gan Luo, Kathryn McKain, Dylan B. Millet, Fred L. Moore, Jeffrey Peischl, Thomas B. Ryerson, Tomás Sherwen, Alexander B. Thames, Kirk Ullmann, Xuan Wang, Paul O. Wennberg, Glenn M. Wolfe, and Fangqun Yu
Atmos. Chem. Phys., 20, 7753–7781, https://doi.org/10.5194/acp-20-7753-2020, https://doi.org/10.5194/acp-20-7753-2020, 2020
Short summary
Short summary
Atmospheric models overestimate the rate of removal of trace gases by the hydroxyl radical (OH). This is a concern for studies of the climate and air quality impacts of human activities. Here, we evaluate the performance of a commonly used model of atmospheric chemistry against data from the NASA Atmospheric Tomography Mission (ATom) over the remote oceans where models have received little validation. The model is generally successful, suggesting that biases in OH may be a concern over land.
Jiayue Huang, Lyatt Jaeglé, Qianjie Chen, Becky Alexander, Tomás Sherwen, Mat J. Evans, Nicolas Theys, and Sungyeon Choi
Atmos. Chem. Phys., 20, 7335–7358, https://doi.org/10.5194/acp-20-7335-2020, https://doi.org/10.5194/acp-20-7335-2020, 2020
Short summary
Short summary
Large-scale enhancements of tropospheric BrO and the depletion of surface ozone are often observed in the springtime Arctic. Here, we use a chemical transport model to examine the role of sea salt aerosol from blowing snow in explaining these phenomena. We find that our simulation can account for the spatiotemporal variability of satellite observations of BrO. However, the model has difficulty in producing the magnitude of observed ozone depletion events.
Peter G. Simmonds, Matthew Rigby, Alistair J. Manning, Sunyoung Park, Kieran M. Stanley, Archie McCulloch, Stephan Henne, Francesco Graziosi, Michela Maione, Jgor Arduini, Stefan Reimann, Martin K. Vollmer, Jens Mühle, Simon O'Doherty, Dickon Young, Paul B. Krummel, Paul J. Fraser, Ray F. Weiss, Peter K. Salameh, Christina M. Harth, Mi-Kyung Park, Hyeri Park, Tim Arnold, Chris Rennick, L. Paul Steele, Blagoj Mitrevski, Ray H. J. Wang, and Ronald G. Prinn
Atmos. Chem. Phys., 20, 7271–7290, https://doi.org/10.5194/acp-20-7271-2020, https://doi.org/10.5194/acp-20-7271-2020, 2020
Short summary
Short summary
Sulfur hexafluoride (SF6) is a potent greenhouse gas which is regulated under the Kyoto Protocol. From a 40-year record of measurements, collected at five global monitoring sites and archived air samples, we show that its concentration in the atmosphere has steadily increased. Using modelling techniques, we estimate that global emissions have increased by about 24 % over the past decade. We find that this increase is driven by the demand for SF6-insulated switchgear in developing countries.
Luke M. Western, Zhe Sha, Matthew Rigby, Anita L. Ganesan, Alistair J. Manning, Kieran M. Stanley, Simon J. O'Doherty, Dickon Young, and Jonathan Rougier
Geosci. Model Dev., 13, 2095–2107, https://doi.org/10.5194/gmd-13-2095-2020, https://doi.org/10.5194/gmd-13-2095-2020, 2020
Short summary
Short summary
Assessments of greenhouse gas emissions using atmospheric measurements and meteorological models, or
top-downmethods, are important to verify national inventories or produce a stand-alone estimate where no inventory exists. We present a novel top-down method to estimate emissions. This approach uses a fast method called an integrated nested Laplacian approximation to estimate how these emissions are correlated with other emissions in different locations and at different times.
Ryan J. Pound, Tomás Sherwen, Detlev Helmig, Lucy J. Carpenter, and Mat J. Evans
Atmos. Chem. Phys., 20, 4227–4239, https://doi.org/10.5194/acp-20-4227-2020, https://doi.org/10.5194/acp-20-4227-2020, 2020
Short summary
Short summary
Ozone is an important pollutant with impacts on health and the environment. Ozone is lost to plants, land and the oceans. Loss to the ocean is slow compared to all other types of land cover and has not received as much attention. We build on previous work to more accurately model ozone loss to the ocean. We find changes in the concentration of ozone over the oceans, notably the Southern Ocean, which improves model performance.
Becky Alexander, Tomás Sherwen, Christopher D. Holmes, Jenny A. Fisher, Qianjie Chen, Mat J. Evans, and Prasad Kasibhatla
Atmos. Chem. Phys., 20, 3859–3877, https://doi.org/10.5194/acp-20-3859-2020, https://doi.org/10.5194/acp-20-3859-2020, 2020
Short summary
Short summary
Nitrogen oxides are important for the formation of tropospheric oxidants and are removed from the atmosphere mainly through the formation of nitrate. We compare observations of the oxygen isotopes of nitrate with a global model to test our understanding of the chemistry nitrate formation. We use the model to quantify nitrate formation pathways in the atmosphere and identify key uncertainties and their relevance for the oxidation capacity of the atmosphere.
Angelina Wenger, Katherine Pugsley, Simon O'Doherty, Matt Rigby, Alistair J. Manning, Mark F. Lunt, and Emily D. White
Atmos. Chem. Phys., 19, 14057–14070, https://doi.org/10.5194/acp-19-14057-2019, https://doi.org/10.5194/acp-19-14057-2019, 2019
Short summary
Short summary
We present 14CO2 observations at a background site in Ireland and a tall tower site in the UK. These data have been used to calculate the contribution of fossil fuel sources to atmospheric CO2 mole fractions from the UK and Ireland. 14CO2 emissions from nuclear industry sites in the UK cause a higher uncertainty in the results compared to observations in other locations. The observed ffCO2 at the site was not significantly different from simulated values based on the bottom-up inventory.
Tomás Sherwen, Rosie J. Chance, Liselotte Tinel, Daniel Ellis, Mat J. Evans, and Lucy J. Carpenter
Earth Syst. Sci. Data, 11, 1239–1262, https://doi.org/10.5194/essd-11-1239-2019, https://doi.org/10.5194/essd-11-1239-2019, 2019
Short summary
Short summary
Iodine plays an important role in the Earth system, as a nutrient to the biosphere and by changing the concentrations of climate and air-quality species. However, there are uncertainties on the magnitude of iodine’s role, and a key uncertainty is our understanding of iodide in the global sea-surface. Here we take a data-driven approach using a machine learning algorithm to convert a sparse set of sea-surface iodide observations into a spatially and temporally resolved dataset for use in models.
Jens Mühle, Cathy M. Trudinger, Luke M. Western, Matthew Rigby, Martin K. Vollmer, Sunyoung Park, Alistair J. Manning, Daniel Say, Anita Ganesan, L. Paul Steele, Diane J. Ivy, Tim Arnold, Shanlan Li, Andreas Stohl, Christina M. Harth, Peter K. Salameh, Archie McCulloch, Simon O'Doherty, Mi-Kyung Park, Chun Ok Jo, Dickon Young, Kieran M. Stanley, Paul B. Krummel, Blagoj Mitrevski, Ove Hermansen, Chris Lunder, Nikolaos Evangeliou, Bo Yao, Jooil Kim, Benjamin Hmiel, Christo Buizert, Vasilii V. Petrenko, Jgor Arduini, Michela Maione, David M. Etheridge, Eleni Michalopoulou, Mike Czerniak, Jeffrey P. Severinghaus, Stefan Reimann, Peter G. Simmonds, Paul J. Fraser, Ronald G. Prinn, and Ray F. Weiss
Atmos. Chem. Phys., 19, 10335–10359, https://doi.org/10.5194/acp-19-10335-2019, https://doi.org/10.5194/acp-19-10335-2019, 2019
Short summary
Short summary
We discuss atmospheric concentrations and emissions of the strong greenhouse gas perfluorocyclobutane. A large fraction of recent emissions stem from China, India, and Russia, probably as a by-product from the production of fluoropolymers and fluorochemicals. Most historic emissions likely stem from developed countries. Total emissions are higher than what is being reported. Clearly, more measurements and better reporting are needed to understand emissions of this and other greenhouse gases.
Daniel Say, Anita L. Ganesan, Mark F. Lunt, Matthew Rigby, Simon O'Doherty, Christina Harth, Alistair J. Manning, Paul B. Krummel, and Stephane Bauguitte
Atmos. Chem. Phys., 19, 9865–9885, https://doi.org/10.5194/acp-19-9865-2019, https://doi.org/10.5194/acp-19-9865-2019, 2019
Short summary
Short summary
Despite its emergence as a global economic power, very little information exists regarding India's halocarbon (CFC, HCFC, HFC and chlorocarbon) emissions. We report atmospheric measurements of these gases from above India, and use them to estimate India's emissions. Our results are consistent with the emissions profile of a developing country, with large emissions of HCFCs, HFCs and chlorocarbons not regulated under the Montreal Protocol, but little evidence for ongoing CFC consumption.
Lei Zhu, Daniel J. Jacob, Sebastian D. Eastham, Melissa P. Sulprizio, Xuan Wang, Tomás Sherwen, Mat J. Evans, Qianjie Chen, Becky Alexander, Theodore K. Koenig, Rainer Volkamer, L. Gregory Huey, Michael Le Breton, Thomas J. Bannan, and Carl J. Percival
Atmos. Chem. Phys., 19, 6497–6507, https://doi.org/10.5194/acp-19-6497-2019, https://doi.org/10.5194/acp-19-6497-2019, 2019
Short summary
Short summary
We quantify the effect of sea salt aerosol on tropospheric bromine chemistry with a new mechanistic description of the halogen chemistry in a global atmospheric chemistry model. For the first time, we are able to reproduce the observed levels of bromide activation from the sea salt aerosol in a manner consistent with bromine oxide radical measured from various platforms. Sea salt aerosol plays a far more complex role in global tropospheric chemistry than previously recognized.
Emily D. White, Matthew Rigby, Mark F. Lunt, T. Luke Smallman, Edward Comyn-Platt, Alistair J. Manning, Anita L. Ganesan, Simon O'Doherty, Ann R. Stavert, Kieran Stanley, Mathew Williams, Peter Levy, Michel Ramonet, Grant L. Forster, Andrew C. Manning, and Paul I. Palmer
Atmos. Chem. Phys., 19, 4345–4365, https://doi.org/10.5194/acp-19-4345-2019, https://doi.org/10.5194/acp-19-4345-2019, 2019
Short summary
Short summary
Understanding carbon dioxide (CO2) fluxes from the terrestrial biosphere on a national scale is important for evaluating land use strategies to mitigate climate change. We estimate emissions of CO2 from the UK biosphere using atmospheric data in a top-down approach. Our findings show that bottom-up estimates from models of biospheric fluxes overestimate the amount of CO2 uptake in summer. This suggests these models wrongly estimate or omit key processes, e.g. land disturbance due to harvest.
Xuan Wang, Daniel J. Jacob, Sebastian D. Eastham, Melissa P. Sulprizio, Lei Zhu, Qianjie Chen, Becky Alexander, Tomás Sherwen, Mathew J. Evans, Ben H. Lee, Jessica D. Haskins, Felipe D. Lopez-Hilfiker, Joel A. Thornton, Gregory L. Huey, and Hong Liao
Atmos. Chem. Phys., 19, 3981–4003, https://doi.org/10.5194/acp-19-3981-2019, https://doi.org/10.5194/acp-19-3981-2019, 2019
Short summary
Short summary
Chlorine radicals have a broad range of implications for tropospheric chemistry, air quality, and climate. We present a comprehensive simulation of tropospheric chlorine in a global 3-D model, which includes explicit accounting of chloride mobilization from sea salt aerosol. We find the chlorine chemistry contributes 1.0 % of the global oxidation of methane and decreases global burdens of tropospheric ozone by 7 % and OH by 3 % through the associated bromine radical chemistry.
Alba Badia, Claire E. Reeves, Alex R. Baker, Alfonso Saiz-Lopez, Rainer Volkamer, Theodore K. Koenig, Eric C. Apel, Rebecca S. Hornbrook, Lucy J. Carpenter, Stephen J. Andrews, Tomás Sherwen, and Roland von Glasow
Atmos. Chem. Phys., 19, 3161–3189, https://doi.org/10.5194/acp-19-3161-2019, https://doi.org/10.5194/acp-19-3161-2019, 2019
Short summary
Short summary
The oceans have an impact on the composition and reactivity of the troposphere through the emission of gases and particles. Thus, a quantitative understanding of the marine atmosphere is crucial to examine the oxidative capacity and climate forcing. This study investigates the impact of halogens in the tropical troposphere and explores the sensitivity of this to uncertainties in the fluxes and their chemical processing. Our modelled tropospheric Ox loss due to halogens ranges from 20 % to 60 %.
Kieran Brophy, Heather Graven, Alistair J. Manning, Emily White, Tim Arnold, Marc L. Fischer, Seongeun Jeong, Xinguang Cui, and Matthew Rigby
Atmos. Chem. Phys., 19, 2991–3006, https://doi.org/10.5194/acp-19-2991-2019, https://doi.org/10.5194/acp-19-2991-2019, 2019
Short summary
Short summary
We investigate potential errors and uncertainties related to the spatial and temporal prior representation of emissions and modelled atmospheric transport for the inversion of California's fossil fuel CO2 emissions. Our results indicate that uncertainties in posterior total state fossil fuel CO2 estimates arising from the choice of prior emissions or atmospheric transport model are on the order of 15 % or less for the ground-based network in California we consider.
Daniel Say, Anita L. Ganesan, Mark F. Lunt, Matthew Rigby, Simon O'Doherty, Chris Harth, Alistair J. Manning, Paul B. Krummel, and Stephane Bauguitte
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1287, https://doi.org/10.5194/acp-2018-1287, 2019
Publication in ACP not foreseen
Short summary
Short summary
India is a potentially significant source of chlorocarbons, gases typically used as solvents and feedstocks. Given the potential for these species to deplete stratospheric ozone, understanding their sources is important. We use flask measurements collected from an aircraft to infer India's chlorocarbon emissions. We link emissions of carbon tetrachloride to the industrial production of other chloromethanes, and provide evidence for rapid growth in India's emissions of dichloromethane.
