Articles | Volume 21, issue 15
https://doi.org/10.5194/acp-21-11581-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-11581-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Photodegradation of atmospheric chromophores: changes in oxidation state and photochemical reactivity
Zhen Mu
School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
Lixin Zhang
School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
Dongjie Guan
School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
Hao Li
School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
Related authors
Qingcai Chen, Zhen Mu, Li Xu, Mamin Wang, Jin Wang, Ming Shan, Xudong Yang, Xingjun Fan, Jianzhong Song, Yuqin Wang, Pengchuan Lin, Lixin Zhang, Zhenxing Shen, and Lin Du
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-1032, https://doi.org/10.5194/acp-2019-1032, 2020
Preprint withdrawn
Short summary
Short summary
It is important to study the formation characteristics and mechanism of triplet state in aerosols to quantify the effect of chromophore substances on the global climate and atmospheric environmental quality. The result of this study reveals that chromophore substances contributes significantly to aerosol photochemistry and plays an important role in aerosol aging. The global models may need to include those potential effects in the future.
Haibiao Chen, Caiqing Yan, Liubin Huang, Lin Du, Yang Yue, Xinfeng Wang, Qingcai Chen, Mingjie Xie, Junwen Liu, Fengwen Wang, Shuhong Fang, Qiaoyun Yang, Hongya Niu, Mei Zheng, Yan Wu, and Likun Xue
EGUsphere, https://doi.org/10.5194/egusphere-2024-2416, https://doi.org/10.5194/egusphere-2024-2416, 2024
Short summary
Short summary
A comprehensive understanding of the optical properties of brown carbon (BrC) is essential to accurately assess its climatic effects. Based on multi-site spectroscopic measurements, this study demonstrated the significant spatial heterogeneity in the optical and structural properties of water-soluble BrC (WS-BrC) in different regions of China, and revealed factors affecting WS-BrC light absorption and the relationship between fluorophores and light absorption of WS-BrC.
Tong Sha, Siyu Yang, Qingcai Chen, Liangqing Li, Xiaoyan Ma, Yan-Lin Zhang, Zhaozhong Feng, K. Folkert Boersma, and Jun Wang
Atmos. Chem. Phys., 24, 8441–8455, https://doi.org/10.5194/acp-24-8441-2024, https://doi.org/10.5194/acp-24-8441-2024, 2024
Short summary
Short summary
Using an updated soil reactive nitrogen emission scheme in the Unified Inputs for Weather Research and Forecasting coupled with Chemistry (UI-WRF-Chem) model, we investigate the role of soil NO and HONO (Nr) emissions in air quality and temperature in North China. Contributions of soil Nr emissions to O3 and secondary pollutants are revealed, exceeding effects of soil NOx or HONO emission. Soil Nr emissions play an important role in mitigating O3 pollution and addressing climate change.
Huanhuan Zhang, Rui Li, Chengpeng Huang, Xiaofei Li, Shuwei Dong, Fu Wang, Tingting Li, Yizhu Chen, Guohua Zhang, Yan Ren, Qingcai Chen, Ru-jin Huang, Siyu Chen, Tao Xue, Xinming Wang, and Mingjin Tang
Atmos. Chem. Phys., 23, 3543–3559, https://doi.org/10.5194/acp-23-3543-2023, https://doi.org/10.5194/acp-23-3543-2023, 2023
Short summary
Short summary
This work investigated the seasonal variation of aerosol Fe solubility for coarse and fine particles in Xi’an, a megacity in northwestern China severely affected by anthropogenic emission and desert dust aerosol. In addition, we discussed in depth what controlled aerosol Fe solubility at different seasons for coarse and fine particles.
Dongjie Guan, Qingcai Chen, Jinwen Li, Hao Li, Lixin Zhang, Yuqin Wang, Xiaofei Li, and Tian Chang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-842, https://doi.org/10.5194/acp-2021-842, 2021
Preprint withdrawn
Short summary
Short summary
The photochemical reactions of atmospheric aerosols are complicated, some reaction processes exist which have not been identified at present. This study focuses on a new mechanism of photochemical reactions, namely triplet reactions (3C*), and its potential impact on aerosol aging. This study demonstrate the coupling effect of 3C* formation between different aerosol components. The result is novel and useful in explaining how complex components affect photochemical aging of atmospheric aerosol.
Qingcai Chen, Haoyao Sun, Wenhuai Song, Fang Cao, Chongguo Tian, and Yan-Lin Zhang
Atmos. Chem. Phys., 20, 14407–14417, https://doi.org/10.5194/acp-20-14407-2020, https://doi.org/10.5194/acp-20-14407-2020, 2020
Short summary
Short summary
This study found environmentally persistent free radicals (EPFRs) are widely present in atmospheric particles of different particle sizes and exhibit significant particle size distribution characteristics. EPFR concentrations are higher in coarse particles than in fine particles in summer and vice versa in winter. The potential toxicity caused by EPFRs may also vary with particle size and season. Combustion is the most important source of EPFRs (>70 %).
Qingcai Chen, Zhen Mu, Li Xu, Mamin Wang, Jin Wang, Ming Shan, Xudong Yang, Xingjun Fan, Jianzhong Song, Yuqin Wang, Pengchuan Lin, Lixin Zhang, Zhenxing Shen, and Lin Du
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-1032, https://doi.org/10.5194/acp-2019-1032, 2020
Preprint withdrawn
Short summary
Short summary
It is important to study the formation characteristics and mechanism of triplet state in aerosols to quantify the effect of chromophore substances on the global climate and atmospheric environmental quality. The result of this study reveals that chromophore substances contributes significantly to aerosol photochemistry and plays an important role in aerosol aging. The global models may need to include those potential effects in the future.
Yue Zhou, Hui Wen, Jun Liu, Wei Pu, Qingcai Chen, and Xin Wang
The Cryosphere, 13, 157–175, https://doi.org/10.5194/tc-13-157-2019, https://doi.org/10.5194/tc-13-157-2019, 2019
Short summary
Short summary
We first investigated the optical characteristics and potential sources of chromophoric dissolved organic matter (CDOM) in seasonal snow over northwestern China. The abundance of CDOM showed regional variation. At some sites strongly influenced by local soil, the absorption of CDOM cannot be neglected compared to black carbon. We found two humic-like and one protein-like fluorophores in snow. The major sources of snow CDOM were soil, biomass burning, and anthropogenic pollution.
Related subject area
Subject: Aerosols | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Particulate emissions from cooking: emission factors, emission dynamics, and mass spectrometric analysis for different cooking methods
Nocturnal atmospheric synergistic oxidation reduces the formation of low-volatility organic compounds from biogenic emissions
The interplay between aqueous replacement reaction and the phase state of internally mixed organic/ammonium aerosols
Measurement report: The Fifth International Workshop on Ice Nucleation phase 1 (FIN-01): intercomparison of single-particle mass spectrometers
Enhanced Sulfate Formation in Mixed Biomass Burning and Sea-salt Particles Mediated by Photosensitization: Effects of Chloride and Nitrogen-containing Compounds
Characterization of the particle size distribution, mineralogy, and Fe mode of occurrence of dust-emitting sediments from the Mojave Desert, California, USA
Heterogeneous formation and light absorption of secondary organic aerosols from acetone photooxidation: Remarkably enhancing effects of seeds and ammonia
Atmospheric oxidation of 1,3-butadiene: influence of acidity and relative humidity on SOA composition and air toxic compounds
Measurement report: Effects of transition metal ions on the optical properties of humic-like substances (HULIS) reveal a structural preference – a case study of PM2.5 in Beijing, China
Probing Iceland's dust-emitting sediments: particle size distribution, mineralogy, cohesion, Fe mode of occurrence, and reflectance spectra signatures
Photoenhanced sulfate formation by the heterogeneous uptake of SO2 on non-photoactive mineral dust
Comparison of water-soluble and water-insoluble organic compositions attributing to different light absorption efficiency between residential coal and biomass burning emissions
Technical note: High-resolution analyses of concentrations and sizes of black carbon particles deposited on northwest Greenland over the past 350 years – Part 1. Continuous flow analysis of the SIGMA-D ice core using a Wide-Range Single-Particle Soot Photometer and a high-efficiency nebulizer
Suppressed atmospheric chemical aging of cooking organic aerosol particles in wintertime conditions
Formation and loss of light absorbance by phenolic aqueous SOA by ●OH and an organic triplet excited state
Technical Note: A technique to convert NO2 to NO2− with S(IV) and its application to measuring nitrate photolysis
The impact of nanostructure on hygroscopicity and reactivity of fatty acid atmospheric aerosol proxies
Distribution, chemical, and molecular composition of high and low molecular weight humic-like substances in ambient aerosols
Desorption lifetimes and activation energies influencing gas–surface interactions and multiphase chemical kinetics
Molecular analysis of secondary organic aerosol and brown carbon from the oxidation of indole
Secondary organic aerosol formed by Euro 5 gasoline vehicle emissions: chemical composition and gas-to-particle phase partitioning
Assessment of the contribution of residential waste burning to ambient PM10 concentrations in Hungary and Romania
Source differences in the components and cytotoxicity of PM2.5 from automobile exhaust, coal combustion, and biomass burning contributing to urban aerosol toxicity
Chamber studies of OH + dimethyl sulfoxide and dimethyl disulfide: insights into the dimethyl sulfide oxidation mechanism
