Articles | Volume 20, issue 1
Research article
09 Jan 2020
Research article |  | 09 Jan 2020

Modelled effects of temperature gradients and waves on the hydroxyl rotational distribution in ground-based airglow measurements

Christoph Franzen, Patrick Joseph Espy, and Robert Edward Hibbins

Related authors

Optimizing hydroxyl airglow retrievals from long-slit astronomical spectroscopic observations
Christoph Franzen, Robert Edward Hibbins, Patrick Joseph Espy, and Anlaug Amanda Djupvik
Atmos. Meas. Tech., 10, 3093–3101,,, 2017
Short summary

Related subject area

Subject: Dynamics | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Mesosphere | Science Focus: Physics (physical properties and processes)
Numerical modelling of relative contribution of planetary waves to the atmospheric circulation
Andrey V. Koval, Olga N. Toptunova, Maxim A. Motsakov, Ksenia A. Didenko, Tatiana S. Ermakova, Nikolai M. Gavrilov, and Eugene V. Rozanov
Atmos. Chem. Phys., 23, 4105–4114,,, 2023
Short summary
Simulated Long-term Evolution of the Thermosphere during the Holocene: 1. Neutral Density and Temperature
Yihui Cai, Xinan Yue, Xu Zhou, Zhipeng Ren, Yong Wei, and Yongxin Pan
EGUsphere,,, 2023
Short summary
Impact of a strong volcanic eruption on the summer middle atmosphere in UA-ICON simulations
Sandra Wallis, Hauke Schmidt, and Christian von Savigny
EGUsphere,,, 2023
Short summary
Decay times of atmospheric acoustic–gravity waves after deactivation of wave forcing
Nikolai M. Gavrilov, Sergey P. Kshevetskii, and Andrey V. Koval
Atmos. Chem. Phys., 22, 13713–13724,,, 2022
Short summary
Suppressed migrating diurnal tides in the mesosphere and lower thermosphere region during El Niño in northern winter and its possible mechanism
Yetao Cen, Chengyun Yang, Tao Li, James M. Russell III, and Xiankang Dou
Atmos. Chem. Phys., 22, 7861–7874,,, 2022
Short summary

Cited articles

Adler-Golden, S.: Kinetic parameters for OH nightglow modeling consistent with recent laboratory measurements, J. Geophys. Res.-Space, 102, 19969–19976, 1997. 
Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I – gas phase reactions of Ox, HOx, NOx and SOx species, Atmos. Chem. Phys., 4, 1461–1738,, 2004. 
Baker, D. J. and Stair, J. A. T.: Rocket measurements of the altitude distributions of the hydroxyl airglow, Phys. Scripta, 37, 611–622, 1988. 
Chalamala, B. R. and Copeland, R. A.: Collision dynamics of OH(X2Π, v=9), J. Chem. Phys., 99, 5807–5811, 1993. 
Cosby, P. C. and Slanger, T. G.: OH spectroscopy and chemistry investigated with astronomical sky spectra, Can. J. Phys., 85, 77–99, 2007. 
Short summary
Ground-based observations of the hydroxyl (OH) airglow have indicated that the rotational energy levels may not be in thermal equilibrium with the surrounding gas. Here we use simulations of the OH airglow to show that temperature changes across the extended airglow layer, either climatological or those temporarily caused by atmospheric waves, can mimic this effect for thermalized OH. Thus, these must be considered in order to quantify the non-thermal nature of the OH airglow.
Final-revised paper