Lu Hu, Christoph A. Keller, Michael S. Long, Tomás Sherwen, Benjamin Auer, Arlindo Da Silva, Jon E. Nielsen, Steven Pawson, Matthew A. Thompson, Atanas L. Trayanov, Katherine R. Travis, Stuart K. Grange, Mat J. Evans, and Daniel J. Jacob
Geosci. Model Dev., 11, 4603–4620, https://doi.org/10.5194/gmd-11-4603-2018, https://doi.org/10.5194/gmd-11-4603-2018, 2018
Short summary
Short summary
We present a full-year online global simulation of tropospheric chemistry at 12.5 km resolution. To the best of our knowledge, such a resolution in a state-of-the-science global simulation of tropospheric chemistry is unprecedented. This simulation will serve as the Nature Run for observing system simulation experiments to support the future geostationary satellite constellation for tropospheric chemistry, and can also be used for various air quality applications.
Qianjie Chen, Tomás Sherwen, Mathew Evans, and Becky Alexander
Atmos. Chem. Phys., 18, 13617–13637, https://doi.org/10.5194/acp-18-13617-2018, https://doi.org/10.5194/acp-18-13617-2018, 2018
Short summary
Short summary
Uncertainty in the natural tropospheric sulfur cycle represents the largest source of uncertainty in radiative forcing estimates of sulfate aerosol. This study investigates the natural sulfur cycle in the marine troposphere using the GEOS-Chem model. We found that BrO is important for DMS oxidation and multiphase chemistry is important for MSA production and loss, which have implications for the yield of SO2 and MSA from DMS oxidation and the radiative effect of DMS-derived sulfate aerosol.
Paul I. Palmer, Simon O'Doherty, Grant Allen, Keith Bower, Hartmut Bösch, Martyn P. Chipperfield, Sarah Connors, Sandip Dhomse, Liang Feng, Douglas P. Finch, Martin W. Gallagher, Emanuel Gloor, Siegfried Gonzi, Neil R. P. Harris, Carole Helfter, Neil Humpage, Brian Kerridge, Diane Knappett, Roderic L. Jones, Michael Le Breton, Mark F. Lunt, Alistair J. Manning, Stephan Matthiesen, Jennifer B. A. Muller, Neil Mullinger, Eiko Nemitz, Sebastian O'Shea, Robert J. Parker, Carl J. Percival, Joseph Pitt, Stuart N. Riddick, Matthew Rigby, Harjinder Sembhi, Richard Siddans, Robert L. Skelton, Paul Smith, Hannah Sonderfeld, Kieran Stanley, Ann R. Stavert, Angelina Wenger, Emily White, Christopher Wilson, and Dickon Young
Atmos. Chem. Phys., 18, 11753–11777, https://doi.org/10.5194/acp-18-11753-2018, https://doi.org/10.5194/acp-18-11753-2018, 2018
Short summary
Short summary
This paper provides an overview of the Greenhouse gAs Uk and Global Emissions (GAUGE) experiment. GAUGE was designed to quantify nationwide GHG emissions of the UK, bringing together measurements and atmospheric transport models. This novel experiment is the first of its kind. We anticipate it will inform the blueprint for countries that are building a measurement infrastructure in preparation for global stocktakes, which are a key part of the Paris Agreement.
Prasad Kasibhatla, Tomás Sherwen, Mathew J. Evans, Lucy J. Carpenter, Chris Reed, Becky Alexander, Qianjie Chen, Melissa P. Sulprizio, James D. Lee, Katie A. Read, William Bloss, Leigh R. Crilley, William C. Keene, Alexander A. P. Pszenny, and Alma Hodzic
Atmos. Chem. Phys., 18, 11185–11203, https://doi.org/10.5194/acp-18-11185-2018, https://doi.org/10.5194/acp-18-11185-2018, 2018
Short summary
Short summary
Recent measurements of NOx and HONO suggest that photolysis of particulate nitrate in sea-salt aerosols is important in terms of marine boundary layer oxidant chemistry. We present the first global-scale assessment of the significance of this new chemical pathway for NOx, O3, and OH in the marine boundary layer. We also present a preliminary assessment of the potential impact of photolysis of particulate nitrate associated with other aerosol types on continental boundary layer chemistry.
Ronald G. Prinn, Ray F. Weiss, Jgor Arduini, Tim Arnold, H. Langley DeWitt, Paul J. Fraser, Anita L. Ganesan, Jimmy Gasore, Christina M. Harth, Ove Hermansen, Jooil Kim, Paul B. Krummel, Shanlan Li, Zoë M. Loh, Chris R. Lunder, Michela Maione, Alistair J. Manning, Ben R. Miller, Blagoj Mitrevski, Jens Mühle, Simon O'Doherty, Sunyoung Park, Stefan Reimann, Matt Rigby, Takuya Saito, Peter K. Salameh, Roland Schmidt, Peter G. Simmonds, L. Paul Steele, Martin K. Vollmer, Ray H. Wang, Bo Yao, Yoko Yokouchi, Dickon Young, and Lingxi Zhou
Earth Syst. Sci. Data, 10, 985–1018, https://doi.org/10.5194/essd-10-985-2018, https://doi.org/10.5194/essd-10-985-2018, 2018
Short summary
Short summary
We present the data and accomplishments of the multinational global atmospheric measurement program AGAGE (Advanced Global Atmospheric Gases Experiment). At high frequency and at multiple sites, AGAGE measures all the important chemicals in the Montreal Protocol for the protection of the ozone layer and the non-carbon-dioxide gases assessed by the Intergovernmental Panel on Climate Change. AGAGE uses these data to estimate sources and sinks of all these gases and has operated since 1978.
Mike J. Newland, Andrew R. Rickard, Tomás Sherwen, Mathew J. Evans, Luc Vereecken, Amalia Muñoz, Milagros Ródenas, and William J. Bloss
Atmos. Chem. Phys., 18, 6095–6120, https://doi.org/10.5194/acp-18-6095-2018, https://doi.org/10.5194/acp-18-6095-2018, 2018
Short summary
Short summary
Stabilised Criegee intermediates (SCIs) are formed in the reaction of alkenes with ozone, both of which are ubiquitous throughout the troposphere. We determine the fate and global distribution of SCI from monoterpene ozonolysis. One major fate of SCI is reaction with H2O, but for a fraction of SCIs, unimolecular reactions dominate. Concentrations of SCIs are high enough regionally to play a key role in the conversion of sulfur dioxide to aerosol, affecting air quality and climate.
Peter G. Simmonds, Matthew Rigby, Archie McCulloch, Martin K. Vollmer, Stephan Henne, Jens Mühle, Simon O'Doherty, Alistair J. Manning, Paul B. Krummel, Paul J. Fraser, Dickon Young, Ray F. Weiss, Peter K. Salameh, Christina M. Harth, Stefan Reimann, Cathy M. Trudinger, L. Paul Steele, Ray H. J. Wang, Diane J. Ivy, Ronald G. Prinn, Blagoj Mitrevski, and David M. Etheridge
Atmos. Chem. Phys., 18, 4153–4169, https://doi.org/10.5194/acp-18-4153-2018, https://doi.org/10.5194/acp-18-4153-2018, 2018
Short summary
Short summary
Recent measurements of the potent greenhouse gas HFC-23, a by-product of HCFC-22 production, show a 28 % increase in the atmospheric mole fraction from 2009 to 2016. A minimum in the atmospheric abundance of HFC-23 in 2009 was attributed to abatement of HFC-23 emissions by incineration under the Clean Development Mechanism (CDM). Our results indicate that the recent increase in HFC-23 emissions is driven by failure of mitigation under the CDM to keep pace with increased HCFC-22 production.
Daniel Stone, Tomás Sherwen, Mathew J. Evans, Stewart Vaughan, Trevor Ingham, Lisa K. Whalley, Peter M. Edwards, Katie A. Read, James D. Lee, Sarah J. Moller, Lucy J. Carpenter, Alastair C. Lewis, and Dwayne E. Heard
Atmos. Chem. Phys., 18, 3541–3561, https://doi.org/10.5194/acp-18-3541-2018, https://doi.org/10.5194/acp-18-3541-2018, 2018
Short summary
Short summary
Halogen chemistry in the troposphere impacts oxidising capacity, but model studies assessing the nature of these impacts can vary according to the model framework used. In this work we present simulations of OH and HO2 radicals using both box and global model frameworks, and compare to observations made at the Cape Verde Atmospheric Observatory. We highlight, and rationalise, differences between the model frameworks.
Martin K. Vollmer, Dickon Young, Cathy M. Trudinger, Jens Mühle, Stephan Henne, Matthew Rigby, Sunyoung Park, Shanlan Li, Myriam Guillevic, Blagoj Mitrevski, Christina M. Harth, Benjamin R. Miller, Stefan Reimann, Bo Yao, L. Paul Steele, Simon A. Wyss, Chris R. Lunder, Jgor Arduini, Archie McCulloch, Songhao Wu, Tae Siek Rhee, Ray H. J. Wang, Peter K. Salameh, Ove Hermansen, Matthias Hill, Ray L. Langenfelds, Diane Ivy, Simon O'Doherty, Paul B. Krummel, Michela Maione, David M. Etheridge, Lingxi Zhou, Paul J. Fraser, Ronald G. Prinn, Ray F. Weiss, and Peter G. Simmonds
Atmos. Chem. Phys., 18, 979–1002, https://doi.org/10.5194/acp-18-979-2018, https://doi.org/10.5194/acp-18-979-2018, 2018
Short summary
Short summary
We measured the three chlorofluorocarbons (CFCs) CFC-13, CFC-114, and CFC-115 in the atmosphere because they are important in stratospheric ozone depletion. These compounds should have decreased in the atmosphere because they are banned by the Montreal Protocol but we find the opposite. Emissions over the last decade have not declined on a global scale. We use inverse modeling and our observations to find that a large part of the emissions originate in the Asian region.
Theodore K. Koenig, Rainer Volkamer, Sunil Baidar, Barbara Dix, Siyuan Wang, Daniel C. Anderson, Ross J. Salawitch, Pamela A. Wales, Carlos A. Cuevas, Rafael P. Fernandez, Alfonso Saiz-Lopez, Mathew J. Evans, Tomás Sherwen, Daniel J. Jacob, Johan Schmidt, Douglas Kinnison, Jean-François Lamarque, Eric C. Apel, James C. Bresch, Teresa Campos, Frank M. Flocke, Samuel R. Hall, Shawn B. Honomichl, Rebecca Hornbrook, Jørgen B. Jensen, Richard Lueb, Denise D. Montzka, Laura L. Pan, J. Michael Reeves, Sue M. Schauffler, Kirk Ullmann, Andrew J. Weinheimer, Elliot L. Atlas, Valeria Donets, Maria A. Navarro, Daniel Riemer, Nicola J. Blake, Dexian Chen, L. Gregory Huey, David J. Tanner, Thomas F. Hanisco, and Glenn M. Wolfe
Atmos. Chem. Phys., 17, 15245–15270, https://doi.org/10.5194/acp-17-15245-2017, https://doi.org/10.5194/acp-17-15245-2017, 2017
Short summary
Short summary
Tropospheric inorganic bromine (BrO and Bry) shows a C-shaped profile over the tropical western Pacific Ocean, and supports previous speculation that marine convection is a source for inorganic bromine from sea salt to the upper troposphere. The Bry profile in the tropical tropopause layer (TTL) is complex, suggesting that the total Bry budget in the TTL is not closed without considering aerosol bromide. The implications for atmospheric composition and bromine sources are discussed.
Peter G. Simmonds, Matthew Rigby, Archie McCulloch, Simon O'Doherty, Dickon Young, Jens Mühle, Paul B. Krummel, Paul Steele, Paul J. Fraser, Alistair J. Manning, Ray F. Weiss, Peter K. Salameh, Chris M. Harth, Ray H. J. Wang, and Ronald G. Prinn
Atmos. Chem. Phys., 17, 4641–4655, https://doi.org/10.5194/acp-17-4641-2017, https://doi.org/10.5194/acp-17-4641-2017, 2017
Short summary
Short summary
This paper reports how long-term atmospheric measurements demonstrate that the Montreal Protocol has been effective in controlling production and consumption of the hydrochlorofluorocarbons, a group of industrial chemicals that have detrimental effects on the ozone layer and also contribute to global warming as greenhouse gases and their hydrofluorocarbon substitutes which are also potent greenhouse gases but do not materially affect the ozone layer.
Chris Reed, Mathew J. Evans, Leigh R. Crilley, William J. Bloss, Tomás Sherwen, Katie A. Read, James D. Lee, and Lucy J. Carpenter
Atmos. Chem. Phys., 17, 4081–4092, https://doi.org/10.5194/acp-17-4081-2017, https://doi.org/10.5194/acp-17-4081-2017, 2017
Short summary
Short summary
The source of ozone-depleting compounds in the remote troposphere has been thought to be long-range transport of secondary pollutants such as organic nitrates. Processing of organic nitrates to nitric acid and subsequent deposition on surfaces in the atmosphere was thought to remove these nitrates from the ozone–NOx–HOx cycle. We found through observation of NOx in the remote tropical troposphere at the Cape Verde Observatory that surface nitrates can be released back into the atmosphere.
Tomás Sherwen, Mat J. Evans, Lucy J. Carpenter, Johan A. Schmidt, and Loretta J. Mickley
Atmos. Chem. Phys., 17, 1557–1569, https://doi.org/10.5194/acp-17-1557-2017, https://doi.org/10.5194/acp-17-1557-2017, 2017
Short summary
Short summary
We model pre-industrial to present day changes using the GEOS-Chem global chemical transport model with halogens (Cl, Br, I). The model better captures pre-industrial O3 observations with halogens included. Halogens buffer the tropospheric forcing of O3 (RFTO3) from pre-industrial to present day, reducing RFTO3 by 0.087 Wm−2. This reduction is greater than that from halogens on stratospheric O3 (−0.05 Wm−2). This suggests that models that do not include halogens will overestimate RFTO3by ~ 25%.