Low-temperature ice nucleation of sea spray and secondary marine aerosols under cirrus cloud conditions
Temperature-dependent aqueous OH kinetics of C2–C10 linear and terpenoid alcohols and diols: new rate coefficients, structure–activity relationship, and atmospheric lifetimes
A possible unaccounted source of nitrogen-containing compound formation in aerosols: amines reacting with secondary ozonides
Seasonal variations in photooxidant formation and light absorption in aqueous extracts of ambient particles
Variability in sediment particle size, mineralogy, and Fe mode of occurrence across dust-source inland drainage basins: the case of the lower Drâa Valley, Morocco
Gas–particle partitioning of toluene oxidation products: an experimental and modeling study
Chemically speciated air pollutant emissions from open burning of household solid waste from South Africa
Bulk and molecular-level composition of primary organic aerosol from wood, straw, cow dung, and plastic burning
Volatile oxidation products and secondary organosiloxane aerosol from D5 + OH at varying OH exposures
Molecular fingerprints and health risks of smoke from home-use incense burning
High enrichment of heavy metals in fine particulate matter through dust aerosol generation
Production of ice-nucleating particles (INPs) by fast-growing phytoplankton
Technical note: In situ measurements and modelling of the oxidation kinetics in films of a cooking aerosol proxy using a quartz crystal microbalance with dissipation monitoring (QCM-D)
Contrasting impacts of humidity on the ozonolysis of monoterpenes: insights into the multi-generation chemical mechanism
Quantifying the seasonal variations in and regional transport of PM2.5 in the Yangtze River Delta region, China: characteristics, sources, and health risks
Opinion: Atmospheric multiphase chemistry – past, present, and future
Distinct photochemistry in glycine particles mixed with different atmospheric nitrate salts
Effects of storage conditions on the molecular-level composition of organic aerosol particles
Characterization of gas and particle emissions from open burning of household solid waste from South Africa
Chemically distinct particle-phase emissions from highly controlled pyrolysis of three wood types
Predicting photooxidant concentrations in aerosol liquid water based on laboratory extracts of ambient particles
Physicochemical characterization of free troposphere and marine boundary layer ice-nucleating particles collected by aircraft in the eastern North Atlantic
Large differences of highly oxygenated organic molecules (HOMs) and low-volatile species in secondary organic aerosols (SOAs) formed from ozonolysis of β-pinene and limonene
Impact of fossil and non-fossil fuel sources on the molecular compositions of water-soluble humic-like substances in PM2.5 at a suburban site of Yangtze River Delta, China
Technical note: Improved synthetic routes to cis- and trans-(2-methyloxirane-2,3-diyl)dimethanol (cis- and trans-β-isoprene epoxydiol)
Technical note: Intercomparison study of the elemental carbon radiocarbon analysis methods using synthetic known samples
Julia Pikmann, Frank Drewnick, Friederike Fachinger, and Stephan Borrmann
Atmos. Chem. Phys., 24, 12295–12321, https://doi.org/10.5194/acp-24-12295-2024, https://doi.org/10.5194/acp-24-12295-2024, 2024
Short summary
Short summary
Cooking activities can contribute substantially to indoor and ambient aerosol. We performed a comprehensive study with laboratory measurements cooking 19 different dishes and ambient measurements at two Christmas markets measuring various particle properties and trace gases of emissions in real time. Similar emission characteristics were observed for dishes with the same preparation method, mainly due to similar cooking temperature and use of oil, with barbecuing as an especially strong source.
Han Zang, Zekun Luo, Chenxi Li, Ziyue Li, Dandan Huang, and Yue Zhao
Atmos. Chem. Phys., 24, 11701–11716, https://doi.org/10.5194/acp-24-11701-2024, https://doi.org/10.5194/acp-24-11701-2024, 2024
Short summary
Short summary
Atmospheric organics are subject to synergistic oxidation by different oxidants, yet the mechanisms of such processes are poorly understood. Here, using direct measurements and kinetic modeling, we probe the nocturnal synergistic-oxidation mechanism of α-pinene by O3 and NO3 radicals and in particular the fate of peroxy radical intermediates of different origins, which will deepen our understanding of the monoterpene oxidation chemistry and its contribution to atmospheric particle formation.
Hui Yang, Fengfeng Dong, Li Xia, Qishen Huang, Shufeng Pang, and Yunhong Zhang
Atmos. Chem. Phys., 24, 11619–11635, https://doi.org/10.5194/acp-24-11619-2024, https://doi.org/10.5194/acp-24-11619-2024, 2024
Short summary
Short summary
Atmospheric secondary aerosols, composed of organic and inorganic components, undergo complex reactions that impact their phase state. Using molecular spectroscopy, we showed that ammonium-promoted aqueous replacement reaction, unique to these aerosols, is closely linked to phase behavior. The interplay between reactions and aerosol phase state can cause atypical phase transition and irreversible changes in aerosol composition during hygroscopic cycles, further impacting atmospheric processes.
Xiaoli Shen, David M. Bell, Hugh Coe, Naruki Hiranuma, Fabian Mahrt, Nicholas A. Marsden, Claudia Mohr, Daniel M. Murphy, Harald Saathoff, Johannes Schneider, Jacqueline Wilson, Maria A. Zawadowicz, Alla Zelenyuk, Paul J. DeMott, Ottmar Möhler, and Daniel J. Cziczo
Atmos. Chem. Phys., 24, 10869–10891, https://doi.org/10.5194/acp-24-10869-2024, https://doi.org/10.5194/acp-24-10869-2024, 2024
Short summary
Short summary
Single-particle mass spectrometry (SPMS) is commonly used to measure the chemical composition and mixing state of aerosol particles. Intercomparison of SPMS instruments was conducted. All instruments reported similar size ranges and common spectral features. The instrument-specific detection efficiency was found to be more dependent on particle size than type. All differentiated secondary organic aerosol, soot, and soil dust but had difficulties differentiating among minerals and dusts.
Rongzhi Tang, Jialiang Ma, Ruifeng Zhang, Weizhen Cui, Yuanyuan Qin, Yangxi Chu, Yiming Qin, Alexander L. Vogel, and Chak K. Chan
EGUsphere, https://doi.org/10.5194/egusphere-2024-2633, https://doi.org/10.5194/egusphere-2024-2633, 2024
Short summary
Short summary
This study provided laboratory evidence that the photosensitizers in biomass burning extracts can enhance the sulfate formation in NaCl particles, primarily by triggering the formation of secondary oxidants under light and air, with less contribution of direct photosensitization via triplets.
Adolfo González-Romero, Cristina González-Flórez, Agnesh Panta, Jesús Yus-Díez, Patricia Córdoba, Andres Alastuey, Natalia Moreno, Melani Hernández-Chiriboga, Konrad Kandler, Martina Klose, Roger N. Clark, Bethany L. Ehlmann, Rebecca N. Greenberger, Abigail M. Keebler, Phil Brodrick, Robert Green, Paul Ginoux, Xavier Querol, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 24, 9155–9176, https://doi.org/10.5194/acp-24-9155-2024, https://doi.org/10.5194/acp-24-9155-2024, 2024
Short summary
Short summary
In this research, we studied the dust-emitting properties of crusts and aeolian ripples from the Mojave Desert. These properties are key to understanding the effect of dust upon climate. We found two different playa lakes according to the groundwater regime, which implies differences in crusts' cohesion state and mineralogy, which can affect the dust emission potential and properties. We also compare them with Moroccan Sahara crusts and Icelandic top sediments.
Si Zhang, Xinbei Xu, Luyao Chen, Can Wu, Zheng Li, Rongjie Li, Binyu Xiao, Xiaodi Liu, Rui Li, Fan Zhang, and Gehui Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2119, https://doi.org/10.5194/egusphere-2024-2119, 2024
Short summary
Short summary
SOA from acetone photooxidation can be formed more readily on neutral aerosols than on acidic aerosols, while heterogeneous reaction of carbonyl with ammonium is only active on acidic aerosols in the presence of NH3, which produces light-absorbing N-containing compounds. Our work suggested that the heterogeneous oxidation of highly volatile VOC, for example acetone, is an importance source of SOA in the atmosphere, which should be accounted for in the future model studies.
Mohammed Jaoui, Klara Nestorowicz, Krzysztof Rudzinski, Michael Lewandowski, Tadeusz Kleindienst, Julio Torres, Ewa Bulska, Witold Danikiewicz, and Rafal Szmigielski
EGUsphere, https://doi.org/10.5194/egusphere-2024-2032, https://doi.org/10.5194/egusphere-2024-2032, 2024
Short summary
Short summary
Recent research has established the contribution of 1,3-butadiene (13BD) to organic aerosol formation with negative implications to urban air quality. Health effects studies have focused on whole particulate matter but compounds responsible for adverse health effects remain uncertain. This study provides the effect of relative humidity and acidity on the chemical composition of aerosol formed from 13BD photooxidation.
Juanjuan Qin, Leiming Zhang, Yuanyuan Qin, Shaoxuan Shi, Jingnan Li, Zhao Shu, Yuwei Gao, Ting Qi, Jihua Tan, and Xinming Wang
Atmos. Chem. Phys., 24, 7575–7589, https://doi.org/10.5194/acp-24-7575-2024, https://doi.org/10.5194/acp-24-7575-2024, 2024
Short summary
Short summary
The present research unveiled that acidity dominates while transition metal ions harmonize with the light absorption properties of humic-like substances (HULIS). Cu2+ has quenching effects on HULIS by complexation, hydrogen substitution, or electrostatic adsorption, with aromatic structures of HULIS. Such effects are less pronounced if from Mn2+, Ni2+, Zn2+, and Cu2+. Oxidized HULIS might contain electron-donating groups, whereas N-containing compounds might contain electron-withdrawing groups.
