Articles | Volume 20, issue 11
https://doi.org/10.5194/acp-20-6305-2020
https://doi.org/10.5194/acp-20-6305-2020
Research article
 | 
03 Jun 2020
Research article |  | 03 Jun 2020

Worsening urban ozone pollution in China from 2013 to 2017 – Part 1: The complex and varying roles of meteorology

Yiming Liu and Tao Wang

Related authors

Changes in global air pollutant emissions during the COVID-19 pandemic: a dataset for atmospheric modeling
Thierno Doumbia, Claire Granier, Nellie Elguindi, Idir Bouarar, Sabine Darras, Guy Brasseur, Benjamin Gaubert, Yiming Liu, Xiaoqin Shi, Trissevgeni Stavrakou, Simone Tilmes, Forrest Lacey, Adrien Deroubaix, and Tao Wang
Earth Syst. Sci. Data, 13, 4191–4206, https://doi.org/10.5194/essd-13-4191-2021,https://doi.org/10.5194/essd-13-4191-2021, 2021
Short summary
Worsening urban ozone pollution in China from 2013 to 2017 – Part 2: The effects of emission changes and implications for multi-pollutant control
Yiming Liu and Tao Wang
Atmos. Chem. Phys., 20, 6323–6337, https://doi.org/10.5194/acp-20-6323-2020,https://doi.org/10.5194/acp-20-6323-2020, 2020
Short summary
Exploring 2016–2017 surface ozone pollution over China: source contributions and meteorological influences
Xiao Lu, Lin Zhang, Youfan Chen, Mi Zhou, Bo Zheng, Ke Li, Yiming Liu, Jintai Lin, Tzung-May Fu, and Qiang Zhang
Atmos. Chem. Phys., 19, 8339–8361, https://doi.org/10.5194/acp-19-8339-2019,https://doi.org/10.5194/acp-19-8339-2019, 2019
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Large simulated future changes in the nitrate radical under the CMIP6 SSP scenarios: implications for oxidation chemistry
Scott Archer-Nicholls, Rachel Allen, Nathan L. Abraham, Paul T. Griffiths, and Alex T. Archibald
Atmos. Chem. Phys., 23, 5801–5813, https://doi.org/10.5194/acp-23-5801-2023,https://doi.org/10.5194/acp-23-5801-2023, 2023
Short summary
Impact of HO2 aerosol uptake on radical levels and O3 production during summertime in Beijing
Joanna E. Dyson, Lisa K. Whalley, Eloise J. Slater, Robert Woodward-Massey, Chunxiang Ye, James D. Lee, Freya Squires, James R. Hopkins, Rachel E. Dunmore, Marvin Shaw, Jacqueline F. Hamilton, Alastair C. Lewis, Stephen D. Worrall, Asan Bacak, Archit Mehra, Thomas J. Bannan, Hugh Coe, Carl J. Percival, Bin Ouyang, C. Nicholas Hewitt, Roderic L. Jones, Leigh R. Crilley, Louisa J. Kramer, W. Joe F. Acton, William J. Bloss, Supattarachai Saksakulkrai, Jingsha Xu, Zongbo Shi, Roy M. Harrison, Simone Kotthaus, Sue Grimmond, Yele Sun, Weiqi Xu, Siyao Yue, Lianfang Wei, Pingqing Fu, Xinming Wang, Stephen R. Arnold, and Dwayne E. Heard
Atmos. Chem. Phys., 23, 5679–5697, https://doi.org/10.5194/acp-23-5679-2023,https://doi.org/10.5194/acp-23-5679-2023, 2023
Short summary
Source attribution of near-surface ozone trends in the United States during 1995–2019
Pengwei Li, Yang Yang, Hailong Wang, Su Li, Ke Li, Pinya Wang, Baojie Li, and Hong Liao
Atmos. Chem. Phys., 23, 5403–5417, https://doi.org/10.5194/acp-23-5403-2023,https://doi.org/10.5194/acp-23-5403-2023, 2023
Short summary
Exploring the drivers of tropospheric hydroxyl radical trends in the Geophysical Fluid Dynamics Laboratory AM4.1 atmospheric chemistry–climate model
Glen Chua, Vaishali Naik, and Larry Wayne Horowitz
Atmos. Chem. Phys., 23, 4955–4975, https://doi.org/10.5194/acp-23-4955-2023,https://doi.org/10.5194/acp-23-4955-2023, 2023
Short summary
Impacts of land cover changes on biogenic emission and its contribution to ozone and secondary organic aerosol in China
Jinlong Ma, Shengqiang Zhu, Siyu Wang, Peng Wang, Jianmin Chen, and Hongliang Zhang
Atmos. Chem. Phys., 23, 4311–4325, https://doi.org/10.5194/acp-23-4311-2023,https://doi.org/10.5194/acp-23-4311-2023, 2023
Short summary

Cited articles

Akimoto, H., Mori, Y., Sasaki, K., Nakanishi, H., Ohizumi, T., and Itano, Y.: Analysis of monitoring data of ground-level ozone in Japan for long-term trend during 1990–2010: Causes of temporal and spatial variation, Atmos. Environ., 102, 302–310, https://doi.org/10.1016/j.atmosenv.2014.12.001, 2015. 
Atkinson, R.: Atmospheric chemistry of VOCs and NOx, Atmos. Environ., 34, 2063–2101, https://doi.org/10.1016/S1352-2310(99)00460-4, 2000. 
Byun, D. and Schere, K. L.: Review of the governing equations, computational algorithms, and other components of the models-3 Community Multiscale Air Quality (CMAQ) modeling system, Appl. Mech. Rev., 59, 51–77, https://doi.org/10.1115/1.2128636, 2006. 
Carter, W. P. L.: Development of the SAPRC-07 chemical mechanism, Atmos. Environ., 44, 5324–5335, https://doi.org/10.1016/j.atmosenv.2010.01.026, 2010. 
Chen, X. Y., Liu, Y. M., Lai, A. Q., Han, S. S., Fan, Q., Wang, X. M., Ling, Z. H., Huang, F. X., and Fan, S. J.: Factors dominating 3-dimensional ozone distribution tropospheric ozone period, Environ. Pollut., 232, 55–64, https://doi.org/10.1016/j.envpol.2017.09.017, 2018. 
Short summary
This study revealed the effects of changes in meteorology and anthropogenic emissions on the summer ozone variations from 2013 to 2017 across China by conducting numerical experiments. We highlighted the important but varying roles of meteorology in ozone variations attributed to the synergistic or counteracting effects from individual meteorological factors. Developing future ozone pollution mitigation policies should consider the counteracting impact of meteorological changes.
Altmetrics
Final-revised paper
Preprint