Martyn P. Chipperfield, Qing Liang, Matthew Rigby, Ryan Hossaini, Stephen A. Montzka, Sandip Dhomse, Wuhu Feng, Ronald G. Prinn, Ray F. Weiss, Christina M. Harth, Peter K. Salameh, Jens Mühle, Simon O'Doherty, Dickon Young, Peter G. Simmonds, Paul B. Krummel, Paul J. Fraser, L. Paul Steele, James D. Happell, Robert C. Rhew, James Butler, Shari A. Yvon-Lewis, Bradley Hall, David Nance, Fred Moore, Ben R. Miller, James W. Elkins, Jeremy J. Harrison, Chris D. Boone, Elliot L. Atlas, and Emmanuel Mahieu
Atmos. Chem. Phys., 16, 15741–15754, https://doi.org/10.5194/acp-16-15741-2016, https://doi.org/10.5194/acp-16-15741-2016, 2016
Short summary
Short summary
Carbon tetrachloride (CCl4) is a compound which, when released into the atmosphere, can cause depletion of the stratospheric ozone layer. Its emissions are controlled under the Montreal Protocol, and its atmospheric abundance is slowly decreasing. However, this decrease is not as fast as expected based on estimates of its emissions and its atmospheric lifetime. We have used an atmospheric model to look at the uncertainties in the CCl4 lifetime and to examine the impact on its atmospheric decay.
Tomás Sherwen, Johan A. Schmidt, Mat J. Evans, Lucy J. Carpenter, Katja Großmann, Sebastian D. Eastham, Daniel J. Jacob, Barbara Dix, Theodore K. Koenig, Roman Sinreich, Ivan Ortega, Rainer Volkamer, Alfonso Saiz-Lopez, Cristina Prados-Roman, Anoop S. Mahajan, and Carlos Ordóñez
Atmos. Chem. Phys., 16, 12239–12271, https://doi.org/10.5194/acp-16-12239-2016, https://doi.org/10.5194/acp-16-12239-2016, 2016
Short summary
Short summary
We present a simulation of tropospheric Cl, Br, I chemistry within the GEOS-Chem CTM. We find a decrease in tropospheric ozone burden of 18.6 % and a 8.2 % decrease in global mean OH concentrations. Cl oxidation of some VOCs range from 15 to 27 % of the total loss. Bromine plays a small role in oxidising oVOCs. Surface ozone, ozone sondes, and methane lifetime are in general improved by the inclusion of halogens. We argue that simulated bromine and chlorine represent a lower limit.
Cathy M. Trudinger, Paul J. Fraser, David M. Etheridge, William T. Sturges, Martin K. Vollmer, Matt Rigby, Patricia Martinerie, Jens Mühle, David R. Worton, Paul B. Krummel, L. Paul Steele, Benjamin R. Miller, Johannes Laube, Francis S. Mani, Peter J. Rayner, Christina M. Harth, Emmanuel Witrant, Thomas Blunier, Jakob Schwander, Simon O'Doherty, and Mark Battle
Atmos. Chem. Phys., 16, 11733–11754, https://doi.org/10.5194/acp-16-11733-2016, https://doi.org/10.5194/acp-16-11733-2016, 2016
Short summary
Short summary
Perfluorocarbons (PFCs) are potent, long-lived and mostly man-made greenhouse gases released to the atmosphere mainly during aluminium production and semiconductor manufacture. Here we present the first continuous histories of three PFCs from 1800 to 2014, derived from measurements of these PFCs in the atmosphere and in air bubbles in polar ice. The records show how human actions have affected these important greenhouse gases over the past century.
Mark F. Lunt, Matt Rigby, Anita L. Ganesan, and Alistair J. Manning
Geosci. Model Dev., 9, 3213–3229, https://doi.org/10.5194/gmd-9-3213-2016, https://doi.org/10.5194/gmd-9-3213-2016, 2016
Short summary
Short summary
Bayesian inversions can be used to estimate emissions of gases from atmospheric data. We present an inversion framework that objectively defines the basis functions, which describe regions of emissions. The framework allows for the uncertainty in the choice of basis functions to be propagated through to the posterior emissions distribution in a single-step process, and provides an alternative to using a single set of basis functions.
Joe McNorton, Martyn P. Chipperfield, Manuel Gloor, Chris Wilson, Wuhu Feng, Garry D. Hayman, Matt Rigby, Paul B. Krummel, Simon O'Doherty, Ronald G. Prinn, Ray F. Weiss, Dickon Young, Ed Dlugokencky, and Steve A. Montzka
Atmos. Chem. Phys., 16, 7943–7956, https://doi.org/10.5194/acp-16-7943-2016, https://doi.org/10.5194/acp-16-7943-2016, 2016
Short summary
Short summary
Methane (CH4) is an important greenhouse gas. The growth of atmospheric CH4 stalled from 1999 to 2006, with current explanations focussed mainly on changing surface fluxes. We combine models with observations and meteorological data to assess the atmospheric contribution to CH4 changes. We find that variations in mean atmospheric hydroxyl concentration can explain part of the stall in growth. Our study highlights the role of multi-annual variability in atmospheric chemistry in global CH4 trends.
Luke M. Western, Peter N. Francis, I. Matthew Watson, and Shona Mackie
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2016-92, https://doi.org/10.5194/amt-2016-92, 2016
Revised manuscript has not been submitted
Short summary
Short summary
This work aims to infer the size distribution of airborne volcanic ash using satellite measurements. The size distribution of volcanic ash is typically described using two parameters, of which one is normally assumed and one can be measured using satellites. This work shows that it is possible, using a satellite with high spectral resolution, to retrieve both parameters. This work has been done to reduce uncertainty in mass calculations for airspace management during volcanic unrest.
T. Sherwen, M. J. Evans, L. J. Carpenter, S. J. Andrews, R. T. Lidster, B. Dix, T. K. Koenig, R. Sinreich, I. Ortega, R. Volkamer, A. Saiz-Lopez, C. Prados-Roman, A. S. Mahajan, and C. Ordóñez
Atmos. Chem. Phys., 16, 1161–1186, https://doi.org/10.5194/acp-16-1161-2016, https://doi.org/10.5194/acp-16-1161-2016, 2016
Short summary
Short summary
Using a global chemical transport model (GEOS-Chem) with additional iodine emissions, chemistry, and deposition we show that iodine is responsible for ~ 9 % of global ozone loss but has negligible impacts on global OH. Uncertainties are large in the chemistry and emissions and future research is needed in both. Measurements of iodine species (especially HOI) would be useful. We believe iodine chemistry should be considered in future chemistry-climate and in air quality modelling.
P. G. Simmonds, M. Rigby, A. J. Manning, M. F. Lunt, S. O'Doherty, A. McCulloch, P. J. Fraser, S. Henne, M. K. Vollmer, J. Mühle, R. F. Weiss, P. K. Salameh, D. Young, S. Reimann, A. Wenger, T. Arnold, C. M. Harth, P. B. Krummel, L. P. Steele, B. L. Dunse, B. R. Miller, C. R. Lunder, O. Hermansen, N. Schmidbauer, T. Saito, Y. Yokouchi, S. Park, S. Li, B. Yao, L. X. Zhou, J. Arduini, M. Maione, R. H. J. Wang, D. Ivy, and R. G. Prinn
Atmos. Chem. Phys., 16, 365–382, https://doi.org/10.5194/acp-16-365-2016, https://doi.org/10.5194/acp-16-365-2016, 2016
Short summary
Short summary
We report regional and global emissions estimates of HFC-152a using high frequency measurements from 11 observing sites and archived air samples dating back to 1978 together with atmospheric transport models. The "bottom-up" emissions of HFC-152a reported to the UNFCCC appear to significantly underestimate those reported here from observations. This discrepancy we suggest arises from largely underestimated USA and undeclared Asian emissions.
S. O'Doherty, M. Rigby, J. Mühle, D. J. Ivy, B. R. Miller, D. Young, P. G. Simmonds, S. Reimann, M. K. Vollmer, P. B. Krummel, P. J. Fraser, L. P. Steele, B. Dunse, P. K. Salameh, C. M. Harth, T. Arnold, R. F. Weiss, J. Kim, S. Park, S. Li, C. Lunder, O. Hermansen, N. Schmidbauer, L. X. Zhou, B. Yao, R. H. J. Wang, A. J. Manning, and R. G. Prinn
Atmos. Chem. Phys., 14, 9249–9258, https://doi.org/10.5194/acp-14-9249-2014, https://doi.org/10.5194/acp-14-9249-2014, 2014
E. Saikawa, R. G. Prinn, E. Dlugokencky, K. Ishijima, G. S. Dutton, B. D. Hall, R. Langenfelds, Y. Tohjima, T. Machida, M. Manizza, M. Rigby, S. O'Doherty, P. K. Patra, C. M. Harth, R. F. Weiss, P. B. Krummel, M. van der Schoot, P. J. Fraser, L. P. Steele, S. Aoki, T. Nakazawa, and J. W. Elkins
Atmos. Chem. Phys., 14, 4617–4641, https://doi.org/10.5194/acp-14-4617-2014, https://doi.org/10.5194/acp-14-4617-2014, 2014
A. L. Ganesan, M. Rigby, A. Zammit-Mangion, A. J. Manning, R. G. Prinn, P. J. Fraser, C. M. Harth, K.-R. Kim, P. B. Krummel, S. Li, J. Mühle, S. J. O'Doherty, S. Park, P. K. Salameh, L. P. Steele, and R. F. Weiss
Atmos. Chem. Phys., 14, 3855–3864, https://doi.org/10.5194/acp-14-3855-2014, https://doi.org/10.5194/acp-14-3855-2014, 2014
D. A. Belikov, S. Maksyutov, M. Krol, A. Fraser, M. Rigby, H. Bian, A. Agusti-Panareda, D. Bergmann, P. Bousquet, P. Cameron-Smith, M. P. Chipperfield, A. Fortems-Cheiney, E. Gloor, K. Haynes, P. Hess, S. Houweling, S. R. Kawa, R. M. Law, Z. Loh, L. Meng, P. I. Palmer, P. K. Patra, R. G. Prinn, R. Saito, and C. Wilson
Atmos. Chem. Phys., 13, 1093–1114, https://doi.org/10.5194/acp-13-1093-2013, https://doi.org/10.5194/acp-13-1093-2013, 2013
Related subject area
Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Estimating the variability in NOx emissions from Wuhan with TROPOMI NO2 data during 2018 to 2023
Enhanced understanding of atmospheric blocking modulation on ozone dynamics within a high-resolution Earth system model
Natural emissions of VOC and NOx over Africa constrained by TROPOMI HCHO and NO2 data using the MAGRITTEv1.1 model
Anthropogenic emission controls reduce summertime ozone–temperature sensitivity in the United States
Investigating the response of China's surface ozone concentration to the future changes of multiple factors
Assessing the relative impacts of satellite ozone and its precursor observations to improve global tropospheric ozone analysis using multiple chemical reanalysis systems
Evaluating present-day and future impacts of agricultural ammonia emissions on atmospheric chemistry and climate
Air-pollution-satellite-based CO2 emission inversion: system evaluation, sensitivity analysis, and future research direction
Insights into ozone pollution control in urban areas by decoupling meteorological factors based on machine learning
Quantification of regional net CO2 flux errors in the Orbiting Carbon Observatory-2 (OCO-2) v10 model intercomparison project (MIP) ensemble using airborne measurements
Reactive nitrogen in and around the northeastern and mid-Atlantic US: sources, sinks, and connections with ozone
Preindustrial-to-present-day changes in atmospheric carbon monoxide: agreement and gaps between ice archives and global model reconstructions
Investigating processes influencing simulation of local Arctic wintertime anthropogenic pollution in Fairbanks, Alaska, during ALPACA-2022
Urban ozone formation and sensitivities to volatile chemical products, cooking emissions, and NOx upwind of and within two Los Angeles Basin cities
Causes of growing middle-to-upper tropospheric ozone over the northwest Pacific region
Impact of introducing electric vehicles on ground-level O3 and PM2.5 in the Greater Tokyo Area: yearly trends and the importance of changes in the urban heat island effect
A CO2–Δ14CO2 inversion setup for estimating European fossil CO2 emissions
Maximum ozone concentrations in the southwestern US and Texas: implications of the growing predominance of the background contribution
Derivation of atmospheric reaction mechanisms for volatile organic compounds by the SAPRC mechanism generation system (MechGen)
Seasonal, regional, and vertical characteristics of high-carbon-monoxide plumes along with their associated ozone anomalies, as seen by IAGOS between 2002 and 2019
The potential of drone observations to improve air quality predictions by 4D-Var
Process analysis of elevated concentrations of organic acids at Whiteface Mountain, New York
Sensitivity of climate-chemistry model simulated atmospheric composition to lightning-produced NOx parameterizations based on lightning frequency
Ozone source attribution in polluted European areas during summer 2017 as simulated with MECO(n)
Surface ozone trend variability across the United States and the impact of heatwaves (1990–2023)
Opinion: Challenges and needs of tropospheric chemical mechanism development
Tracking daily NOx emissions from an urban agglomeration based on TROPOMI NO2 and a local ensemble transform Kalman filter
The atmospheric oxidizing capacity in China – Part 2: Sensitivity to emissions of primary pollutants
Role of chemical production and depositional losses on formaldehyde in the Community Regional Atmospheric Chemistry Multiphase Mechanism (CRACMM)
Review of source analyses of ambient volatile organic compounds considering reactive losses: methods of reducing loss effects, impacts of losses, and sources
Interpreting summertime hourly variation of NO2 columns with implications for geostationary satellite applications
An investigation into atmospheric nitrous acid (HONO) processes in South Korea
Performance evaluation of UKESM1 for surface ozone across the pan-tropics
Constraining light dependency in modeled emissions through comparison to observed biogenic volatile organic compound (BVOC) concentrations in a southeastern US forest
A global re-analysis of regionally resolved emissions and atmospheric mole fractions of SF6 for the period 2005–2021
Monoterpene oxidation pathways initiated by acyl peroxy radical addition
Tropospheric ozone precursors: global and regional distributions, trends, and variability
Sensitivity of climate effects of hydrogen to leakage size, location, and chemical background
The contribution of transport emissions to ozone mixing ratios and methane lifetime in 2015 and 2050 in the Shared Socioeconomic Pathways (SSPs)
Local and transboundary contributions to nitrogen loadings across East Asia using CMAQ-ISAM and GEMS-informed emissions inventory during the winter-spring transition
Ether and ester formation from peroxy radical recombination: a qualitative reaction channel analysis
ACEIC: a comprehensive anthropogenic chlorine emission inventory for China
Impact of methane and other precursor emission reductions on surface ozone in Europe: scenario analysis using the European Monitoring and Evaluation Programme (EMEP) Meteorological Synthesizing Centre – West (MSC-W) model
High-resolution mapping of on-road vehicle emissions with real-time traffic datasets based on big data
Chemistry-climate feedback of atmospheric methane in a methane emission flux driven chemistry-climate model
Verifying national inventory-based combustion emissions of CO2 across the UK and mainland Europe using satellite observations of atmospheric CO and CO2
Revisiting the high tropospheric ozone over Southern Africa: overestimated biomass burning and underestimated anthropogenic emissions
Source contribution to ozone pollution during June 2021 in Arizona: Insights from WRF-Chem tagged O3 and CO
An improved estimate of inorganic iodine emissions from the ocean using a coupled surface microlayer box model
Technical note: A comparative study of chemistry schemes for volcanic sulfur dioxide in Lagrangian transport simulations: a case study of the 2019 Raikoke eruption
Qianqian Zhang, K. Folkert Boersma, Chiel van der Laan, Alba Mols, Bin Zhao, Shengyue Li, and Yuepeng Pan
Atmos. Chem. Phys., 25, 3313–3326, https://doi.org/10.5194/acp-25-3313-2025, https://doi.org/10.5194/acp-25-3313-2025, 2025
Short summary
Short summary
Accurate NOx emission estimates are required to better understand air pollution. This study investigates and demonstrates the ability of the superposition column model in combination with TROPOMI tropospheric NO2 column data to estimate city-scale NOx emissions and lifetimes and their variabilities. The results of this work nevertheless confirm the strength of the superposition column model in estimating urban NOx emissions with reasonable accuracy.