Adolfo González-Romero, Cristina González-Flórez, Agnesh Panta, Jesús Yus-Díez, Patricia Córdoba, Andres Alastuey, Natalia Moreno, Konrad Kandler, Martina Klose, Roger N. Clark, Bethany L. Ehlmann, Rebecca N. Greenberger, Abigail M. Keebler, Phil Brodrick, Robert O. Green, Xavier Querol, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 24, 6883–6910, https://doi.org/10.5194/acp-24-6883-2024, https://doi.org/10.5194/acp-24-6883-2024, 2024
Short summary
Short summary
The knowledge of properties from dust emitted in high latitudes such as in Iceland is scarce. This study focuses on the particle size, mineralogy, cohesion, and iron mode of occurrence and reflectance spectra of dust-emitting sediments. Icelandic top sediments have lower cohesion state, coarser particle size, distinctive mineralogy, and 3-fold bulk Fe content, with a large presence of magnetite compared to Saharan crusts.
Wangjin Yang, Jiawei Ma, Hongxing Yang, Fu Li, and Chong Han
Atmos. Chem. Phys., 24, 6757–6768, https://doi.org/10.5194/acp-24-6757-2024, https://doi.org/10.5194/acp-24-6757-2024, 2024
Short summary
Short summary
We provide evidence that light enhances the conversion of SO2 to sulfates on non-photoactive mineral dust, where triplet states of SO2 (3SO2) can act as a pivotal trigger to generate sulfates. Photochemical sulfate formation depends on H2O, O2, and basicity of mineral dust. The SO2 photochemistry on non-photoactive mineral dust contributes to sulfates, highlighting previously unknown pathways to better explain the missing sources of atmospheric sulfates.
Lu Zhang, Jin Li, Yaojie Li, Xinlei Liu, Zhihan Luo, Guofeng Shen, and Shu Tao
Atmos. Chem. Phys., 24, 6323–6337, https://doi.org/10.5194/acp-24-6323-2024, https://doi.org/10.5194/acp-24-6323-2024, 2024
Short summary
Short summary
Brown carbon (BrC) is related to radiative forcing and climate change. The BrC fraction from residential coal and biomass burning emissions, which were the major source of BrC, was characterized at the molecular level. The CHOS aromatic compounds explained higher light absorption efficiencies of biomass burning emissions compared to coal. The unique formulas of coal combustion aerosols were characterized by higher unsaturated compounds, and such information could be used for source appointment.
Kumiko Goto-Azuma, Remi Dallmayr, Yoshimi Ogawa-Tsukagawa, Nobuhiro Moteki, Tatsuhiro Mori, Sho Ohata, Yutaka Kondo, Makoto Koike, Motohiro Hirabayashi, Jun Ogata, Kyotaro Kitamura, Kenji Kawamura, Koji Fujita, Sumito Matoba, Naoko Nagatsuka, Akane Tsushima, Kaori Fukuda, and Teruo Aoki
EGUsphere, https://doi.org/10.5194/egusphere-2024-1496, https://doi.org/10.5194/egusphere-2024-1496, 2024
Short summary
Short summary
We developed a continuous flow analysis system to analyse an ice core from northwest Greenland, and coupled it with an improved BC measurement technique. This coupling allowed accurate high-resolution analyses of BC particles' size distributions and concentrations with diameters between 70 nm and 4 μm for the past 350 years. Our results provide crucial insights into BC's climatic effects. We also found that previous ice core studies substantially underestimated the BC mass concentrations.
Wenli Liu, Longkun He, Yingjun Liu, Keren Liao, Qi Chen, and Mikinori Kuwata
Atmos. Chem. Phys., 24, 5625–5636, https://doi.org/10.5194/acp-24-5625-2024, https://doi.org/10.5194/acp-24-5625-2024, 2024
Short summary
Short summary
Cooking is a major source of particles in urban areas. Previous studies demonstrated that the chemical lifetimes of cooking organic aerosols (COAs) were much shorter (~minutes) than the values reported by field observations (~hours). We conducted laboratory experiments to resolve the discrepancy by considering suppressed reactivity under low temperature. The parameterized k2–T relationships and observed surface temperature data were used to estimate the chemical lifetimes of COA particles.
Stephanie Arciva, Lan Ma, Camille Mavis, Chrystal Guzman, and Cort Anastasio
Atmos. Chem. Phys., 24, 4473–4485, https://doi.org/10.5194/acp-24-4473-2024, https://doi.org/10.5194/acp-24-4473-2024, 2024
Short summary
Short summary
We measured changes in light absorption during the aqueous oxidation of six phenols with hydroxyl radical (●OH) or an organic triplet excited state (3C*). All the phenols formed light-absorbing secondary brown carbon (BrC), which then decayed with continued oxidation. Extrapolation to ambient conditions suggest ●OH is the dominant sink of secondary phenolic BrC in fog/cloud drops, while 3C* controls the lifetime of this light absorption in particle water.
Aaron Lieberman, Julietta Picco, Murat Onder, and Cort Anastasio
Atmos. Chem. Phys., 24, 4411–4419, https://doi.org/10.5194/acp-24-4411-2024, https://doi.org/10.5194/acp-24-4411-2024, 2024
Short summary
Short summary
We developed a method that uses aqueous S(IV) to quantitatively convert NO2 to NO2−, which allows both species to be quantified using the Griess method. As an example of the utility of the method, we quantified both photolysis channels of nitrate, with and without a scavenger for hydroxyl radical (·OH). The results show that without a scavenger, ·OH reacts with nitrite to form nitrogen dioxide, suppressing the apparent quantum yield of NO2− and enhancing that of NO2.
Adam Milsom, Adam M. Squires, Ben Laurence, Ben Wōden, Andrew J. Smith, Andrew D. Ward, and Christian Pfrang
EGUsphere, https://doi.org/10.5194/egusphere-2024-905, https://doi.org/10.5194/egusphere-2024-905, 2024
Short summary
Short summary
We followed nano-structural changes in mixtures found in urban organic aerosol emissions (oleic acid, sodium oleate & fructose) during humidity change & ozone exposure. We demonstrate that self-assembly of fatty acid nanostructures can impact on water uptake & chemical reactivity affecting atmospheric lifetimes, urban air quality (protecting harmful emissions from degradation and enabling their long-range transport) & climate (affecting cloud formation) with implications for human health.
Xingjun Fan, Ao Cheng, Xufang Yu, Tao Cao, Dan Chen, Wenchao Ji, Yongbing Cai, Fande Meng, Jianzhong Song, and Ping'an Peng
Atmos. Chem. Phys., 24, 3769–3783, https://doi.org/10.5194/acp-24-3769-2024, https://doi.org/10.5194/acp-24-3769-2024, 2024
Short summary
Short summary
Molecular-level characteristics of high molecular weight (HMW) and low MW (LMW) humic-like substances (HULIS) were comprehensively investigated, where HMW HULIS had larger chromophores and larger molecular size than LMW HULIS and exhibited higher aromaticity and humification. Electrospray ionization high-resolution mass spectrometry revealed more aromatic molecules in HMW HULIS. HMW HULIS had more CHON compounds, while LMW HULIS had more CHO compounds.
Daniel A. Knopf, Markus Ammann, Thomas Berkemeier, Ulrich Pöschl, and Manabu Shiraiwa
Atmos. Chem. Phys., 24, 3445–3528, https://doi.org/10.5194/acp-24-3445-2024, https://doi.org/10.5194/acp-24-3445-2024, 2024
Short summary
Short summary
The initial step of interfacial and multiphase chemical processes involves adsorption and desorption of gas species. This study demonstrates the role of desorption energy governing the residence time of the gas species at the environmental interface. A parameterization is formulated that enables the prediction of desorption energy based on the molecular weight, polarizability, and oxygen-to-carbon ratio of the desorbing chemical species. Its application to gas–particle interactions is discussed.
Feng Jiang, Kyla Siemens, Claudia Linke, Yanxia Li, Yiwei Gong, Thomas Leisner, Alexander Laskin, and Harald Saathoff
Atmos. Chem. Phys., 24, 2639–2649, https://doi.org/10.5194/acp-24-2639-2024, https://doi.org/10.5194/acp-24-2639-2024, 2024
Short summary
Short summary
We investigated the optical properties, chemical composition, and formation mechanisms of secondary organic aerosol (SOA) and brown carbon (BrC) from the oxidation of indole with and without NO2 in the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) simulation chamber. This work is one of the very few to link the optical properties and chemical composition of indole SOA with and without NO2 by simulation chamber experiments.
Evangelia Kostenidou, Baptiste Marques, Brice Temime-Roussel, Yao Liu, Boris Vansevenant, Karine Sartelet, and Barbara D'Anna
Atmos. Chem. Phys., 24, 2705–2729, https://doi.org/10.5194/acp-24-2705-2024, https://doi.org/10.5194/acp-24-2705-2024, 2024
Short summary
Short summary
Secondary organic aerosol (SOA) from gasoline vehicles can be a significant source of particulate matter in urban areas. Here the chemical composition of secondary volatile organic compounds and SOA produced by photo-oxidation of Euro 5 gasoline vehicle emissions was studied. The volatility of the SOA formed was calculated. Except for the temperature and the concentration of the aerosol, additional parameters may play a role in the gas-to-particle partitioning.
