Articles | Volume 21, issue 2
https://doi.org/10.5194/acp-21-1357-2021
https://doi.org/10.5194/acp-21-1357-2021
Research article
 | 
01 Feb 2021
Research article |  | 01 Feb 2021

Secular change in atmospheric Ar∕N2 and its implications for ocean heat uptake and Brewer–Dobson circulation

Shigeyuki Ishidoya, Satoshi Sugawara, Yasunori Tohjima, Daisuke Goto, Kentaro Ishijima, Yosuke Niwa, Nobuyuki Aoki, and Shohei Murayama

Related authors

Diurnal, seasonal, and interannual variations in δ(18O) of atmospheric O2 and its application to evaluate changes in oxygen, carbon, and water cycles
Shigeyuki Ishidoya, Satoshi Sugawara, and Atsushi Okazaki
EGUsphere, https://doi.org/10.5194/egusphere-2024-654,https://doi.org/10.5194/egusphere-2024-654, 2024
Short summary
Measurement report: Method for evaluating CO2 emissions from a cement plant using atmospheric δ(O2 ∕ N2) and CO2 measurements and its implication for future detection of CO2 capture signals
Shigeyuki Ishidoya, Kazuhiro Tsuboi, Hiroaki Kondo, Kentaro Ishijima, Nobuyuki Aoki, Hidekazu Matsueda, and Kazuyuki Saito
Atmos. Chem. Phys., 24, 1059–1077, https://doi.org/10.5194/acp-24-1059-2024,https://doi.org/10.5194/acp-24-1059-2024, 2024
Short summary
Development of compact continuous measurement system for atmospheric carbonyl sulfide concentration
Kazuki Kamezaki, Sebastian O. Danielache, Shigeyuki Ishidoya, Takahisa Maeda, and Shohei Murayama
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-209,https://doi.org/10.5194/amt-2023-209, 2023
Revised manuscript not accepted
Short summary
Influence of CO2 adsorption on cylinders and fractionation of CO2 and air during the preparation of a standard mixture
Nobuyuki Aoki, Shigeyuki Ishidoya, Shohei Murayama, and Nobuhiro Matsumoto
Atmos. Meas. Tech., 15, 5969–5983, https://doi.org/10.5194/amt-15-5969-2022,https://doi.org/10.5194/amt-15-5969-2022, 2022
Short summary
Spatiotemporal variations of the δ(O2 ∕ N2), CO2 and δ(APO) in the troposphere over the western North Pacific
Shigeyuki Ishidoya, Kazuhiro Tsuboi, Yosuke Niwa, Hidekazu Matsueda, Shohei Murayama, Kentaro Ishijima, and Kazuyuki Saito
Atmos. Chem. Phys., 22, 6953–6970, https://doi.org/10.5194/acp-22-6953-2022,https://doi.org/10.5194/acp-22-6953-2022, 2022
Short summary

Related subject area

Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Deciphering anthropogenic and biogenic contributions to selected non-methane volatile organic compound emissions in an urban area
Arianna Peron, Martin Graus, Marcus Striednig, Christian Lamprecht, Georg Wohlfahrt, and Thomas Karl
Atmos. Chem. Phys., 24, 7063–7083, https://doi.org/10.5194/acp-24-7063-2024,https://doi.org/10.5194/acp-24-7063-2024, 2024
Short summary
Emission characteristics of reactive organic gases (ROGs) from industrial volatile chemical products (VCPs) in the Pearl River Delta (PRD), China
Sihang Wang, Bin Yuan, Xianjun He, Ru Cui, Xin Song, Yubin Chen, Caihong Wu, Chaomin Wang, Yibo Huangfu, Xiao-Bing Li, Boguang Wang, and Min Shao
Atmos. Chem. Phys., 24, 7101–7121, https://doi.org/10.5194/acp-24-7101-2024,https://doi.org/10.5194/acp-24-7101-2024, 2024
Short summary
Measurement report: Enhanced photochemical formation of formic and isocyanic acids in urban regions aloft – insights from tower-based online gradient measurements
Qing Yang, Xiao-Bing Li, Bin Yuan, Xiaoxiao Zhang, Yibo Huangfu, Lei Yang, Xianjun He, Jipeng Qi, and Min Shao
Atmos. Chem. Phys., 24, 6865–6882, https://doi.org/10.5194/acp-24-6865-2024,https://doi.org/10.5194/acp-24-6865-2024, 2024
Short summary
Sources of organic gases and aerosol particles and their roles in nighttime particle growth at a rural forested site in southwest Germany
Junwei Song, Harald Saathoff, Feng Jiang, Linyu Gao, Hengheng Zhang, and Thomas Leisner
Atmos. Chem. Phys., 24, 6699–6717, https://doi.org/10.5194/acp-24-6699-2024,https://doi.org/10.5194/acp-24-6699-2024, 2024
Short summary
Surface snow bromide and nitrate at Eureka, Canada, in early spring and implications for polar boundary layer chemistry
Xin Yang, Kimberly Strong, Alison S. Criscitiello, Marta Santos-Garcia, Kristof Bognar, Xiaoyi Zhao, Pierre Fogal, Kaley A. Walker, Sara M. Morris, and Peter Effertz
Atmos. Chem. Phys., 24, 5863–5886, https://doi.org/10.5194/acp-24-5863-2024,https://doi.org/10.5194/acp-24-5863-2024, 2024
Short summary

Cited articles

Adachi, Y., Kawamura, K., Armi, L., and Keeling, R. F.: Diffusive separation of the lower atmosphere, Science, 311, 1429 pp., https://doi.org/10.1126/science.1121312, 2006. 
Aoki, N., Ishidoya, S., Matsumoto, N., Watanabe, T., Shimosaka, T., and Murayama, S.: Preparation of primary standard mixtures for atmospheric oxygen measurements with less than 1 µmol mol−1 uncertainty for oxygen molar fractions, Atmos. Meas. Tech., 12, 2631–2646, https://doi.org/10.5194/amt-12-2631-2019, 2019. 
Aoki, N., Ishidoya, S., Tohjima, Y., Morimoto, S., Keeling, R. F., Cox, A., Takebayashi, S., and Murayama, S.: Inter-comparison of O2∕N2 Ratio Scales Among AIST, NIES, TU, and SIO Based on Round-Robin Using Gravimetric Standard Mixtures, Atmos. Meas. Tech. Discuss. [preprint], https://doi.org/10.5194/amt-2020-481, in review, 2021. 
Austin, J. and Li, F.: On the relationship between the strength of the Brewer-Dobson circulation and the age of stratospheric air, Geophys. Res. Lett., 33, L17807, https://doi.org/10.1029/2006GL026867, 2006. 
Banks, P. M. and Kockarts, G.: Aeronomy, Parts A and B, Academic Press, New York, USA, 1973. 
Download
Short summary
The surface Ar / N2 ratio showed not only secular increasing trends, but also interannual variations in phase with the global ocean heat content (OHC). Sensitivity test by using a two-dimensional model indicated that the secular trend in the Ar / N2 ratio is modified by the gravitational separation in the stratosphere. The analytical results imply that the surface Ar/N2 ratio is an important tracer for detecting spatiotemporally integrated changes in OHC and stratospheric circulation.
Altmetrics
Final-revised paper
Preprint