Wenbin Kou, Yang Gao, Dan Tong, Xiaojie Guo, Xiadong An, Wenyu Liu, Mengshi Cui, Xiuwen Guo, Shaoqing Zhang, Huiwang Gao, and Lixin Wu
Atmos. Chem. Phys., 25, 3029–3048, https://doi.org/10.5194/acp-25-3029-2025, https://doi.org/10.5194/acp-25-3029-2025, 2025
Short summary
Short summary
Unlike traditional numerical studies, we apply a high-resolution Earth system model, improving simulations of surface ozone and large-scale circulations such as atmospheric blocking. Besides local heat waves, we quantify the impact of atmospheric blocking on downstream ozone concentrations, which is closely associated with the blocking position. We identify three major pathways of Rossby wave propagation, stressing the critical role of large-scale circulation in regional air quality.
Beata Opacka, Trissevgeni Stavrakou, Jean-François Müller, Isabelle De Smedt, Jos van Geffen, Eloise A. Marais, Rebekah P. Horner, Dylan B. Millet, Kelly C. Wells, and Alex B. Guenther
Atmos. Chem. Phys., 25, 2863–2894, https://doi.org/10.5194/acp-25-2863-2025, https://doi.org/10.5194/acp-25-2863-2025, 2025
Short summary
Short summary
Vegetation releases biogenic volatile organic compounds, while soils and lightning contribute to the natural emissions of nitrogen oxides into the atmosphere. These gases interact in complex ways. Using satellite data and models, we developed a new method to simultaneously optimize these natural emissions over Africa in 2019. Our approach resulted in an increase in natural emissions, supported by independent data indicating that current estimates are underestimated.
Shuai Li, Haolin Wang, and Xiao Lu
Atmos. Chem. Phys., 25, 2725–2743, https://doi.org/10.5194/acp-25-2725-2025, https://doi.org/10.5194/acp-25-2725-2025, 2025
Short summary
Short summary
Summertime ozone–temperature sensitivity has decreased by 50 % from 3.0 ppbv per K in 1990 to 1.5 ppb per K in 2021 in the US. GEOS-Chem simulations show that anthropogenic nitrogen oxide emission reduction is the dominant driver of ozone–temperature sensitivity decline by influencing both temperature direct and temperature indirect processes. Reduced ozone–temperature sensitivity has decreased ozone enhancement from low to high temperatures by an average of 6.8 ppbv across the US.
Jinya Yang, Yutong Wang, Lei Zhang, and Yu Zhao
Atmos. Chem. Phys., 25, 2649–2666, https://doi.org/10.5194/acp-25-2649-2025, https://doi.org/10.5194/acp-25-2649-2025, 2025
Short summary
Short summary
We develop a modeling framework to predict future ozone concentrations (till the 2060s) in China following an IPCC scenario. We evaluate the contributions of climatic, anthropogenic, and biogenic factors by season and region. We find persistent emission controls will alter the nonlinear response of ozone to its precursors and dominate the declining ozone level. The outcomes highlight the importance of human actions, even with a climate penalty on air quality.
Takashi Sekiya, Emanuele Emili, Kazuyuki Miyazaki, Antje Inness, Zhen Qu, R. Bradley Pierce, Dylan Jones, Helen Worden, William Y. Y. Cheng, Vincent Huijnen, and Gerbrand Koren
Atmos. Chem. Phys., 25, 2243–2268, https://doi.org/10.5194/acp-25-2243-2025, https://doi.org/10.5194/acp-25-2243-2025, 2025
Short summary
Short summary
Five global chemical reanalysis datasets were used to assess the relative impacts of assimilating satellite ozone and its precursor measurements on tropospheric ozone analyses for 2010. The multiple reanalysis system comparison allows an evaluation of the dependency of the impacts on different reanalysis systems. The results suggested the importance of satellite ozone and its precursor measurements for improving ozone analysis in the whole troposphere, with varying magnitudes among the systems.
Maureen Beaudor, Didier Hauglustaine, Juliette Lathière, Martin Van Damme, Lieven Clarisse, and Nicolas Vuichard
Atmos. Chem. Phys., 25, 2017–2046, https://doi.org/10.5194/acp-25-2017-2025, https://doi.org/10.5194/acp-25-2017-2025, 2025
Short summary
Short summary
Agriculture is the biggest ammonia (NH3) source, impacting air quality, climate, and ecosystems. Because of food demand, NH3 emissions are projected to rise by 2100. Using a global model, we analyzed the impact of present and future NH3 emissions generated from a land model. Our results show improved ammonia patterns compared to a reference inventory. Future scenarios predict up to 70 % increase in global NH3 burden, with significant changes in radiative forcing that can greatly elevate N2O.
Hui Li, Jiaxin Qiu, and Bo Zheng
Atmos. Chem. Phys., 25, 1949–1963, https://doi.org/10.5194/acp-25-1949-2025, https://doi.org/10.5194/acp-25-1949-2025, 2025
Short summary
Short summary
We conduct a sensitivity analysis with 31 tests on various factors including prior emissions, model resolution, satellite constraint, and other system configurations to assess the vulnerability of emission estimates across temporal, sectoral, and regional dimensions. This reveals the robustness of emissions estimated by this air-pollution-satellite-based CO2 emission inversion system, with relative change between tests and base inversion below 4.0 % for national annual NOx and CO2 emissions.
Yuqing Qiu, Xin Li, Wenxuan Chai, Yi Liu, Mengdi Song, Xudong Tian, Qiaoli Zou, Wenjun Lou, Wangyao Zhang, Juan Li, and Yuanhang Zhang
Atmos. Chem. Phys., 25, 1749–1763, https://doi.org/10.5194/acp-25-1749-2025, https://doi.org/10.5194/acp-25-1749-2025, 2025
Short summary
Short summary
The chemical reactions of ozone (O3) formation are related to meteorology and local emissions. Here, a random forest approach was used to eliminate the effects of meteorological factors (dispersion or transport) on O3 and its precursors. Variations in the sensitivity of O3 formation and the apportionment of emission sources were revealed after meteorological normalization. Our results suggest that meteorological variations should be considered when diagnosing O3 formation.
Jeongmin Yun, Junjie Liu, Brendan Byrne, Brad Weir, Lesley E. Ott, Kathryn McKain, Bianca C. Baier, Luciana V. Gatti, and Sebastien C. Biraud
Atmos. Chem. Phys., 25, 1725–1748, https://doi.org/10.5194/acp-25-1725-2025, https://doi.org/10.5194/acp-25-1725-2025, 2025
Short summary
Short summary
This study quantifies errors in regional net surface–atmosphere CO2 flux estimates from an inverse model ensemble using airborne CO2 measurements. Our results show that flux error estimates based on observations significantly exceed those computed from the ensemble spread of flux estimates in regions with high fossil fuel emissions. This finding suggests the presence of systematic biases in the inversion estimates, associated with errors in the fossil fuel emissions common to all models.
Min Huang, Gregory R. Carmichael, Kevin W. Bowman, Isabelle De Smedt, Andreas Colliander, Michael H. Cosh, Sujay V. Kumar, Alex B. Guenther, Scott J. Janz, Ryan M. Stauffer, Anne M. Thompson, Niko M. Fedkin, Robert J. Swap, John D. Bolten, and Alicia T. Joseph
Atmos. Chem. Phys., 25, 1449–1476, https://doi.org/10.5194/acp-25-1449-2025, https://doi.org/10.5194/acp-25-1449-2025, 2025
Short summary
Short summary
We use model simulations along with multiplatform, multidisciplinary observations and a range of analysis methods to estimate and understand the distributions, temporal changes, and impacts of reactive nitrogen and ozone over the most populous US region that has undergone significant environmental changes. Deposition, biogenic emissions, and extra-regional sources have been playing increasingly important roles in controlling pollutant budgets in this area as local anthropogenic emissions drop.
Xavier Faïn, Sophie Szopa, Vaishali Naïk, Patricia Martinerie, David M. Etheridge, Rachael H. Rhodes, Cathy M. Trudinger, Vasilii V. Petrenko, Kévin Fourteau, and Philip Place
Atmos. Chem. Phys., 25, 1105–1119, https://doi.org/10.5194/acp-25-1105-2025, https://doi.org/10.5194/acp-25-1105-2025, 2025
Short summary
Short summary
Carbon monoxide (CO) plays a crucial role in the atmosphere's oxidizing capacity. In this study, we analyse how historical (1850–2014) [CO] outputs from state-of-the-art global chemistry–climate models over Greenland and Antarctica are able to capture both absolute values and trends recorded in multi-site ice archives. A disparity in [CO] growth rates emerges in the Northern Hemisphere between models and observations from 1920–1975 CE, possibly linked to uncertainties in CO emission factors.
Natalie Brett, Kathy S. Law, Steve R. Arnold, Javier G. Fochesatto, Jean-Christophe Raut, Tatsuo Onishi, Robert Gilliam, Kathleen Fahey, Deanna Huff, George Pouliot, Brice Barret, Elsa Dieudonné, Roman Pohorsky, Julia Schmale, Andrea Baccarini, Slimane Bekki, Gianluca Pappaccogli, Federico Scoto, Stefano Decesari, Antonio Donateo, Meeta Cesler-Maloney, William Simpson, Patrice Medina, Barbara D'Anna, Brice Temime-Roussel, Joel Savarino, Sarah Albertin, Jingqiu Mao, Becky Alexander, Allison Moon, Peter F. DeCarlo, Vanessa Selimovic, Robert Yokelson, and Ellis S. Robinson
Atmos. Chem. Phys., 25, 1063–1104, https://doi.org/10.5194/acp-25-1063-2025, https://doi.org/10.5194/acp-25-1063-2025, 2025
Short summary
Short summary
Processes influencing dispersion of local anthropogenic pollution in Arctic wintertime are investigated with Lagrangian dispersion modelling. Simulated power plant plume rise that considers temperature inversion layers improves results compared to observations (interior Alaska). Modelled surface concentrations are improved by representation of vertical mixing and emission estimates. Large increases in diesel vehicle emissions at temperatures reaching −35°C are required to reproduce observed NOx.
Chelsea E. Stockwell, Matthew M. Coggon, Rebecca H. Schwantes, Colin Harkins, Bert Verreyken, Congmeng Lyu, Qindan Zhu, Lu Xu, Jessica B. Gilman, Aaron Lamplugh, Jeff Peischl, Michael A. Robinson, Patrick R. Veres, Meng Li, Andrew W. Rollins, Kristen Zuraski, Sunil Baidar, Shang Liu, Toshihiro Kuwayama, Steven S. Brown, Brian C. McDonald, and Carsten Warneke
Atmos. Chem. Phys., 25, 1121–1143, https://doi.org/10.5194/acp-25-1121-2025, https://doi.org/10.5194/acp-25-1121-2025, 2025
Short summary
Short summary
In urban areas, emissions from everyday products like paints, cleaners, and personal care products, along with non-traditional sources such as cooking, are increasingly important and impact air quality. This study uses a box model to evaluate how these emissions impact ozone in the Los Angeles Basin and quantifies the impact of gaseous cooking emissions. Accurate representation of these and other anthropogenic sources in inventories is crucial for informing effective air quality policies.