András Hoffer, Aida Meiramova, Ádám Tóth, Beatrix Jancsek-Turóczi, Gyula Kiss, Ágnes Rostási, Erika Andrea Levei, Luminita Marmureanu, Attila Machon, and András Gelencsér
Atmos. Chem. Phys., 24, 1659–1671, https://doi.org/10.5194/acp-24-1659-2024, https://doi.org/10.5194/acp-24-1659-2024, 2024
Short summary
Short summary
Specific tracer compounds identified previously in controlled test burnings of different waste types in the laboratory were detected and quantified in ambient PM10 samples collected in five Hungarian and four Romanian settlements. Back-of-the-envelope calculations based on the relative emission factors of individual tracers suggested that the contribution of solid waste burning particulate emissions to ambient PM10 mass concentrations may be as high as a few percent.
Xiao-San Luo, Weijie Huang, Guofeng Shen, Yuting Pang, Mingwei Tang, Weijun Li, Zhen Zhao, Hanhan Li, Yaqian Wei, Longjiao Xie, and Tariq Mehmood
Atmos. Chem. Phys., 24, 1345–1360, https://doi.org/10.5194/acp-24-1345-2024, https://doi.org/10.5194/acp-24-1345-2024, 2024
Short summary
Short summary
PM2.5 are air pollutants threatening health globally, but they are a mixture of chemical compositions from many sources and result in unequal toxicity. Which composition from which source of PM2.5 as the most hazardous object is a question hindering effective pollution control policy-making. With chemical and toxicity experiments, we found automobile exhaust and coal combustion to be priority emissions with higher toxic compositions for precise air pollution control, ensuring public health.
Matthew B. Goss and Jesse H. Kroll
Atmos. Chem. Phys., 24, 1299–1314, https://doi.org/10.5194/acp-24-1299-2024, https://doi.org/10.5194/acp-24-1299-2024, 2024
Short summary
Short summary
The chemistry driving dimethyl sulfide (DMS) oxidation and subsequent sulfate particle formation in the atmosphere is poorly constrained. We oxidized two related compounds (dimethyl sulfoxide and dimethyl disulfide) in the laboratory under varied NOx conditions and measured the gas- and particle-phase products. These results demonstrate that both the OH addition and OH abstraction pathways for DMS oxidation contribute to particle formation via mechanisms that do not involve the SO2 intermediate.
Ryan J. Patnaude, Kathryn A. Moore, Russell J. Perkins, Thomas C. J. Hill, Paul J. DeMott, and Sonia M. Kreidenweis
Atmos. Chem. Phys., 24, 911–928, https://doi.org/10.5194/acp-24-911-2024, https://doi.org/10.5194/acp-24-911-2024, 2024
Short summary
Short summary
In this study we examined the effect of atmospheric aging on sea spray aerosols (SSAs) to form ice and how newly formed secondary marine aerosols (SMAs) may freeze at cirrus temperatures (< −38 °C). Results show that SSAs freeze at different relative humidities (RHs) depending on the temperature and that the ice-nucleating ability of SSA was not hindered by atmospheric aging. SMAs are shown to freeze at high RHs and are likely inefficient at forming ice at cirrus temperatures.
Bartłomiej Witkowski, Priyanka Jain, Beata Wileńska, and Tomasz Gierczak
Atmos. Chem. Phys., 24, 663–688, https://doi.org/10.5194/acp-24-663-2024, https://doi.org/10.5194/acp-24-663-2024, 2024
Short summary
Short summary
This article reports the results of the kinetic measurements for the aqueous oxidation of the 29 aliphatic alcohols by hydroxyl radical (OH) at different temperatures. The data acquired and the literature data were used to optimize a model for predicting the aqueous OH reactivity of alcohols and carboxylic acids and to estimate the atmospheric lifetimes of five terpenoic alcohols. The kinetic data provided new insights into the mechanism of aqueous oxidation of aliphatic molecules by the OH.
Junting Qiu, Xinlin Shen, Jiangyao Chen, Guiying Li, and Taicheng An
Atmos. Chem. Phys., 24, 155–166, https://doi.org/10.5194/acp-24-155-2024, https://doi.org/10.5194/acp-24-155-2024, 2024
Short summary
Short summary
We studied reactions of secondary ozonides (SOZs) with amines. SOZs formed from ozonolysis of β-caryophyllene and α-humulene are found to be reactive to ethylamine and methylamine. Products from SOZs with various conformations reacting with the same amine had different functional groups. Our findings indicate that interaction of SOZs with amines in the atmosphere is very complicated, which is potentially a hitherto unrecognized source of N-containing compound formation.
Lan Ma, Reed Worland, Laura Heinlein, Chrystal Guzman, Wenqing Jiang, Christopher Niedek, Keith J. Bein, Qi Zhang, and Cort Anastasio
Atmos. Chem. Phys., 24, 1–21, https://doi.org/10.5194/acp-24-1-2024, https://doi.org/10.5194/acp-24-1-2024, 2024
Short summary
Short summary
We measured concentrations of three photooxidants – the hydroxyl radical, triplet excited states of organic carbon, and singlet molecular oxygen – in fine particles collected over a year. Concentrations are highest in extracts of fresh biomass burning particles, largely because they have the highest particle concentrations and highest light absorption. When normalized by light absorption, rates of formation for each oxidant are generally similar for the four particle types we observed.
Adolfo González-Romero, Cristina González-Flórez, Agnesh Panta, Jesús Yus-Díez, Cristina Reche, Patricia Córdoba, Natalia Moreno, Andres Alastuey, Konrad Kandler, Martina Klose, Clarissa Baldo, Roger N. Clark, Zongbo Shi, Xavier Querol, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 23, 15815–15834, https://doi.org/10.5194/acp-23-15815-2023, https://doi.org/10.5194/acp-23-15815-2023, 2023
Short summary
Short summary
The effect of dust emitted from desertic surfaces upon climate and ecosystems depends on size and mineralogy, but data from soil mineral atlases of desert soils are scarce. We performed particle-size distribution, mineralogy, and Fe speciation in southern Morocco. Results show coarser particles with high quartz proportion are near the elevated areas, while in depressed areas, sizes are finer, and proportions of clays and nano-Fe oxides are higher. This difference is important for dust modelling.
Victor Lannuque, Barbara D'Anna, Evangelia Kostenidou, Florian Couvidat, Alvaro Martinez-Valiente, Philipp Eichler, Armin Wisthaler, Markus Müller, Brice Temime-Roussel, Richard Valorso, and Karine Sartelet
Atmos. Chem. Phys., 23, 15537–15560, https://doi.org/10.5194/acp-23-15537-2023, https://doi.org/10.5194/acp-23-15537-2023, 2023
Short summary
Short summary
Large uncertainties remain in understanding secondary organic aerosol (SOA) formation from toluene oxidation. In this study, speciation measurements in gaseous and particulate phases were carried out, providing partitioning and volatility data on individual toluene SOA components at different temperatures. A new detailed oxidation mechanism was developed to improve modeled speciation, and effects of different processes involved in gas–particle partitioning at the molecular scale are explored.
Xiaoliang Wang, Hatef Firouzkouhi, Judith C. Chow, John G. Watson, Steven Sai Hang Ho, Warren Carter, and Alexandra S. M. De Vos
Atmos. Chem. Phys., 23, 15375–15393, https://doi.org/10.5194/acp-23-15375-2023, https://doi.org/10.5194/acp-23-15375-2023, 2023
Short summary
Short summary
Open burning of municipal solid waste emits chemicals that are harmful to the environment. This paper reports source profiles and emission factors for PM2.5 species and acidic/alkali gases from laboratory combustion of 10 waste categories (including plastics and biomass) that represent open burning in South Africa. Results will be useful for health and climate impact assessments, speciated emission inventories, source-oriented dispersion models, and receptor-based source apportionment.
Jun Zhang, Kun Li, Tiantian Wang, Erlend Gammelsæter, Rico K. Y. Cheung, Mihnea Surdu, Sophie Bogler, Deepika Bhattu, Dongyu S. Wang, Tianqu Cui, Lu Qi, Houssni Lamkaddam, Imad El Haddad, Jay G. Slowik, Andre S. H. Prevot, and David M. Bell
Atmos. Chem. Phys., 23, 14561–14576, https://doi.org/10.5194/acp-23-14561-2023, https://doi.org/10.5194/acp-23-14561-2023, 2023
Short summary
Short summary
We conducted burning experiments to simulate various types of solid fuel combustion, including residential burning, wildfires, agricultural burning, cow dung, and plastic bag burning. The chemical composition of the particles was characterized using mass spectrometers, and new potential markers for different fuels were identified using statistical analysis. This work improves our understanding of emissions from solid fuel burning and offers support for refined source apportionment.
