Articles | Volume 20, issue 1
Atmos. Chem. Phys., 20, 333–343, 2020
Atmos. Chem. Phys., 20, 333–343, 2020
Research article
09 Jan 2020
Research article | 09 Jan 2020

Modelled effects of temperature gradients and waves on the hydroxyl rotational distribution in ground-based airglow measurements

Christoph Franzen et al.

Related authors

Optimizing hydroxyl airglow retrievals from long-slit astronomical spectroscopic observations
Christoph Franzen, Robert Edward Hibbins, Patrick Joseph Espy, and Anlaug Amanda Djupvik
Atmos. Meas. Tech., 10, 3093–3101,,, 2017
Short summary

Related subject area

Subject: Dynamics | Research Activity: Atmospheric Modelling | Altitude Range: Mesosphere | Science Focus: Physics (physical properties and processes)
Intercomparison of middle atmospheric meteorological analyses for the Northern Hemisphere winter 2009–2010
John P. McCormack, V. Lynn Harvey, Cora E. Randall, Nicholas Pedatella, Dai Koshin, Kaoru Sato, Lawrence Coy, Shingo Watanabe, Fabrizio Sassi, and Laura A. Holt
Atmos. Chem. Phys., 21, 17577–17605,,, 2021
Short summary
Decay times of atmospheric acoustic-gravity waves after deactivation of wave forcing
Nikolai M. Gavrilov, Sergey P. Kshevetskii, and Andrey V. Koval
Atmos. Chem. Phys. Discuss.,,, 2021
Revised manuscript accepted for ACP
Short summary
Self-consistent global transport of metallic ions with WACCM-X
Jianfei Wu, Wuhu Feng, Han-Li Liu, Xianghui Xue, Daniel Robert Marsh, and John Maurice Campbell Plane
Atmos. Chem. Phys., 21, 15619–15630,,, 2021
Short summary
Does the coupling of the semiannual oscillation with the quasi-biennial oscillation provide predictability of Antarctic sudden stratospheric warmings?
Viktoria J. Nordström and Annika Seppälä
Atmos. Chem. Phys., 21, 12835–12853,,, 2021
Short summary
The sporadic sodium layer: a possible tracer for the conjunction between the upper and lower atmospheres
Shican Qiu, Ning Wang, Willie Soon, Gaopeng Lu, Mingjiao Jia, Xingjin Wang, Xianghui Xue, Tao Li, and Xiankang Dou
Atmos. Chem. Phys., 21, 11927–11940,,, 2021
Short summary

Cited articles

Adler-Golden, S.: Kinetic parameters for OH nightglow modeling consistent with recent laboratory measurements, J. Geophys. Res.-Space, 102, 19969–19976, 1997. 
Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I – gas phase reactions of Ox, HOx, NOx and SOx species, Atmos. Chem. Phys., 4, 1461–1738,, 2004. 
Baker, D. J. and Stair, J. A. T.: Rocket measurements of the altitude distributions of the hydroxyl airglow, Phys. Scripta, 37, 611–622, 1988. 
Chalamala, B. R. and Copeland, R. A.: Collision dynamics of OH(X2Π, v=9), J. Chem. Phys., 99, 5807–5811, 1993. 
Cosby, P. C. and Slanger, T. G.: OH spectroscopy and chemistry investigated with astronomical sky spectra, Can. J. Phys., 85, 77–99, 2007. 
Short summary
Ground-based observations of the hydroxyl (OH) airglow have indicated that the rotational energy levels may not be in thermal equilibrium with the surrounding gas. Here we use simulations of the OH airglow to show that temperature changes across the extended airglow layer, either climatological or those temporarily caused by atmospheric waves, can mimic this effect for thermalized OH. Thus, these must be considered in order to quantify the non-thermal nature of the OH airglow.
Final-revised paper