Xiaodan Ma, Jianping Huang, Michaela I. Hegglin, Patrick Jöckel, and Tianliang Zhao
Atmos. Chem. Phys., 25, 943–958, https://doi.org/10.5194/acp-25-943-2025, https://doi.org/10.5194/acp-25-943-2025, 2025
Short summary
Short summary
Our research explored changes in ozone levels in the northwest Pacific region over 30 years, revealing a significant increase in the middle-to-upper troposphere, especially during spring and summer. This rise is influenced by both stratospheric and tropospheric sources, which affect climate and air quality in East Asia. This work underscores the need for continued study to understand underlying mechanisms.
Hiroo Hata, Norifumi Mizushima, and Tomohiko Ihara
Atmos. Chem. Phys., 25, 1037–1061, https://doi.org/10.5194/acp-25-1037-2025, https://doi.org/10.5194/acp-25-1037-2025, 2025
Short summary
Short summary
The introduction of battery electric vehicles (BEVs) is expected to reduce the primary air pollutants from vehicular exhaust and evaporative emissions while reducing the anthropogenic heat produced by vehicles, ultimately mitigating the urban heat island (UHI) effect. This study revealed the impact of introducing BEVs on the decrease in the UHI effect and the impact of BEVs on the formation of tropospheric ozone and fine particulate matter in the Greater Tokyo Area of Japan.
Carlos Gómez-Ortiz, Guillaume Monteil, Sourish Basu, and Marko Scholze
Atmos. Chem. Phys., 25, 397–424, https://doi.org/10.5194/acp-25-397-2025, https://doi.org/10.5194/acp-25-397-2025, 2025
Short summary
Short summary
In this paper, we test new implementations of our inverse modeling tool to estimate the weekly and regional CO2 emissions from fossil fuels in Europe. We use synthetic atmospheric observations of CO2 and radiocarbon (14CO2) to trace emissions to their sources, while separating the natural and fossil CO2. Our tool accurately estimates fossil CO2 emissions in densely monitored regions like western/central Europe. This approach aids in developing strategies for reducing CO2 emissions.
David D. Parrish, Ian C. Faloona, and Richard G. Derwent
Atmos. Chem. Phys., 25, 263–289, https://doi.org/10.5194/acp-25-263-2025, https://doi.org/10.5194/acp-25-263-2025, 2025
Short summary
Short summary
Observation-based estimates of contributions to maximum ozone (O3) concentrations show that background O3 can exceed the air quality standard of 70 ppb in the southwestern US, precluding standard attainment. Over the past 4 decades, US anthropogenic O3 has decreased by a factor of ~ 6.3, while wildfire contributions have increased, so that the background now dominates maximum concentrations, even in Los Angeles, and the occurrence of maximum O3 has shifted from the eastern to the western US.
William P. L. Carter, Jia Jiang, John J. Orlando, and Kelley C. Barsanti
Atmos. Chem. Phys., 25, 199–242, https://doi.org/10.5194/acp-25-199-2025, https://doi.org/10.5194/acp-25-199-2025, 2025
Short summary
Short summary
This paper describes the scientific basis for gas-phase atmospheric chemical mechanisms derived using the SAPRC mechanism generation system, MechGen. It can derive mechanisms for most organic compounds with C, H, O, or N atoms, including initial reactions of organics with OH, O3, NO3, and O3P or by photolysis, as well as the reactions of the various types of intermediates that are formed. The paper includes a description of areas of uncertainty where additional research and updates are needed.
Thibaut Lebourgeois, Bastien Sauvage, Pawel Wolff, Béatrice Josse, Virginie Marécal, Yasmine Bennouna, Romain Blot, Damien Boulanger, Hannah Clark, Jean-Marc Cousin, Philippe Nedelec, and Valérie Thouret
Atmos. Chem. Phys., 24, 13975–14004, https://doi.org/10.5194/acp-24-13975-2024, https://doi.org/10.5194/acp-24-13975-2024, 2024
Short summary
Short summary
Our study examines intense-carbon-monoxide (CO) pollution events measured by commercial aircraft from the In-service Aircraft for a Global Observing System (IAGOS) research infrastructure. We combine these measurements with the SOFT-IO model to trace the origin of the observed CO. A comprehensive analysis of the geographical origin, source type, seasonal variation, and ozone levels of these pollution events is provided.
Hassnae Erraji, Philipp Franke, Astrid Lampert, Tobias Schuldt, Ralf Tillmann, Andreas Wahner, and Anne Caroline Lange
Atmos. Chem. Phys., 24, 13913–13934, https://doi.org/10.5194/acp-24-13913-2024, https://doi.org/10.5194/acp-24-13913-2024, 2024
Short summary
Short summary
Four-dimensional variational data assimilation allows for the simultaneous optimisation of initial values and emission rates by using trace-gas profiles from drone observations in a regional air quality model. Assimilated profiles positively impact the representation of air pollutants in the model by improving their vertical distribution and ground-level concentrations. This case study highlights the potential of drone data to enhance air quality analyses including local emission evaluation.
Christopher Lawrence, Mary Barth, John Orlando, Paul Casson, Richard Brandt, Daniel Kelting, Elizabeth Yerger, and Sara Lance
Atmos. Chem. Phys., 24, 13693–13713, https://doi.org/10.5194/acp-24-13693-2024, https://doi.org/10.5194/acp-24-13693-2024, 2024
Short summary
Short summary
This work uses chemical transport and box modeling to study the gas- and aqueous-phase production of organic acid concentrations measured in cloud water at the summit of Whiteface Mountain on 1 July 2018. Isoprene was the major source of formic, acetic, and oxalic acid. Gas-phase chemistry greatly underestimated formic and acetic acid, indicating missing sources, while cloud chemistry was a key source of oxalic acid. More studies of organic acids are required to better constrain their sources.
Francisco J. Pérez-Invernón, Francisco J. Gordillo-Vázquez, Heidi Huntrieser, Patrick Jöckel, and Eric J. Bucsela
EGUsphere, https://doi.org/10.5194/egusphere-2024-3348, https://doi.org/10.5194/egusphere-2024-3348, 2024
Short summary
Short summary
Lightning plays a significant role in tropospheric chemistry by producing substantial amounts of nitrogen oxides. According to recent estimates, thunderstorms that produce a higher lightning frequency rate also produce less nitrogen oxide per flash. We implemented the dependency of nitrogen oxide production per flash on lightning flash frequency in a chemical atmospheric model.
Markus Kilian, Volker Grewe, Patrick Jöckel, Astrid Kerkweg, Mariano Mertens, Andreas Zahn, and Helmut Ziereis
Atmos. Chem. Phys., 24, 13503–13523, https://doi.org/10.5194/acp-24-13503-2024, https://doi.org/10.5194/acp-24-13503-2024, 2024
Short summary
Short summary
Anthropogenic emissions are a major source of precursors of tropospheric ozone. As ozone formation is highly non-linear, we apply a global–regional chemistry–climate model with a source attribution method (tagging) to quantify the contribution of anthropogenic emissions to ozone. Our analysis shows that the contribution of European anthropogenic emissions largely increases during large ozone periods, indicating that emissions from these sectors drive ozone values.
Kai-Lan Chang, Brian C. McDonald, and Owen R. Cooper
EGUsphere, https://doi.org/10.5194/egusphere-2024-3674, https://doi.org/10.5194/egusphere-2024-3674, 2024
Short summary
Short summary
Exposure to high levels of ozone can be harmful to human health. This study shows consistent and robust evidence of decreasing ozone extremes across much of the United States over 1990–2023, previously attributed to ozone precursor emission controls. Nevertheless, we also show that the increasing heatwave frequencies are likely to contribute to additional ozone exceedances, slowing the progress of decreasing the frequency of ozone exceedances.
Barbara Ervens, Andrew Rickard, Bernard Aumont, William P. L. Carter, Max McGillen, Abdelwahid Mellouki, John Orlando, Bénédicte Picquet-Varrault, Paul Seakins, William R. Stockwell, Luc Vereecken, and Timothy J. Wallington
Atmos. Chem. Phys., 24, 13317–13339, https://doi.org/10.5194/acp-24-13317-2024, https://doi.org/10.5194/acp-24-13317-2024, 2024
Short summary
Short summary
Chemical mechanisms describe the chemical processes in atmospheric models that are used to describe the changes in the atmospheric composition. Therefore, accurate chemical mechanisms are necessary to predict the evolution of air pollution and climate change. The article describes all steps that are needed to build chemical mechanisms and discusses the advances and needs of experimental and theoretical research activities needed to build reliable chemical mechanisms.
Yawen Kong, Bo Zheng, and Yuxi Liu
EGUsphere, https://doi.org/10.5194/egusphere-2024-2996, https://doi.org/10.5194/egusphere-2024-2996, 2024
Short summary
Short summary
Current high-resolution satellite remote sensing technologies provide a unique opportunity to derive timely, high-resolution emission data. We developed an emission inversion system to assimilate satellite NO2 data to obtain daily, kilometer-scale NOx emission inventories. Our results enhance inventory accuracy, allowing us to capture the effects of pollution control policies on daily emissions (e.g., during COVID-19 lockdown) and improve fine-scale air quality modeling.
Jianing Dai, Guy P. Brasseur, Mihalis Vrekoussis, Maria Kanakidou, Kun Qu, Yijuan Zhang, Hongliang Zhang, and Tao Wang
Atmos. Chem. Phys., 24, 12943–12962, https://doi.org/10.5194/acp-24-12943-2024, https://doi.org/10.5194/acp-24-12943-2024, 2024
Short summary
Short summary
This paper employs a regional chemical transport model to quantify the sensitivity of air pollutants and photochemical parameters to specified emission reductions in China for representative winter and summer conditions. The study provides insights into further air quality control in China with reduced primary emissions.
T. Nash Skipper, Emma L. D'Ambro, Forwood C. Wiser, V. Faye McNeill, Rebecca H. Schwantes, Barron H. Henderson, Ivan R. Piletic, Colleen B. Baublitz, Jesse O. Bash, Andrew R. Whitehill, Lukas C. Valin, Asher P. Mouat, Jennifer Kaiser, Glenn M. Wolfe, Jason M. St. Clair, Thomas F. Hanisco, Alan Fried, Bryan K. Place, and Havala O.T. Pye
Atmos. Chem. Phys., 24, 12903–12924, https://doi.org/10.5194/acp-24-12903-2024, https://doi.org/10.5194/acp-24-12903-2024, 2024
Short summary
Short summary
We develop the Community Regional Atmospheric Chemistry Multiphase Mechanism (CRACMM) version 2 to improve predictions of formaldehyde in ambient air compared to satellite-, aircraft-, and ground-based observations. With the updated chemistry, we estimate the cancer risk from inhalation exposure to ambient formaldehyde across the contiguous USA and predict that 40 % of this risk is controllable through reductions in anthropogenic emissions of nitrogen oxides and reactive organic carbon.
Baoshuang Liu, Yao Gu, Yutong Wu, Qili Dai, Shaojie Song, Yinchang Feng, and Philip K. Hopke
Atmos. Chem. Phys., 24, 12861–12879, https://doi.org/10.5194/acp-24-12861-2024, https://doi.org/10.5194/acp-24-12861-2024, 2024
Short summary
Short summary
Reactive loss of volatile organic compounds (VOCs) is a long-term issue yet to be resolved in VOC source analyses. We assess common methods of, and existing issues in, reducing losses, impacts of losses, and sources in current source analyses. We offer a potential supporting role for solving issues of VOC conversion. Source analyses of consumed VOCs that reacted to produce ozone and secondary organic aerosols can play an important role in the effective control of secondary pollution in air.
Deepangsu Chatterjee, Randall V. Martin, Chi Li, Dandan Zhang, Haihui Zhu, Daven K. Henze, James H. Crawford, Ronald C. Cohen, Lok N. Lamsal, and Alexander M. Cede
Atmos. Chem. Phys., 24, 12687–12706, https://doi.org/10.5194/acp-24-12687-2024, https://doi.org/10.5194/acp-24-12687-2024, 2024
Short summary
Short summary
We investigate the hourly variation of NO2 columns and surface concentrations by applying the GEOS-Chem model to interpret aircraft and ground-based measurements over the US and Pandora sun photometer measurements over the US, Europe, and Asia. Corrections to the Pandora columns and finer model resolution improve the modeled representation of the summertime hourly variation of total NO2 columns to explain the weaker hourly variation in NO2 columns than at the surface.
Kiyeon Kim, Kyung Man Han, Chul Han Song, Hyojun Lee, Ross Beardsley, Jinhyeok Yu, Greg Yarwood, Bonyoung Koo, Jasper Madalipay, Jung-Hun Woo, and Seogju Cho
Atmos. Chem. Phys., 24, 12575–12593, https://doi.org/10.5194/acp-24-12575-2024, https://doi.org/10.5194/acp-24-12575-2024, 2024
Short summary
Short summary
We incorporated each HONO process into the current CMAQ modeling framework to enhance the accuracy of HONO mixing ratio predictions. These results expand our understanding of HONO photochemistry and identify crucial sources of HONO that impact the total HONO budget in Seoul, South Korea. Through this investigation, we contribute to resolving discrepancies in understanding chemical transport models, with implications for better air quality management and environmental protection in the region.
Flossie Brown, Gerd Folberth, Stephen Sitch, Paulo Artaxo, Marijn Bauters, Pascal Boeckx, Alexander W. Cheesman, Matteo Detto, Ninong Komala, Luciana Rizzo, Nestor Rojas, Ines dos Santos Vieira, Steven Turnock, Hans Verbeeck, and Alfonso Zambrano
Atmos. Chem. Phys., 24, 12537–12555, https://doi.org/10.5194/acp-24-12537-2024, https://doi.org/10.5194/acp-24-12537-2024, 2024
Short summary
Short summary
Ozone is a pollutant that is detrimental to human and plant health. Ozone monitoring sites in the tropics are limited, so models are often used to understand ozone exposure. We use measurements from the tropics to evaluate ozone from the UK Earth system model, UKESM1. UKESM1 is able to capture the pattern of ozone in the tropics, except in southeast Asia, although it systematically overestimates it at all sites. This work highlights that UKESM1 can capture seasonal and hourly variability.