Hyun Gu Kang, Yanfang Chen, Yoojin Park, Thomas Berkemeier, and Hwajin Kim
Atmos. Chem. Phys., 23, 14307–14323, https://doi.org/10.5194/acp-23-14307-2023, https://doi.org/10.5194/acp-23-14307-2023, 2023
Short summary
Short summary
D5 is an emerging anthropogenic pollutant that is ubiquitous in indoor and urban environments, and the OH oxidation of D5 forms secondary organosiloxane aerosol (SOSiA). Application of a kinetic box model that uses a volatility basis set (VBS) showed that consideration of oxidative aging (aging-VBS) predicts SOSiA formation much better than using a standard-VBS model. Ageing-dependent parameterization is needed to accurately model SOSiA to assess the implications of siloxanes for air quality.
Kai Song, Rongzhi Tang, Jingshun Zhang, Zichao Wan, Yuan Zhang, Kun Hu, Yuanzheng Gong, Daqi Lv, Sihua Lu, Yu Tan, Ruifeng Zhang, Ang Li, Shuyuan Yan, Shichao Yan, Baoming Fan, Wenfei Zhu, Chak K. Chan, Maosheng Yao, and Song Guo
Atmos. Chem. Phys., 23, 13585–13595, https://doi.org/10.5194/acp-23-13585-2023, https://doi.org/10.5194/acp-23-13585-2023, 2023
Short summary
Short summary
Incense burning is common in Asia, posing threats to human health and air quality. However, less is known about its emissions and health risks. Full-volatility organic species from incense-burning smoke are detected and quantified. Intermediate-volatility volatile organic compounds (IVOCs) are crucial organics accounting for 19.2 % of the total emission factors (EFs) and 40.0 % of the secondary organic aerosol (SOA) estimation, highlighting the importance of incorporating IVOCs into SOA models.
Qianqian Gao, Shengqiang Zhu, Kaili Zhou, Jinghao Zhai, Shaodong Chen, Qihuang Wang, Shurong Wang, Jin Han, Xiaohui Lu, Hong Chen, Liwu Zhang, Lin Wang, Zimeng Wang, Xin Yang, Qi Ying, Hongliang Zhang, Jianmin Chen, and Xiaofei Wang
Atmos. Chem. Phys., 23, 13049–13060, https://doi.org/10.5194/acp-23-13049-2023, https://doi.org/10.5194/acp-23-13049-2023, 2023
Short summary
Short summary
Dust is a major source of atmospheric aerosols. Its chemical composition is often assumed to be similar to the parent soil. However, this assumption has not been rigorously verified. Dust aerosols are mainly generated by wind erosion, which may have some chemical selectivity. Mn, Cd and Pb were found to be highly enriched in fine-dust (PM2.5) aerosols. In addition, estimation of heavy metal emissions from dust generation by air quality models may have errors without using proper dust profiles.
Daniel C. O. Thornton, Sarah D. Brooks, Elise K. Wilbourn, Jessica Mirrielees, Alyssa N. Alsante, Gerardo Gold-Bouchot, Andrew Whitesell, and Kiana McFadden
Atmos. Chem. Phys., 23, 12707–12729, https://doi.org/10.5194/acp-23-12707-2023, https://doi.org/10.5194/acp-23-12707-2023, 2023
Short summary
Short summary
A major uncertainty in our understanding of clouds and climate is the sources and properties of the aerosol on which clouds grow. We found that aerosol containing organic matter from fast-growing marine phytoplankton was a source of ice-nucleating particles (INPs). INPs facilitate freezing of ice crystals at warmer temperatures than otherwise possible and therefore change cloud formation and properties. Our results show that ecosystem processes and the properties of sea spray aerosol are linked.
Adam Milsom, Shaojun Qi, Ashmi Mishra, Thomas Berkemeier, Zhenyu Zhang, and Christian Pfrang
Atmos. Chem. Phys., 23, 10835–10843, https://doi.org/10.5194/acp-23-10835-2023, https://doi.org/10.5194/acp-23-10835-2023, 2023
Short summary
Short summary
Aerosols and films are found indoors and outdoors. Our study measures and models reactions of a cooking aerosol proxy with the atmospheric oxidant ozone relying on a low-cost but sensitive technique based on mass changes and film rigidity. We found that film morphology changed and film rigidity increased with evidence of surface crust formation during ozone exposure. Our modelling results demonstrate clear potential to take this robust method to the field for reaction monitoring.
Shan Zhang, Lin Du, Zhaomin Yang, Narcisse Tsona Tchinda, Jianlong Li, and Kun Li
Atmos. Chem. Phys., 23, 10809–10822, https://doi.org/10.5194/acp-23-10809-2023, https://doi.org/10.5194/acp-23-10809-2023, 2023
Short summary
Short summary
In this study, we have investigated the distinct impacts of humidity on the ozonolysis of two structurally different monoterpenes (limonene and Δ3-carene). We found that the molecular structure of precursors can largely influence the SOA formation under high RH by impacting the multi-generation reactions. Our results could advance knowledge on the roles of water content in aerosol formation and inform ongoing research on particle environmental effects and applications in models.
Yangzhihao Zhan, Min Xie, Wei Zhao, Tijian Wang, Da Gao, Pulong Chen, Jun Tian, Kuanguang Zhu, Shu Li, Bingliang Zhuang, Mengmeng Li, Yi Luo, and Runqi Zhao
Atmos. Chem. Phys., 23, 9837–9852, https://doi.org/10.5194/acp-23-9837-2023, https://doi.org/10.5194/acp-23-9837-2023, 2023
Short summary
Short summary
Although the main source contribution of pollution is secondary inorganic aerosols in Nanjing, health risks mainly come from industry sources and vehicle emissions. Therefore, the development of megacities should pay more attention to the health burden of vehicle emissions, coal combustion, and industrial processes. This study provides new insight into assessing the relationship between source apportionment and health risks and can provide valuable insight into air pollution strategies.
Jonathan P. D. Abbatt and A. R. Ravishankara
Atmos. Chem. Phys., 23, 9765–9785, https://doi.org/10.5194/acp-23-9765-2023, https://doi.org/10.5194/acp-23-9765-2023, 2023
Short summary
Short summary
With important climate and air quality impacts, atmospheric multiphase chemistry involves gas interactions with aerosol particles and cloud droplets. We summarize the status of the field and discuss potential directions for future growth. We highlight the importance of a molecular-level understanding of the chemistry, along with atmospheric field studies and modeling, and emphasize the necessity for atmospheric multiphase chemists to interact widely with scientists from neighboring disciplines.
Zhancong Liang, Zhihao Cheng, Ruifeng Zhang, Yiming Qin, and Chak K. Chan
Atmos. Chem. Phys., 23, 9585–9595, https://doi.org/10.5194/acp-23-9585-2023, https://doi.org/10.5194/acp-23-9585-2023, 2023
Short summary
Short summary
In this study, we found that the photolysis of sodium nitrate leads to a much quicker decay of free amino acids (FAAs, with glycine as an example) in the particle phase than ammonium nitrate photolysis, which is likely due to the molecular interactions between FAAs and different nitrate salts. Since sodium nitrate likely co-exists with FAAs in the coarse-mode particles, particulate nitrate photolysis can possibly contribute to a rapid decay of FAAs and affect atmospheric nitrogen cycling.
Julian Resch, Kate Wolfer, Alexandre Barth, and Markus Kalberer
Atmos. Chem. Phys., 23, 9161–9171, https://doi.org/10.5194/acp-23-9161-2023, https://doi.org/10.5194/acp-23-9161-2023, 2023
Short summary
Short summary
Detailed chemical analysis of organic aerosols is necessary to better understand their effects on climate and health. Aerosol samples are often stored for days to months before analysis. We examined the effects of storage conditions (i.e., time, temperature, and aerosol storage on filters or as solvent extracts) on composition and found significant changes in the concentration of individual compounds, indicating that sample storage can strongly affect the detailed chemical particle composition.
Xiaoliang Wang, Hatef Firouzkouhi, Judith C. Chow, John G. Watson, Warren Carter, and Alexandra S. M. De Vos
Atmos. Chem. Phys., 23, 8921–8937, https://doi.org/10.5194/acp-23-8921-2023, https://doi.org/10.5194/acp-23-8921-2023, 2023
Short summary
Short summary
Open burning of household and municipal solid waste is a common practice in developing countries and is a significant source of air pollution. However, few studies have measured emissions from open burning of waste. This study determined gas and particulate emissions from open burning of 10 types of household solid-waste materials. These results can improve emission inventories, air quality management, and assessment of the health and climate effects of open burning of household waste.
Anita M. Avery, Mariam Fawaz, Leah R. Williams, Tami Bond, and Timothy B. Onasch
Atmos. Chem. Phys., 23, 8837–8854, https://doi.org/10.5194/acp-23-8837-2023, https://doi.org/10.5194/acp-23-8837-2023, 2023
Short summary
Short summary
Pyrolysis is the thermal decomposition of fuels like wood which occurs during combustion or as an isolated process. During combustion, some pyrolysis products are emitted directly, while others are oxidized in the combustion process. This work describes the chemical composition of particle-phase pyrolysis products in order to investigate both the uncombusted emissions from wildfires and the fuel that participates in combustion.
Lan Ma, Reed Worland, Wenqing Jiang, Christopher Niedek, Chrystal Guzman, Keith J. Bein, Qi Zhang, and Cort Anastasio
Atmos. Chem. Phys., 23, 8805–8821, https://doi.org/10.5194/acp-23-8805-2023, https://doi.org/10.5194/acp-23-8805-2023, 2023
Short summary
Short summary
Although photooxidants are important in airborne particles, little is known of their concentrations. By measuring oxidants in a series of particle dilutions, we predict their concentrations in aerosol liquid water (ALW). We find •OH concentrations in ALW are on the order of 10−15 M, similar to their cloud/fog values, while oxidizing triplet excited states and singlet molecular oxygen have ALW values of ca. 10−13 M and 10−12 M, respectively, roughly 10–100 times higher than in cloud/fog drops.
Daniel A. Knopf, Peiwen Wang, Benny Wong, Jay M. Tomlin, Daniel P. Veghte, Nurun N. Lata, Swarup China, Alexander Laskin, Ryan C. Moffet, Josephine Y. Aller, Matthew A. Marcus, and Jian Wang
Atmos. Chem. Phys., 23, 8659–8681, https://doi.org/10.5194/acp-23-8659-2023, https://doi.org/10.5194/acp-23-8659-2023, 2023
Short summary
Short summary
Ambient particle populations and associated ice-nucleating particles (INPs)
were examined from particle samples collected on board aircraft in the marine
boundary layer and free troposphere in the eastern North Atlantic during
summer and winter. Chemical imaging shows distinct differences in the
particle populations seasonally and with sampling altitudes, which are
reflected in the INP types. Freezing parameterizations are derived for
implementation in cloud-resolving and climate models.
Dandan Liu, Yun Zhang, Shujun Zhong, Shuang Chen, Qiaorong Xie, Donghuan Zhang, Qiang Zhang, Wei Hu, Junjun Deng, Libin Wu, Chao Ma, Haijie Tong, and Pingqing Fu
Atmos. Chem. Phys., 23, 8383–8402, https://doi.org/10.5194/acp-23-8383-2023, https://doi.org/10.5194/acp-23-8383-2023, 2023
Short summary
Short summary
Based on ultra-high-resolution mass spectrometry analysis, we found that β-pinene oxidation-derived highly oxygenated organic molecules (HOMs) exhibit higher yield at high ozone concentration, while limonene oxidation-derived HOMs exhibit higher yield at moderate ozone concentration. The distinct molecular response of HOMs and low-volatile species in different biogenic secondary organic aerosols to ozone concentrations provides a new clue for more accurate air quality prediction and management.
Mengying Bao, Yan-Lin Zhang, Fang Cao, Yihang Hong, Yu-Chi Lin, Mingyuan Yu, Hongxing Jiang, Zhineng Cheng, Rongshuang Xu, and Xiaoying Yang
Atmos. Chem. Phys., 23, 8305–8324, https://doi.org/10.5194/acp-23-8305-2023, https://doi.org/10.5194/acp-23-8305-2023, 2023
Short summary
Short summary
The interaction between the sources and molecular compositions of humic-like substances (HULIS) at Nanjing, China, was explored. Significant fossil fuel source contributions to HULIS were found in the 14C results from biomass burnng and traffic emissions. Increasing biogenic secondary organic aerosol (SOA) products and anthropogenic aromatic compounds were detected in summer and winter, respectively.
Molly Frauenheim, Jason D. Surratt, Zhenfa Zhang, and Avram Gold
Atmos. Chem. Phys., 23, 7859–7866, https://doi.org/10.5194/acp-23-7859-2023, https://doi.org/10.5194/acp-23-7859-2023, 2023
Short summary
Short summary
We report synthesis of the isoprene-derived photochemical oxidation products trans- and cis-β-epoxydiols in high overall yields from inexpensive, readily available starting compounds. Protection/deprotection steps or time-consuming purification is not required, and the reactions can be scaled up to gram quantities. The procedures provide accessibility of these important compounds to atmospheric chemistry laboratories with only basic capabilities in organic synthesis.
Xiangyun Zhang, Jun Li, Sanyuan Zhu, Junwen Liu, Ping Ding, Shutao Gao, Chongguo Tian, Yingjun Chen, Ping'an Peng, and Gan Zhang
Atmos. Chem. Phys., 23, 7495–7502, https://doi.org/10.5194/acp-23-7495-2023, https://doi.org/10.5194/acp-23-7495-2023, 2023
Short summary
Short summary
The results show that 14C elemental carbon (EC) was not only related to the isolation method but also to the types and proportions of the biomass sources in the sample. The hydropyrolysis (Hypy) method, which can be used to isolate a highly stable portion of ECHypy and avoid charring, is a more effective and stable approach for the matrix-independent 14C quantification of EC in aerosols, and the 13C–ECHypy and non-fossil ECHypy values of SRM1649b were –24.9 ‰ and 11 %, respectively.
Cited articles
Aiona, P. K., Luek, J. L., Timko, S. A., Powers, L. C., Gonsior, M., and Nizkorodov, S. A.: Effect of Photolysis on Absorption and Fluorescence Spectra of Light-Absorbing Secondary Organic Aerosols, ACS Earth Space Chem., 2, 235–245, https://doi.org/10.1021/acsearthspacechem.7b00153, 2018.
Altieri, K. E., Carlton, A. G., Lim, H. J., Turpin, B. J., and Seitzinger, S. P.: Evidence for oligomer formation in clouds: Reactions of isoprene oxidation products, Environ. Sci. Technol., 40, 4956–4960, https://doi.org/10.1021/es052170n, 2006.
Altieri, K. E., Seitzinger, S. P., Carlton, A. G., Turpin, B. J., Klein, G. C., and Marshall, A. G.: Oligomers formed through in-cloud methylglyoxal reactions: Chemical composition, properties, and mechanisms investigated by ultra-high resolution FT-ICR mass spectrometry, Atmos. Environ., 42, 1476–1490, https://doi.org/10.1016/j.atmosenv.2007.11.015, 2008.
Andreae, M. O. and Gelencsér, A.: Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols, Atmos. Chem. Phys., 6, 3131–3148, https://doi.org/10.5194/acp-6-3131-2006, 2006.
Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and IUPAC
Subcommittee: Evaluated kinetic and photochemical data for atmospheric
chemistry: Volume II – gas phase reactions of organic species,
Atmos. Chem. Phys., 6, 3625–4055, https://doi.org/10.5194/acp-6-3625-2006,
2006.
Birdwell, J. E. and Engel, A. S.: Characterization of dissolved organic matter in cave and spring waters using UV−Vis absorbance andfluorescence spectroscopy, Org. Geochem., 41, 270–280, https://doi.org/10.1016/j.orggeochem.2009.11.002, 2010.
Budisulistiorini, S. H., Riva, M., Williams, M., Chen, J., Itoh, M.,
Surratt, J. D., and Kuwata, M.: Light-Absorbing Brown Carbon Aerosol Constituents from Combustion of Indonesian Peat and Biomass, Environ. Sci. Technol., 51, 4415–4423, https://doi.org/10.1021/acs.est.7b00397, 2017.
Canonica, S., Hellrung, B., Müller, P., and Wirz, J.: Aqueous Oxidation of Phenylurea Herbicides by Triplet Aromatic Ketones, Environ. Sci. Tech., 40, 6636–6641, https://doi.org/10.1021/es0611238, 2006.
Carlton, A. G., Turpin, B. J., Altieri, K. E., Seitzinger, S., Reff, A.,
Lim, H. J., and Ervens, B.: Atmospheric oxalic acid and SOA production from glyoxal: Results of aqueous photooxidation experiments, Atmos. Environ., 41, 7588–7602, https://doi.org/10.1016/j.atmosenv.2007.05.035, 2007.
Chen, Q., Miyazaki, Y., Kawamura, K., Matsumoto, K., Coburn, S., Volkamer, R., Iwamoto, Y., Kagami, S., Deng, Y., Ogawa, S., Ramasamy, S., Kato, S., Ida, A., Kajii, Y., and Mochida, M.: Characterization of Chromophoric Water-Soluble Organic Matter in Urban, Forest, and Marine Aerosols by HR-ToF-AMS Analysis and Excitation-Emission Matrix Spectroscopy, Environ. Sci. Technol., 50, 10351–10360, https://doi.org/10.1021/acs.est.6b01643, 2016a.
Chen, Q. C., Ikemori, F., and Mochida, M.: Light Absorption and Excitation-Emission Fluorescence of Urban Organic Aerosol Components and Their Relationship to Chemical Structure, Environ. Sci. Technol., 50, 10859–10868, https://doi.org/10.1021/acs.est.6b02541, 2016b.
Chen, Q., Li, J., Hua, X., Jiang, X., Mu, Z., Wang, M., Wang, J., Shan, M., Yang, X., Fan, X., Song, J., Wang, Y., Guan, D., and Du, L.: Identification of species and sources of atmospheric chromophores by fluorescence excitation-emission matrix with parallel factor analysis, Sci. Total Environ., 718, 137322, https://doi.org/10.1016/j.scitotenv.2020.137322, 2020.
Chen, Q., Mu, Z., Xu, L., Wang, M., Wang, J., Shan, M., Fan, X., Song, J.,
Wang, Y., Lin, P., and Du, L.: Triplet-state organic matter in atmospheric aerosols: Formation characteristics and potential effects on aerosol aging, Atmos. Environ., 252, 118343, https://doi.org/10.1016/j.atmosenv.2021.118343, 2021.
Chen, Y., Zhang, X., and Feng, S.: Contribution of the Excited Triplet State of Humic Acid and Superoxide Radical Anion to Generation and Elimination of Phenoxyl Radical, Environ. Sci. Technol., 52, 8283–8291, https://doi.org/10.1021/acs.est.8b00890, 2018.