Namrata Shanmukh Panji, Deborah F. McGlynn, Laura E. R. Barry, Todd M. Scanlon, Manuel T. Lerdau, Sally E. Pusede, and Gabriel Isaacman-VanWertz
Atmos. Chem. Phys., 24, 12495–12507, https://doi.org/10.5194/acp-24-12495-2024, https://doi.org/10.5194/acp-24-12495-2024, 2024
Short summary
Short summary
Climate change will bring about changes in parameters that are currently used in global-scale models to calculate biogenic emissions. This study seeks to understand the factors driving these models by comparing long-term datasets of biogenic compounds to modeled emissions. We note that the light-dependent fractions currently used in models do not accurately represent regional observations. We provide evidence for the time-dependent variation in this parameter for future modifications to models.
Martin Vojta, Andreas Plach, Saurabh Annadate, Sunyoung Park, Gawon Lee, Pallav Purohit, Florian Lindl, Xin Lan, Jens Mühle, Rona L. Thompson, and Andreas Stohl
Atmos. Chem. Phys., 24, 12465–12493, https://doi.org/10.5194/acp-24-12465-2024, https://doi.org/10.5194/acp-24-12465-2024, 2024
Short summary
Short summary
We constrain the global emissions of the very potent greenhouse gas sulfur hexafluoride (SF6) between 2005 and 2021. We show that SF6 emissions are decreasing in the USA and in the EU, while they are substantially growing in China, leading overall to an increasing global emission trend. The national reports for the USA, EU, and China all underestimated their SF6 emissions. However, stringent mitigation measures can successfully reduce SF6 emissions, as can be seen in the EU emission trend.
Dominika Pasik, Thomas Golin Almeida, Emelda Ahongshangbam, Siddharth Iyer, and Nanna Myllys
EGUsphere, https://doi.org/10.5194/egusphere-2024-3464, https://doi.org/10.5194/egusphere-2024-3464, 2024
Short summary
Short summary
We used quantum chemistry methods to investigate the oxidation mechanisms of acyl peroxy radicals (APRs) with various monoterpenes. Our findings reveal unique oxidation pathways for different monoterpenes, leading to either chain-terminating products or highly reactive intermediates that can contribute to particle formation in the atmosphere. This research highlights APRs as potentially significant but underexplored atmospheric oxidants, which may influence future approaches to modeling climate.
Yasin Elshorbany, Jerald R. Ziemke, Sarah Strode, Hervé Petetin, Kazuyuki Miyazaki, Isabelle De Smedt, Kenneth Pickering, Rodrigo J. Seguel, Helen Worden, Tamara Emmerichs, Domenico Taraborrelli, Maria Cazorla, Suvarna Fadnavis, Rebecca R. Buchholz, Benjamin Gaubert, Néstor Y. Rojas, Thiago Nogueira, Thérèse Salameh, and Min Huang
Atmos. Chem. Phys., 24, 12225–12257, https://doi.org/10.5194/acp-24-12225-2024, https://doi.org/10.5194/acp-24-12225-2024, 2024
Short summary
Short summary
We investigated tropospheric ozone spatial variability and trends from 2005 to 2019 and related those to ozone precursors on global and regional scales. We also investigate the spatiotemporal characteristics of the ozone formation regime in relation to ozone chemical sources and sinks. Our analysis is based on remote sensing products of the tropospheric column of ozone and its precursors, nitrogen dioxide, formaldehyde, and total column CO, as well as ozonesonde data and model simulations.
Ragnhild Bieltvedt Skeie, Marit Sandstad, Srinath Krishnan, Gunnar Myhre, and Maria Sand
EGUsphere, https://doi.org/10.5194/egusphere-2024-3079, https://doi.org/10.5194/egusphere-2024-3079, 2024
Short summary
Short summary
Hydrogen leakages can alter the amount of climate gases in the atmosphere and hence have a climate impact. In this study we investigate, using an atmospheric chemistry model, how this indirect climate effect differs for different amounts of leakages, where the hydrogen leaks and if this effect changes in the future. The effect is largest for emissions far from areas where hydrogen is removed from the atmosphere by the soil, but these are not relevant locations for a future hydrogen economy.
Mariano Mertens, Sabine Brinkop, Phoebe Graf, Volker Grewe, Johannes Hendricks, Patrick Jöckel, Anna Lanteri, Sigrun Matthes, Vanessa S. Rieger, Mattia Righi, and Robin N. Thor
Atmos. Chem. Phys., 24, 12079–12106, https://doi.org/10.5194/acp-24-12079-2024, https://doi.org/10.5194/acp-24-12079-2024, 2024
Short summary
Short summary
We quantified the contributions of land transport, shipping, and aviation emissions to tropospheric ozone; its radiative forcing; and the reductions of the methane lifetime using chemistry-climate model simulations. The contributions were analysed for the conditions of 2015 and for three projections for the year 2050. The results highlight the challenges of mitigating ozone formed by emissions of the transport sector, caused by the non-linearitiy of the ozone chemistry and the long lifetime.
Jincheol Park, Yunsoo Choi, and Sagun Kayastha
EGUsphere, https://doi.org/10.5194/egusphere-2024-3312, https://doi.org/10.5194/egusphere-2024-3312, 2024
Short summary
Short summary
We investigated NOx emissions’ contributions to nitrogen loadings across five regions of East Asia during the 2022 winter-spring transition through chemical transport modeling informed by satellite data. As seasons progress, local contributions within each region to its NOy budget decreased from 32 %–43 % to 23 %–30 %, while transboundary contributions increased from 16 %–33 % to 27 %–37 %, driven by a shift in synoptic settings that allowed pollutants to spread more broadly across the regions.
Lauri Franzon, Marie Camredon, Richard Valorso, Bernard Aumont, and Theo Kurtén
Atmos. Chem. Phys., 24, 11679–11699, https://doi.org/10.5194/acp-24-11679-2024, https://doi.org/10.5194/acp-24-11679-2024, 2024
Short summary
Short summary
In this article we investigate the formation of large, sticky molecules from various organic compounds entering the atmosphere as primary emissions and the degree to which these processes may contribute to organic aerosol particle mass. More specifically, we qualitatively investigate a recently discovered chemical reaction channel for one of the most important short-lived radical compounds, peroxy radicals, and discover which of these reactions are most atmospherically important.
Siting Li, Yiming Liu, Yuqi Zhu, Yinbao Jin, Yingying Hong, Ao Shen, Yifei Xu, Haofan Wang, Haichao Wang, Xiao Lu, Shaojia Fan, and Qi Fan
Atmos. Chem. Phys., 24, 11521–11544, https://doi.org/10.5194/acp-24-11521-2024, https://doi.org/10.5194/acp-24-11521-2024, 2024
Short summary
Short summary
This study establishes an inventory of anthropogenic chlorine emissions in China in 2019 with expanded species (HCl, Cl-, Cl2, HOCl) and sources (41 specific sources). The inventory is validated by a modeling study against the observations. This study enhances the understanding of anthropogenic chlorine emissions in the atmosphere, identifies key sources, and provides scientific support for pollution control and climate change.
Willem E. van Caspel, Zbigniew Klimont, Chris Heyes, and Hilde Fagerli
Atmos. Chem. Phys., 24, 11545–11563, https://doi.org/10.5194/acp-24-11545-2024, https://doi.org/10.5194/acp-24-11545-2024, 2024
Short summary
Short summary
Methane in the atmosphere contributes to the production of ozone gas – an air pollutant and greenhouse gas. Our results highlight that simultaneous reductions in methane emissions help avoid offsetting the air pollution benefits already achieved by the already-approved precursor emission reductions by 2050 in the European Monitoring and Evaluation Programme region, while also playing an important role in bringing air pollution further down towards World Health Organization guideline limits.
Yujia Wang, Hongbin Wang, Bo Zhang, Peng Liu, Xinfeng Wang, Shuchun Si, Likun Xue, Qingzhu Zhang, and Qiao Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2791, https://doi.org/10.5194/egusphere-2024-2791, 2024
Short summary
Short summary
This study established a bottom-up approach that employs real-time traffic flows and interpolation to obtain a spatially continuous on-road vehicle emission mapping for the main urban area of Jinan. The diurnal variation, spatial distribution, and emission hotspots were analyzed with clustering and hotspot analysis, showing unique fine-scale variation characteristics of on-road vehicle emissions. Future scenario analysis demonstrates remarkable benefits of electrification on emission reduction.
Laura Stecher, Franziska Winterstein, Patrick Jöckel, Michael Ponater, Mariano Mertens, and Martin Dameris
EGUsphere, https://doi.org/10.5194/egusphere-2024-2938, https://doi.org/10.5194/egusphere-2024-2938, 2024
Short summary
Short summary
Methane, the second most important anthropogenic greenhouse gas, is chemically decomposed in the atmosphere. The chemical sink of atmospheric methane is not constant, but depends on the temperature and on the abundance of its reaction partners. In this study, we use a global chemistry-climate model to assess the feedback of atmospheric methane induced by changes of the chemical sink in a warming climate, and its implications for the chemical composition and the surface air temperature change.
Tia R. Scarpelli, Paul I. Palmer, Mark Lunt, Ingrid Super, and Arjan Droste
Atmos. Chem. Phys., 24, 10773–10791, https://doi.org/10.5194/acp-24-10773-2024, https://doi.org/10.5194/acp-24-10773-2024, 2024
Short summary
Short summary
Under the Paris Agreement, countries must track their anthropogenic greenhouse gas emissions. This study describes a method to determine self-consistent estimates for combustion emissions and natural fluxes of CO2 from atmospheric data. We report consistent estimates inferred using this approach from satellite data and ground-based data over Europe, suggesting that satellite data can be used to determine national anthropogenic CO2 emissions for countries where ground-based CO2 data are absent.
Yufen Wang, Ke Li, Xi Chen, Zhenjiang Yang, Minglong Tang, Pascoal M. D. Campos, Yang Yang, Xu Yue, and Hong Liao
EGUsphere, https://doi.org/10.5194/egusphere-2024-2576, https://doi.org/10.5194/egusphere-2024-2576, 2024
Short summary
Short summary
The impact of biomass burning and anthropogenic emissions on high tropospheric ozone was not well studied in Southern Africa. We combined the model simulation with recent observations at the surface and from space to quantify tropospheric ozone and its main drivers in Southern Africa. Our work focuses on the impact of emissions from different sources at different spatial scales, contributing to a comprehensive understanding of air pollution drivers and their uncertainties in Southern Africa.
Yafang Guo, Mohammad Amin Mirrezaei, Armin Sorooshian, and Avelino F. Arellano
EGUsphere, https://doi.org/10.5194/egusphere-2024-2617, https://doi.org/10.5194/egusphere-2024-2617, 2024
Short summary
Short summary
We assess the contributions of fire and anthropogenic emissions to O3 levels in Phoenix Arizona during a period of intense heat and drought conditions. We find that fire exacerbates O3 pollution and that interactions between weather, climate, and air chemistry are important to consider. This has implications to activities related to formulating emission reduction strategies in areas that are currently under-studied yet becoming relevant due to reports of increasing global aridity.
Ryan J. Pound, Lucy V. Brown, Mat J. Evans, and Lucy J. Carpenter
Atmos. Chem. Phys., 24, 9899–9921, https://doi.org/10.5194/acp-24-9899-2024, https://doi.org/10.5194/acp-24-9899-2024, 2024
Short summary
Short summary
Iodine-mediated loss of ozone to the ocean surface and the subsequent emission of iodine species has a large effect on the troposphere. Here we combine recent experimental insights to develop a box model of the process, which we then parameterize and incorporate into the GEOS-Chem transport model. We find that these new insights have a small impact on the total emission of iodine but significantly change its distribution.
Mingzhao Liu, Lars Hoffmann, Jens-Uwe Grooß, Zhongyin Cai, Sabine Grießbach, and Yi Heng
EGUsphere, https://doi.org/10.5194/egusphere-2024-2596, https://doi.org/10.5194/egusphere-2024-2596, 2024
Short summary
Short summary
We studied the transport and chemical decomposition of volcanic SO2, focusing on the 2019 Raikoke event. By comparing two different chemistry modeling schemes, we found that including complex chemical reactions leads to a more accurate prediction of how long SO2 stays in the atmosphere. This research helps improve our understanding of volcanic pollution and its impact on air quality and climate, providing better tools for scientists to track and predict the movement of these pollutants.
Cited articles
Bergamaschi, P., Brenninkmeijer, C. A. M., Hahn, M., Röckmann, T.,
Scharffe, D. H., Crutzen, P. J., Elansky, N. F., Belikov, I. B., Trivett, N.