Cheng, Y., He, K. B., Du, Z. Y., Engling, G., Liu, J. M., Ma, Y. L., Zheng, M., and Weber, R. J.: The characteristics of brown carbon aerosol during winter in Beijing, Atmos. Environ., 127, 355–364, https://doi.org/10.1016/j.atmosenv.2015.12.035, 2016.
Claeys, M., Graham, B., Vas, G., Wang, W., Vermeylen, R., Pashynska, V.,
Cafmeyer, J., Guyon, P., Andreae, M. O., Artaxo, P., and Maenhaut, W.: Formation of secondary organic aerosols through photooxidation of isoprene, Science, 303, 1173–1176, https://doi.org/10.1126/science.1092805, 2004.
Coble, P. G.: Marine optical biogeochemistry: the chemistry of ocean color, Chem. Rev., 107, 402–418, https://doi.org/10.1021/cr050350+, 2007.
Duarte, R. M. B. O., Pio, C. A., and Duarte, A. C.: Spectroscopic study of the water-soluble organic matter isolated from atmospheric aerosols collected under different atmospheric conditions, Anal. Chim. Acta, 530, 7–14, https://doi.org/10.1016/j.aca.2004.08.049, 2005.
Encinas, M. V., Lissi, E. A., and Olea, A. F.: Quenching of triplet benzophenone by vitamins E and C and by sulfur containing amino acids and peptides, Photochem. Photobiol., 42, 347–352, https://doi.org/10.1111/j.1751-1097.1985.tb01580.x, 1985.
Fellman, J. B., Miller, M. P., Cory, R. M., D'Amore, D. V., and White, D.: Characterizing Dissolved Organic Matter Using PARAFAC Modeling of Fluorescence Spectroscopy: A Comparison of Two Models, Environ. Sci. Technol., 43, 6228–6234, https://doi.org/10.1021/es900143g, 2009.
George, C., Ammann, M., D'Anna, B., Donaldson, D. J., and Nizkorodov, S. A.: Heterogeneous Photochemistry in the Atmosphere, Chem. Rev., 115, 4218–4258, https://doi.org/10.1021/cr500648z, 2015.
Gonsior, M., Peake, B. M., Cooper, W. T., Podgorski, D., D'Andrilli, J., and Cooper, W. J.: Photochemically induced changes in dissolved organic matter identified by ultrahigh resolution fourier transform ion cyclotron resonance mass spectrometry, Environ. Sci. Technol., 43, 698–703, https://doi.org/10.1021/es8022804, 2009.
Graber, E. R. and Rudich, Y.: Atmospheric HULIS: How humic-like
are they? A comprehensive and critical review, Atmos. Chem. Phys., 6,
729–753, https://doi.org/10.5194/acp-6-729-2006, 2006.
Grieshop, A. P., Donahue, N. M., and Robinson, A. L.: Laboratory investigation of photochemical oxidation of organic aerosol from wood fires 2: analysis of aerosol mass spectrometer data, Atmos. Chem. Phys., 9, 2227–2240, https://doi.org/10.5194/acp-9-2227-2009, 2009.
Haag, W. R. and Gassman, E.: Singlet oxygen in surface waters-Part II: Quantum yields of its production by some natural humic materials as a function of wavelength, Chemosphere, 13, 641–650, https://doi.org/10.1016/0045-6535(84)90200-5, 1984.
Harrison, A. W., Waterson, A. M., and De Bruyn, W. J.: Spectroscopic and Photochemical Properties of Secondary Brown Carbon from Aqueous Reactions of Methylglyoxal, ACS Earth Space Chem., 4, 762–773, https://doi.org/10.1021/acsearthspacechem.0c00061, 2020.
Haynes, J. P., Miller, K. E., and Majestic, B. J.: Investigation into Photoinduced Auto-Oxidation of Polycyclic Aromatic Hydrocarbons Resulting in Brown Carbon Production, Environ. Sci. Technol., 53, 682–691, https://doi.org/10.1021/acs.est.8b05704, 2019.
Holmes, B. J. and Petrucci, G. A.: Water-soluble oligomer formation from acid-catalyzed reactions of levoglucosan in proxies of atmospheric aqueous aerosols, Environ. Sci. Technol., 40, 4983–4989, https://doi.org/10.1021/es060646c, 2006.
Huguet, A., Vacher, L., Relexans, S., Saubusse, S., Froidefond, J. M., and Parlanti, E.: Properties of fluorescent dissolved organic matter inthe Gironde Estuary, Org. Geochem., 40, 706–719, https://doi.org/10.1016/j.orggeochem.2009.03.002, 2009.
Jo, D. S., Park, R. J., Lee, S., Kim, S.-W., and Zhang, X.: A global
simulation of brown carbon: implications for photochemistry and direct
radiative effect, Atmos. Chem. Phys., 16, 3413–3432,
https://doi.org/10.5194/acp-16-3413-2016, 2016.
Karanasiou, A., Minguillón, M. C., Viana, M., Alastuey, A., Putaud, J.-P., Maenhaut, W., Panteliadis, P., Močnik, G., Favez, O., and Kuhlbusch, T. A. J.: Thermal-optical analysis for the measurement of elemental carbon (EC) and organic carbon (OC) in ambient air a literature review, Atmos. Meas. Tech. Discuss., 8, 9649–9712, https://doi.org/10.5194/amtd-8-9649-2015, 2015.
Kaur, R. and Anastasio, C.: First Measurements of Organic Triplet Excited States in Atmospheric Waters, Environ. Sci. Technol., 52, 5218–5226, https://doi.org/10.1021/acs.est.7b06699, 2018.
Latch, D. E. and McNeill, K.: Microheterogeneity of singlet
oxygen distributions in irradiated humic acid solutions, Science, 311,
1743–1747, https://doi.org/10.1126/science.1121636, 2006.
Lee, H. J., Laskin, A., Laskin, J., and Nizkorodov, S. A.: Excitation-emission spectra and fluorescence quantum yields for fresh and aged biogenic secondary organic aerosols, Environ. Sci. Technol., 47, 5763–5770, https://doi.org/10.1021/es400644c, 2013.
Lee, H. J., Aiona, P. K., Laskin, A., Laskin, J., and Nizkorodov, S. A.: Effect of solar radiation on the optical properties and molecular composition of laboratory proxies of atmospheric brown carbon, Environ. Sci. Technol., 48, 10217–10226, https://doi.org/10.1021/es502515r, 2014.
Liu, J., Lin, P., Laskin, A., Laskin, J., Kathmann, S. M., Wise, M., Caylor, R., Imholt, F., Selimovic, V., and Shilling, J. E.: Optical properties and aging of light-absorbing secondary organic aerosol, Atmos. Chem. Phys., 16, 12815–12827, https://doi.org/10.5194/acp-16-12815-2016, 2016.
Maizel, A. C., Li, J., and Remucal, C. K.: Relationships Between Dissolved Organic Matter Composition and Photochemistry in Lakes of Diverse Trophic Status, Environ. Sci. Technol., 51, 9624–9632, https://doi.org/10.1021/acs.est.7b01270, 2017.
Mang, S. A., Henricksen, D. K., Bateman, A. P., Andersen, M. P. S.,
Blake, D. R., and Nizkorodov, S. A.: Contribution of Carbonyl Photochemistry to Aging of Atmospheric Secondary Organic Aerosol, J. Phys. Chem. A, 112, 8337–8344, https://doi.org/10.1021/jp804376c, 2008.
Marciniak, B., Bobrowski, K., and Hug, G. L.: Quenching of triplet states of aromatic ketones by sulfur-containing amino acids in solution. Evidence for electron transfer, J. Phys. Chem., 97, 11937–11943, https://doi.org/10.1021/j100148a015, 1993.
McKnight, D. M., Boyer, E. W., Westerhoff, P. K., Doran, P. T., Kulbe, T., and Andersen, D. T.: Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity, Limnol. Oceanogr., 46, 38–48, https://doi.org/10.4319/lo.2001.46.1.0038, 2001.
McNeill, K. and Canonica, S.: Triplet state dissolved organic matter in aquatic photochemistry: reaction mechanisms, substrate scope, and photophysical properties, Environ. Sci.-Proc. Imp., 18, 1381–1399, https://doi.org/10.1039/c6em00408c, 2016.
Moor, K. J., Schmitt, M., Erickson, P. R., and McNeill, K.: Sorbic Acid as a Triplet Probe: Triplet Energy and Reactivity with Triplet-State Dissolved Organic Matter via 1O2 Phosphorescence, Environ. Sci. Technol., 53, 8078–8086, https://doi.org/10.1021/acs.est.9b01787, 2019.
Mu, Z., Chen, Q. C., Wang, Y. Q., Shen, Z. X., Hua, X. Y., Zhang, Z. M., Sun, H. Y., Wang, M. M., and Zhang, L. X.: Characteristics of Carbonaceous Aerosol Pollution in PM2.5 in Xi'an, Huan Jing Ke Xue, 40, 1529–1536, https://doi.org/10.13227/j.hjkx.201807135, 2019.
Murphy, K. R., Stedmon, C. A., Graeber, D., and Bro, R.: Fluorescence spectroscopy and multi-way techniques. PARAFAC, Anal. Methods-UK, 5, 6557–6566, https://doi.org/10.1039/c3ay41160e, 2013.