B. A., and Worthy, D. E. J.: Isotope analysis based source identification
for atmospheric CH4 and CO sampled across Russia using the Trans-Siberian
railroad, J. Geophys. Res.-Atmos., 103, 8227–8235,
https://doi.org/10.1029/97JD03738, 1998. a
Bergamaschi, P., Houweling, S., Segers, A., Krol, M., Frankenberg, C.,
Scheepmaker, R. A., Dlugokencky, E., Wofsy, S. C., Kort, E. A., Sweeney, C.,
Schuck, T., Brenninkmeijer, C., Chen, H., Beck, V., and Gerbig, C.:
Atmospheric CH4 in the first decade of the 21st century: Inverse modeling
analysis using SCIAMACHY satellite retrievals and NOAA surface measurements,
J. Geophys. Res.-Atmos., 118, 7350–7369,
https://doi.org/10.1002/jgrd.50480, 2013. a, b, c
Bloom, A. A., Bowman, K. W., Lee, M., Turner, A. J., Schroeder, R., Worden, J. R., Weidner, R., McDonald, K. C., and Jacob, D. J.: A global wetland methane emissions and uncertainty dataset for atmospheric chemical transport models (WetCHARTs version 1.0), Geosci. Model Dev., 10, 2141–2156, https://doi.org/10.5194/gmd-10-2141-2017, 2017. a, b
Bousquet, P., Ringeval, B., Pison, I., Dlugokencky, E. J., Brunke, E.-G., Carouge, C., Chevallier, F., Fortems-Cheiney, A., Frankenberg, C., Hauglustaine, D. A., Krummel, P. B., Langenfelds, R. L., Ramonet, M., Schmidt, M., Steele, L. P., Szopa, S., Yver, C., Viovy, N., and Ciais, P.: Source attribution of the changes in atmospheric methane for 2006–2008, Atmos. Chem. Phys., 11, 3689–3700, https://doi.org/10.5194/acp-11-3689-2011, 2011. a, b, c
Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Huie, R. E., Kolb,
C. E., Kurylo, M. J., Orkin, V. L., Wilmouth, D. M., and Wine, P. H.:
Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies,
Evaluation Number 18, Tech. Rep. 10, Jet Propulsion Laboratory, Pasadena,
https://doi.org/10.1002/kin.550171010, 2015. a
Chang, W., Applegate, P. J., Haran, M., and Keller, K.: Probabilistic calibration of a Greenland Ice Sheet model using spatially resolved synthetic observations: toward projections of ice mass loss with uncertainties, Geosci. Model Dev., 7, 1933–1943, https://doi.org/10.5194/gmd-7-1933-2014, 2014. a
Chen, Y.-H. and Prinn, R. G.: Estimation of atmospheric methane emissions
between 1996 and 2001 using a three-dimensional global chemical transport
model, J. Geophys. Res.-Atmos., 111, D10307,
https://doi.org/10.1029/2005JD006058, 2006. a, b, c
Coplen, T. B.: Guidelines and recommended terms for expression of
stable-isotope-ratio and gas-ratio measurement results, Rapid Commun. Mass Sp., 25, 2538–2560, https://doi.org/10.1002/rcm.5129, 2011. a
Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Dentener, F., van Aardenne,
J. A., Monni, S., Doering, U., Olivier, J. G. J., Pagliari, V., and
Janssens-Maenhout, G.: Gridded emissions of air pollutants for the period
1970–2012 within EDGAR v4.3.2, Earth Syst. Sci. Data, 10, 1987–2013,
https://doi.org/10.5194/essd-10-1987-2018, 2018. a, b, c, d, e, f
Crowley, J., Saueressig, G., Bergamaschi, P., Fischer, H., and Harris, G.:
Carbon kinetic isotope effect in the reaction CH4+Cl: a relative rate study
using FTIR spectroscopy, Chem. Phys. Lett., 303, 268–274,
https://doi.org/10.1016/S0009-2614(99)00243-2, 1999. a
Dlugokencky, E., Lang, P., Crotwell, A., Mund, J., Crotwell, M., and Thoning,
K.: Atmospheric Methane Dry Air Mole Fractions from the NOAA ESRL Carbon
Cycle Cooperative Global Air Sampling Network, 1983-2016, Version:
2017-07-28, available at: ftp://aftp.cmdl.noaa.gov/data/trace_gases/ch4/flask/surface/ (last access: 11 April 2018),
2017. a
Dlugokencky, E. J., Steele, L. P., Lang, P. M., and Masarie, K. A.: The growth
rate and distribution of atmospheric methane, J. Geophys.
Res., 99, 17021–17043, https://doi.org/10.1029/94jd01245, 1994. a
Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J.-F., Pfister, G. G., Fillmore, D., Granier, C., Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer, C., Baughcum, S. L., and Kloster, S.: Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4), Geosci. Model Dev., 3, 43–67, https://doi.org/10.5194/gmd-3-43-2010, 2010. a
Etiope, G. and Milkov, A. V.: A new estimate of global methane flux from
onshore and shallow submarine mud volcanoes to the atmosphere, Environmental
Geology, 46, 997–1002, https://doi.org/10.1007/s00254-004-1085-1, 2004. a, b
Etminan, M., Myhre, G., Highwood, E. J., and Shine, K. P.: Radiative forcing
of carbon dioxide, methane, and nitrous oxide: A significant revision of the
methane radiative forcing, Geophys. Res. Lett., 43,
12614–12623, https://doi.org/10.1002/2016GL071930, 2016. a
Farah, M., Birrell, P., Conti, S., and Angelis, D. D.: Bayesian Emulation and
Calibration of a Dynamic Epidemic Model for A/H1N1 Influenza, J. Am. Stat. Assoc., 109, 1398–1411,
https://doi.org/10.1080/01621459.2014.934453, 2014. a
Ganesan, A. L., Stell, A. C., Gedney, N., Comyn-Platt, E., Hayman, G., Rigby,
M., Poulter, B., and Hornibrook, E.: Spatially Resolved Isotopic Source
Signatures of Wetland Methane Emissions, Geophys. Res. Lett., 45,
3737–3745, https://doi.org/10.1002/2018GL077536, 2018. a
Gay, D. M.: Usage Summary for Selected Optimization Routines (PORT
Mathematical Subroutine Library, Optimization chapter), Tech. Rep. 153,
AT&T Bell Laboratories, Murray Hill, NJ 07974, 1990. a
Hein, R., Crutzen, P. J., and Heimann, M.: An inverse modeling approach to
investigate the global atmospheric methane cycle, Global Biogeochem. Cy., 11, 43–76, https://doi.org/10.1029/96GB03043, 1997. a
Houweling, S., Kaminski, T., Dentener, F., Lelieveld, J., and Heimann, M.:
Inverse modeling of methane sources and sinks using the adjoint of a global
transport model, J. Geophys. Res.-Atmos., 104,
26137–26160, https://doi.org/10.1029/1999JD900428, 1999. a, b, c
Kennedy, M., Anderson, C., O'Hagan, A., Lomas, M., Woodward, I., and Gosling,
J. P.: Quantifying uncertainty in the biospheric carbon flux for England and
Wales, J. R. Stat. Soc., 171, 109–135, 2008. a
King, S. L., Quay, P. D., and Lansdown, J. M.: The 13C/ 12C kinetic isotope
effect for soil oxidation of methane at ambient atmospheric concentrations,
J. Geophys. Res., 94, 18273–18277,
https://doi.org/10.1029/JD094iD15p18273, 1989. a
Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J. G.,
Dlugokencky, E. J., Bergamaschi, P., Bergmann, D., Blake, D. R., Bruhwiler,
L., Cameron-Smith, P., Castaldi, S., Chevallier, F., Feng, L., Fraser, A.,
Heimann, M., Hodson, E. L., Houweling, S., Josse, B., Fraser, P. J., Krummel,
P. B., Lamarque, J.-F., Langenfelds, R. L., Le Quéré, C., Naik,
V., O'Doherty, S., Palmer, P. I., Pison, I., Plummer, D., Poulter, B., Prinn,
R. G., Rigby, M., Ringeval, B., Santini, M., Schmidt, M., Shindell, D. T.,
Simpson, I. J., Spahni, R., Steele, L. P., Strode, S. A., Sudo, K., Szopa,
S., van der Werf, G. R., Voulgarakis, A., van Weele, M., Weiss, R. F.,
Williams, J. E., and Zeng, G.: Three decades of global methane sources and
sinks, Nat. Geosci., 6, 813–823, https://doi.org/10.1038/ngeo1955, 2013. a
Lambert, G. and Schmidt, S.: Reevaluation of the oceanic flux of methane:
Uncertainties and long term variations, Chemosphere, 26, 579–589,
https://doi.org/10.1016/0045-6535(93)90443-9, 1993. a, b
Lee, L. A., Carslaw, K. S., Pringle, K. J., Mann, G. W., and Spracklen, D. V.: Emulation of a complex global aerosol model to quantify sensitivity to uncertain parameters, Atmos. Chem. Phys., 11, 12253–12273, https://doi.org/10.5194/acp-11-12253-2011, 2011. a
Lee, L. A., Carslaw, K. S., Pringle, K. J., and Mann, G. W.: Mapping the uncertainty in global CCN using emulation, Atmos. Chem. Phys., 12, 9739–9751, https://doi.org/10.5194/acp-12-9739-2012, 2012. a
McKay, M. D., Beckman, R. J., and Conover, W. J.: A Comparison of Three
Methods for Selecting Values of Input Variables in the Analysis of Output
From a Computer Code, Technometrics, 21, 239–245,
https://doi.org/10.1080/00401706.2000.10485979, 1979. a
McNorton, J., Wilson, C., Gloor, M., Parker, R. J., Boesch, H., Feng, W., Hossaini, R., and Chipperfield, M. P.: Attribution of recent increases in atmospheric methane through 3-D inverse modelling, Atmos. Chem. Phys., 18, 18149–18168, https://doi.org/10.5194/acp-18-18149-2018, 2018. a, b, c, d
Miller, J. B., Mack, K. A., Dissly, R., White, J. W., Dlugokencky, E. J., and
Tans, P. P.: Development of analytical methods and measurements of 13C/12C
in atmospheric CH4 from the NOAA Climate Monitoring and Diagnostics
Laboratory Global Air Sampling Network, J. Geophys. Res.-Atmos., 107, 4178, https://doi.org/10.1029/2001JD000630, 2002. a
Miller, S. M., Michalak, A. M., Detmers, R. G., Hasekamp, O. P., Bruhwiler, L.
M. P., and Schwietzke, S.: China's coal mine methane regulations have not
curbed growing emissions, Nat. Commun., 10, 303,
https://doi.org/10.1038/s41467-018-07891-7, 2019. a
Morris, M. D. and Mitchell, T. J.: Exploratory designs for computational
experiments, J. Stat. Plan. Infer., 43, 381–402,
https://doi.org/10.1016/0378-3758(94)00035-T, 1995. a
Murguia-Flores, F., Arndt, S., Ganesan, A. L., Murray-Tortarolo, G., and Hornibrook, E. R. C.: Soil Methanotrophy Model (MeMo v1.0): a process-based model to quantify global uptake of atmospheric methane by soil, Geosci. Model Dev., 11, 2009–2032, https://doi.org/10.5194/gmd-11-2009-2018, 2018. a, b
Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J.,
Huang, J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T.,
Robock, A., Stephens, G., Takemura, T., and Zhang, H.: Anthropogenic and
Natural Radiative Forcing, in: Climate Change 2013: The Physical Science
Basis. Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Stocker, T., Qin, D.,
Plattner, G.-K., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y.,
Bex, V., and Midgley, P., Cambridge University Press,
Cambridge, United Kingdom and New York, NY, USA, 659–740, https://doi.org/10.1017/CBO9781107415324.018, 2013. a
Naus, S., Montzka, S. A., Pandey, S., Basu, S., Dlugokencky, E. J., and Krol, M.: Constraints and biases in a tropospheric two-box model of OH, Atmos. Chem. Phys., 19, 407–424, https://doi.org/10.5194/acp-19-407-2019, 2019. a, b
Nisbet, E. G., Dlugokencky, E. J., Manning, M. R., Lowry, D., Fisher, R. E.,
France, J. L., Michel, S. E., Miller, J. B., White, J. W., Vaughn, B.,
Bousquet, P., Pyle, J. A., Warwick, N. J., Cain, M., Brownlow, R., Zazzeri,
G., Lanoisellé, M., Manning, A. C., Gloor, E., Worthy, D. E., Brunke,
E. G., Labuschagne, C., Wolff, E. W., and Ganesan, A. L.: Rising atmospheric
methane: 2007–2014 growth and isotopic shift, Global Biogeochem. Cy., 30, 1356–1370, https://doi.org/10.1002/2016GB005406, 2016. a, b, c, d, e
O'Hagan, A.: Bayesian analysis of computer code outputs: A tutorial,
Reliability Engineering and System Safety, 91, 1290–1300,
https://doi.org/10.1016/j.ress.2005.11.025, 2006. a, b
Olson, R., Ruckert, K. L., Chang, W., Keller, K., Haran, M., and An, S. I.:
Stilt: Easy emulation of time series AR(1) computer model output in
multidimensional parameter space, The R Journal, 10, 209–225,
https://doi.org/10.32614/RJ-2018-049, 2018. a
Patra, P. K., Houweling, S., Krol, M., Bousquet, P., Belikov, D., Bergmann, D., Bian, H., Cameron-Smith, P., Chipperfield, M. P., Corbin, K., Fortems-Cheiney, A., Fraser, A., Gloor, E., Hess, P., Ito, A., Kawa, S. R., Law, R. M., Loh, Z., Maksyutov, S., Meng, L., Palmer, P. I., Prinn, R. G., Rigby, M., Saito, R., and Wilson, C.: TransCom model simulations of CH4 and related species: linking transport, surface flux and chemical loss with CH4 variability in the troposphere and lower stratosphere, Atmos. Chem. Phys., 11, 12813–12837, https://doi.org/10.5194/acp-11-12813-2011, 2011. a, b, c
Patra, P. K., Krol, M. C., Montzka, S. A., Arnold, T., Atlas, E. L., Lintner,
B. R., Stephens, B. B., Xiang, B., Elkins, J. W., Fraser, P. J., Ghosh, A.,
Hintsa, E. J., Hurst, D. F., Ishijima, K., Krummel, P. B., Miller, B. R.,
Miyazaki, K., Moore, F. L., Mühle, J., O'Doherty, S., Prinn, R. G.,
Steele, L. P., Takigawa, M., Wang, H. J., Weiss, R. F., Wofsy, S. C., and
Young, D.: Observational evidence for interhemispheric hydroxyl-radical
parity, Nature, 513, 219–223, https://doi.org/10.1038/nature13721, 2014. a
Quay, P., Stutsman, J., Wilbur, D., Snover, A., Dlugokencky, E., and Brown, T.:
The isotopic composition of atmospheric methane, Global Biogeochem. Cy., 13, 445–461, https://doi.org/10.1029/1998GB900006, 1999. a
Rasmussen, C. and Williams, K.: Gaussian Processes for Machine Learning, The
MIT Press, Cambridge, Massachusetts, 248 pp., 2006. a
Reeburgh, W. S., Hirsch, A. I., Sansone, F. J., Popp, B. N., and Rust, T. M.:
Carbon kinetic isotope effect accompanying microbial oxidation of methane in
boreal forest soils, Geochim. Cosmochim. Ac., 61, 4761–4767,
https://doi.org/10.1016/S0016-7037(97)00277-9, 1997. a
Regayre, L. A., Johnson, J. S., Yoshioka, M., Pringle, K. J., Sexton, D. M. H., Booth, B. B. B., Lee, L. A., Bellouin, N., and Carslaw, K. S.: Aerosol and physical atmosphere model parameters are both important sources of uncertainty in aerosol ERF, Atmos. Chem. Phys., 18, 9975–10006, https://doi.org/10.5194/acp-18-9975-2018, 2018. a
Rice, A. L., Butenhoff, C. L., Teama, D. G., Röger, F. H., Khalil, M.