Nebbioso, A. and Piccolo, A.: Molecular characterization of dissolved organic matter (DOM): a critical review, Anal. Bioanal. Chem. 405, 109–124, https://doi.org/10.1007/s00216-012-6363-2, 2013.
Paul Hansard, S., Vermilyea, A. W., and Voelker, B. M.: Measurements of superoxide radical concentration and decay kinetics in the Gulf of Alaska, Deep-Sea Res. Pt. I, 57, 1111–1119, https://doi.org/10.1016/j.dsr.2010.05.007, 2010.
Perri, M. J., Seitzinger, S., and Turpin, B. J.: Secondary organic aerosol production from aqueous photooxidation of glycolaldehyde: Laboratory experiments, Atmos. Environ., 43, 1487–1497, https://doi.org/10.1016/j.atmosenv.2008.11.037, 2009.
Richards-Henderson, N. K., Pham, A. T., Kirk, B. B., and Anastasio, C.: Secondary organic aerosol from aqueous reactions of green leaf volatiles with organic triplet excited states and singlet molecular oxygen, Environ. Sci. Technol., 49, 268–276, https://doi.org/10.1021/es503656m, 2015.
Rosado-Lausell, S. L., Wang, H. T., Gutierrez, L., Romero-Maraccini, O. C.,
Niu, X. Z., Gin, K. Y. H., Croue, J. P., and Nguyen, T. H.: Roles of singlet oxygen and triplet excited state of dissolved organic matter formed by different organic in bacteriophage MS2 inactivation, Water Res., 47, 4869–4879, https://doi.org/10.1016/j.watres.2013.05.018, 2013.
Rosario-Ortiz, F. L. and Canonica, S.: Probe Compounds to Assess the Photochemical Activity of Dissolved Organic Matter, Environ. Sci. Technol., 50, 12532–12547, https://doi.org/10.1021/acs.est.6b02776, 2016.
Saleh, R., Hennigan, C. J., McMeeking, G. R., Chuang, W. K., Robinson, E. S., Coe, H., Donahue, N. M., and Robinson, A. L.: Absorptivity of brown carbon in fresh and photo-chemically aged biomass-burning emissions, Atmos. Chem. Phys., 13, 7683–7693, https://doi.org/10.5194/acp-13-7683-2013, 2013.
Sharpless, C. M.: Lifetimes of Triplet Dissolved Natural Organic Matter (DOM) and the Effect of NaBH4 Reduction on Singlet Oxygen Quantum Yields: Implications for DOM Photophysics, Environ. Sci. Technol., 46, 4466–4473, https://doi.org/10.1021/es300217h, 2012.
Sierra, M. M. D., Giovanela, M., Parlanti, E., and Soriano-Sierra, E. J.: Fluorescence fingerprint of fulvic and humic acids from varied originsas viewed by single-scan and excitation/emission matrix techniques, Chemosphere, 58, 715–733, https://doi.org/10.1016/j.chemosphere.2004.09.038, 2005.
Stewart, A. J. and Wetzel, R. G: Fluorescence: absorbance ratios – a molecular-weight tracer of dissolved organic matter, Limnol. Oceanogr., 25, 559–564, https://doi.org/10.4319/lo.1980.25.3.0559, 1980.
Szymczak, R. and Waite, T.: Generation and decay of hydrogen peroxide in estuarine waters, Mar. Freshwater Res., 39, 289–299, https://doi.org/10.1071/MF9880289, 1988.
Tang, J., Li, J., Su, T., Han, Y., Mo, Y., Jiang, H., Cui, M., Jiang, B., Chen, Y., Tang, J., Song, J., Peng, P., and Zhang, G.: Molecular compositions and optical properties of dissolved brown carbon in biomass burning, coal combustion, and vehicle emission aerosols illuminated by excitation–emission matrix spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry analysis, Atmos. Chem. Phys., 20, 2513–2532, https://doi.org/10.5194/acp-20-2513-2020, 2020.
Tang, S. S., Li, F. H., Tsona, N. T., Lu, C. Y., Wang, X. F., and Du, L.: Aqueous-Phase Photooxidation of Vanillic Acid: A Potential Source of Humic-Like Substances (HULIS), ACS Earth Space Chem., 4, 862–872, https://doi.org/10.1021/acsearthspacechem.0c00070, 2020.
Timko, S., Maydanov, A., Pittelli, S., Conte, M., Cooper, W., Koch, B.,
Schmitt-Kopplin, P., and Gonsior, M.: Depth-dependent photodegradation of
marine dissolved organic matter, Frontiers in Marine Science, 2, 66, https://doi.org/10.3389/fmars.2015.00066, 2015.
Tranvik, L. and Kokalj, S.: Decreased biodegradability of algal DOC
due to interactive effects of UV radiation and humic matter,
Aquat. Microb. Ecol., 14, 301–307, https://doi.org/10.3354/ame014301,
1998.
Wawzonek, S. and Laitinen, H. A.: The Reduction of Unsaturated Hydrocarbons at the Dropping Mercury Electrode. II. Aromatic Polynuclear Hydrocarbons, J. Am. Chem. Soc., 64, 2365–2368, https://doi.org/10.1021/ja01262a040, 1942.
Wenk, J., Aeschbacher, M., Salhi, E., Canonica, S., von Gunten, U., and Sander, M.: Chemical oxidation of dissolved organic matter by chlorine dioxide, chlorine, and ozone: effects on its optical and antioxidant properties, Environ. Sci. Technol., 47, 11147–11156, https://doi.org/10.1021/es402516b, 2013.
Wong, J. P. S., Zhou, S. M., and Abbatt, J. P. D.: Changes in Secondary Organic Aerosol Composition and Mass due to Photolysis: Relative Humidity Dependence, J. Phys. Chem. A, 119, 4309–4316, https://doi.org/10.1021/jp506898c, 2015.
Xu, W., Gao, Q., He, C., Shi, Q., Hou, Z.-Q., and Zhao, H.-Z.: Using ESI FT-ICR MS to Characterize Dissolved Organic Matter in Salt Lakes with Different Salinity, Environ. Sci. Technol., 54, 12929–12937, https://doi.org/10.1021/acs.est.0c01681, 2020.
Yang, X. M., Yuan, J., Yue, F. J., Li, S. L., Wang, B. L., Mohinuzzaman, M.,
Liu, Y. J., Senesi, N., Lao, X. Y., Li, L. L., Liu, C. Q., Ellam, R. M.,
Vione, D., and Mostofa, K. M. G.: New insights into mechanisms of sunlight- and dark-mediated high-temperature accelerated diurnal production-degradation of fluorescent DOM in lake waters, Sci. Total Environ., 760, 14, https://doi.org/10.1016/j.scitotenv.2020.143377, 2021.
Zappoli, S., Andracchio, A., Fuzzi, S., Facchini, M. C., Gelencser, A., Kiss, G., Krivacsy, Z., Molnar, A., Meszaros, E., Hansson, H. C., Rosman, K., and Zebuhr, Y.: Inorganic, organic and macromolecular components of fine aerosol in different areas of Europe in relation to their water solubility, Atmos. Environ., 33, 2733–2743, https://doi.org/10.1016/S1352-2310(98)00362-8, 1999.
Zepp, R. G., Schlotzhauer, P. F., and Sink, R. M.: Photosensitized transformations involving electronic energy transfer in natural waters: role of humic substances, Environ. Sci. Technol., 19, 74–81, https://doi.org/10.1021/es00131a008, 1985.
Zhang, D., Yan, S., and Song, W.: Photochemically induced formation of reactive oxygen species (ROS) from effluent organic matter, Environ. Sci. Technol., 48, 12645–12653, https://doi.org/10.1021/es5028663, 2014.
Zhao, R., Lee, A. K. Y., Huang, L., Li, X., Yang, F., and Abbatt, J. P. D.: Photochemical processing of aqueous atmospheric brown carbon, Atmos. Chem. Phys., 15, 6087–6100, https://doi.org/10.5194/acp-15-6087-2015, 2015.
Zhao, Y., Hallar, A. G., and Mazzoleni, L. R.: Atmospheric organic matter in clouds: exact masses and molecular formula identification using ultrahigh-resolution FT-ICR mass spectrometry, Atmos. Chem. Phys., 13, 12343–12362, https://doi.org/10.5194/acp-13-12343-2013, 2013.
Zhong, M. and Jang, M.: Dynamic light absorption of biomass-burning organic carbon photochemically aged under natural sunlight, Atmos. Chem. Phys., 14, 1517–1525, https://doi.org/10.5194/acp-14-1517-2014, 2014.
Zhou, H., Yan, S., Lian, L., and Song, W.: Triplet-State Photochemistry of Dissolved Organic Matter: Triplet-State Energy Distribution and Surface Electric Charge Conditions, Environ. Sci. Technol., 53, 2482–2490, https://doi.org/10.1021/acs.est.8b06574, 2019.
Short summary
Sunlight affects the life and chemical composition of atmospheric aerosols and thus alters air quality. This study demonstrated that the photo-aging process not only changed the chemical compositions of chromophoric aerosols but also changed the roles of the chromophoric organic matter in the photo-aging process of aerosol. This study adds to our understanding of how sunlight affects chromophoric aerosol aging.
Sunlight affects the life and chemical composition of atmospheric aerosols and thus alters air...
Altmetrics
Final-revised paper
Preprint