A. K., and Rasmussen, R. A.: Atmospheric methane isotopic record favors
fossil sources flat in 1980s and 1990s with recent increase, P. Natl. Acad. Sci. USA, 113,
10791–10796, https://doi.org/10.1073/pnas.1522923113, 2016. a, b
Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu,
E., Bosilovich, M. G., Schubert, S. D., Takacs, L., Kim, G.-K., Bloom, S.,
Chen, J., Collins, D., Conaty, A., da Silva, A., Gu, W., Joiner, J., Koster,
R. D., Lucchesi, R., Molod, A., Owens, T., Pawson, S., Pegion, P., Redder,
C. R., Reichle, R., Robertson, F. R., Ruddick, A. G., Sienkiewicz, M., and
Woollen, J.: MERRA : NASA's Modern-Era Retrospective Analysis for Research
and Applications, J. Climate, 24, 3624–3648,
https://doi.org/10.1175/JCLI-D-11-00015.1, 2011. a
Rigby, M., Prinn, R. G., Fraser, P. J., Simmonds, P. G., Langenfelds, R. L.,
Huang, J., Cunnold, D. M., Steele, L. P., Krummel, P. B., Weiss, R. F.,
O'Doherty, S., Salameh, P. K., Wang, H. J., Harth, C. M., Mühle, J.,
and Porter, L. W.: Renewed growth of atmospheric methane, Geophys. Res. Lett., 35, L22805, https://doi.org/10.1029/2008GL036037, 2008. a, b
Rigby, M., Montzka, S. A., Prinn, R. G., White, J. W. C., Young, D., O'Doherty,
S., Lunt, M. F., Ganesan, A. L., Manning, A. J., Simmonds, P. G., Salameh,
P. K., Harth, C. M., Mühle, J., Weiss, R. F., Fraser, P. J., Steele,
L. P., Krummel, P. B., McCulloch, A., and Park, S.: Role of atmospheric
oxidation in recent methane growth, P. Natl. Acad. Sci. USA, 114, 5373–5377, https://doi.org/10.1073/pnas.1616426114, 2017. a, b, c, d, e, f, g, h, i
Saltelli, A. and Annoni, P.: How to avoid a perfunctory sensitivity analysis,
Environ. Modell. Softw., 25, 1508–1517,
https://doi.org/10.1016/j.envsoft.2010.04.012, 2010. a, b
Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D.,
Saisana, M., and Tarantola, S.: Global Sensitivity Analysis: The Primer,
Wiley, Chichester, United Kingdom, https://doi.org/10.1111/j.1751-5823.2008.00062_17.x,
2000. a, b, c
Saueressig, G., Bergamaschi, P., Crowley, J. N., Fischer, H., and Harris,
G. W.: Carbon kinetic isotope effect in the reaction of CH4 with Cl atoms,
Geophys. Res. Lett., 22, 1225–1228, https://doi.org/10.1029/95GL00881, 1995. a
Saueressig, G., Crowley, J. N., Bergamaschi, P., Brühl, C.,
Brenninkmeijer, C. A. M., and Fischer, H.: Carbon 13 and D kinetic isotope
effects in the reactions of CH 4 with O( 1 D ) and OH: New laboratory
measurements and their implications for the isotopic composition of
stratospheric methane, J. Geophys. Res.-Atmos., 106,
23127–23138, https://doi.org/10.1029/2000JD000120, 2001. a, b
Saunois, M., Bousquet, P., Poulter, B., Peregon, A., Ciais, P., Canadell, J. G., Dlugokencky, E. J., Etiope, G., Bastviken, D., Houweling, S., Janssens-Maenhout, G., Tubiello, F. N., Castaldi, S., Jackson, R. B., Alexe, M., Arora, V. K., Beerling, D. J., Bergamaschi, P., Blake, D. R., Brailsford, G., Brovkin, V., Bruhwiler, L., Crevoisier, C., Crill, P., Covey, K., Curry, C., Frankenberg, C., Gedney, N., Höglund-Isaksson, L., Ishizawa, M., Ito, A., Joos, F., Kim, H.-S., Kleinen, T., Krummel, P., Lamarque, J.-F., Langenfelds, R., Locatelli, R., Machida, T., Maksyutov, S., McDonald, K. C., Marshall, J., Melton, J. R., Morino, I., Naik, V., O'Doherty, S., Parmentier, F.-J. W., Patra, P. K., Peng, C., Peng, S., Peters, G. P., Pison, I., Prigent, C., Prinn, R., Ramonet, M., Riley, W. J., Saito, M., Santini, M., Schroeder, R., Simpson, I. J., Spahni, R., Steele, P., Takizawa, A., Thornton, B. F., Tian, H., Tohjima, Y., Viovy, N., Voulgarakis, A., van Weele, M., van der Werf, G. R., Weiss, R., Wiedinmyer, C., Wilton, D. J., Wiltshire, A., Worthy, D., Wunch, D., Xu, X., Yoshida, Y., Zhang, B., Zhang, Z., and Zhu, Q.: The global methane budget 2000–2012, Earth Syst. Sci. Data, 8, 697–751, https://doi.org/10.5194/essd-8-697-2016, 2016. a, b, c, d, e
Schaefer, H., Fletcher, S. E. M., Veidt, C., Lassey, K. R., Brailsford, G. W.,
Bromley, T. M., Dlugokencky, E. J., Michel, S. E., Miller, J. B., Levin, I.,
Lowe, D. C., Martin, R. J., Vaughn, B. H., and White, J. W. C.: A
21st-century shift from fossil-fuel to biogenic methane emissions indicated
by 13CH4, Science, 352, 80–84, https://doi.org/10.1126/science.aad2705, 2016. a, b, c, d, e
Schwietzke, S., Sherwood, O. A., Bruhwiler, L. M. P., Miller, J. B., Etiope,
G., Dlugokencky, E. J., White, J. W. C., Pieter, P. T., Michel, S. E.,
Arling, V. A., Vaughn, B. H., and James, W.: Upward revision of global
fossil fuel methane emissions based on isotope database, Nature, 538,
88–91, https://doi.org/10.1038/nature19797, 2016. a, b
Sherwen, T., Schmidt, J. A., Evans, M. J., Carpenter, L. J., Großmann, K., Eastham, S. D., Jacob, D. J., Dix, B., Koenig, T. K., Sinreich, R., Ortega, I., Volkamer, R., Saiz-Lopez, A., Prados-Roman, C., Mahajan, A. S., and Ordóñez, C.: Global impacts of tropospheric halogens (Cl, Br, I) on oxidants and composition in GEOS-Chem, Atmos. Chem. Phys., 16, 12239–12271, https://doi.org/10.5194/acp-16-12239-2016, 2016. a, b
Simpson, I. J., Rowland, F. S., Meinardi, S., and Blake, D. R.: Influence of
biomass burning during recent fluctuations in the slow growth of global
tropospheric methane, Geophys. Res. Lett., 33, L22808,
https://doi.org/10.1029/2006GL027330, 2006. a
Snover, A. K. and Quay, P. D.: Hydrogen and carbon kinetic isotope effects
during soil uptake of atmospheric methane, Global Biogeochem. Cy., 14,
25–39, https://doi.org/10.1029/1999GB900089, 2000. a
Spivakovsky, C. M., Logan, J. A., Montzka, S. A., Balkanski, Y. J.,
Foreman-Fowler, M., Jones, D. B. A., Horowitz, L. W., Fusco, A. C.,
Brenninkmeijer, C. A. M., Prather, M. J., Wofsy, S. C., and McElroy, M. B.:
Three-dimensional climatological distribution of tropospheric OH: Update and
evaluation, J. Geophys. Res.-Atmos., 105, 8931–8980,
https://doi.org/10.1029/1999JD901006, 2000. a, b
Stell, A. C.: Global methane freshwater emission map for atmospheric
modelling, available at: https://osf.io/q9f8p/ (last access: 25 August 2020), https://doi.org/10.17605/OSF.IO/Q9F8P, 2020a. a, b
Stell, A. C.: Atmospheric methane source and sink sensitivity analysis using
Gaussian process emulation, available at: https://osf.io/z435m/ (last access: 8 January 2021), https://doi.org/10.17605/OSF.IO/Z435M,
2020b. a
Strode, S. A., Wang, J. S., Manyin, M., Duncan, B., Hossaini, R., Keller, C. A., Michel, S. E., and White, J. W. C.: Strong sensitivity of the isotopic composition of methane to the plausible range of tropospheric chlorine, Atmos. Chem. Phys., 20, 8405–8419, https://doi.org/10.5194/acp-20-8405-2020, 2020. a
Tans, P. P.: A note on isotopic ratios and the global atmospheric methane
budget, Global Biogeochem. Cy., 11, 77–81, https://doi.org/10.1029/96GB03940,
1997. a
Thanwerdas, J., Saunois, M., Berchet, A., Pison, I., Hauglustaine, D., Ramonet, M., Crevoisier, C., Baier, B., Sweeney, C., and Bousquet, P.: Impact of atomic chlorine on the modelling of total methane and its 13C : 12C isotopic ratio at global scale, Atmos. Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-2019-925, 2019. a
Turner, A. J., Jacob, D. J., Benmergui, J., Wofsy, S. C., Maasakkers, J. D.,
Butz, A., Hasekamp, O., and Biraud, S. C.: A large increase in U.S. methane
emissions over the past decade inferred from satellite data and surface
observations, Geophys. Res. Lett., 43, 2218–2224,
https://doi.org/10.1002/2016GL067987, 2016. a
Tyler, S. C., Crill, P. M., and Brailsford, G. W.: 13C/12C Fractionation of
methane during oxidation in a temperate forested soil, Geochim. Cosmochim. Ac., 58, 1625–1633, https://doi.org/10.1016/0016-7037(94)90564-9, 1994. a
Tyler, S. C., Ajie, H. O., Rice, A. L., and Cicerone, R. J.: Experimentally
determined kinetic isotope effects in the reaction of CH4 with Cl:
Implications for atmospheric CH4, Geophys. Res. Lett., 27,
1715–1718, https://doi.org/10.1029/1999GL011168, 2000. a
van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., Morton, D. C., DeFries, R. S., Jin, Y., and van Leeuwen, T. T.: Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009), Atmos. Chem. Phys., 10, 11707–11735, https://doi.org/10.5194/acp-10-11707-2010, 2010. a, b
Vernon, I., Goldstein, M., and Bower, R. G.: Galaxy Formation: a Bayesian
Uncertainty Analysis, Bayesian Analysis, 5, 619–669,
https://doi.org/10.1214/10-BA524, 2010. a, b
Wang, X., Jacob, D. J., Eastham, S. D., Sulprizio, M. P., Zhu, L., Chen, Q., Alexander, B., Sherwen, T., Evans, M. J., Lee, B. H., Haskins, J. D., Lopez-Hilfiker, F. D., Thornton, J. A., Huey, G. L., and Liao, H.: The role of chlorine in global tropospheric chemistry, Atmos. Chem. Phys., 19, 3981–4003, https://doi.org/10.5194/acp-19-3981-2019, 2019. a
White, J., Vaughn, B., and Michel, S.: Stable Isotopic Composition of
Atmospheric Methane (13C) from the NOAA ESRL Carbon Cycle Cooperative Global
Air Sampling Network, 1998-2016, Version: 2018-01-31, available at:
ftp://aftp.cmdl.noaa.gov/data/trace_gases/ch4c13/flask/ (last access: 11 April 2018),
2018. a
Whiticar, M. and Schaefer, H.: Constraining past global tropospheric methane
budgets with carbon and hydrogen isotope ratios in ice, Philos. T. Roy. Soc. A, 365, 1793–1828, https://doi.org/10.1098/rsta.2007.2048, 2007. a
Wild, O., Voulgarakis, A., O'Connor, F., Lamarque, J.-F., Ryan, E. M., and Lee, L.: Global sensitivity analysis of chemistry–climate model budgets of tropospheric ozone and OH: exploring model diversity, Atmos. Chem. Phys., 20, 4047–4058, https://doi.org/10.5194/acp-20-4047-2020, 2020. a
Worden, J. R., Bloom, A. A., Pandey, S., Jiang, Z., Worden, H. M., Walker,
T. W., Houweling, S., and Röckmann, T.: Reduced biomass burning
emissions reconcile conflicting estimates of the post-2006 atmospheric
methane budget, Nat. Commun., 8, 2227,
https://doi.org/10.1038/s41467-017-02246-0, 2017. a, b, c, d
Yan, X., Akiyama, H., Yagi, K., and Akimoto, H.: Global estimations of the
inventory and mitigation potential of methane emissions from rice cultivation
conducted using the 2006 Intergovernmental Panel on Climate Change
Guidelines, Global Biogeochem. Cy., 23, GB2002,
https://doi.org/10.1029/2008GB003299, 2009. a, b
Short summary
Although it is the second-most important greenhouse gas, our understanding of the atmospheric-methane budget is limited. The uncertainty highlights the need for new tools to investigate sources and sinks. Here, we use a Gaussian process emulator to efficiently approximate the response of atmospheric-methane observations to changes in the most uncertain emission or loss processes. With this new method, we rigorously quantify the sensitivity of atmospheric observations to budget uncertainties.
Although it is the second-most important greenhouse gas, our understanding of the...
Similar articles
Estimating the variability in NOx...
Zhang et al.
Enhanced understanding of atmospheric...
Kou et al.
Natural emissions of VOC and NOx over...
Opacka et al.