Articles | Volume 20, issue 5
https://doi.org/10.5194/acp-20-2987-2020
https://doi.org/10.5194/acp-20-2987-2020
Research article
 | 
12 Mar 2020
Research article |  | 12 Mar 2020

A predictive group-contribution model for the viscosity of aqueous organic aerosol

Natalie R. Gervasi, David O. Topping, and Andreas Zuend

Related authors

The role of interfacial tension in the size-dependent phase separation of atmospheric aerosol particles
Ryan Schmedding and Andreas Zuend
Atmos. Chem. Phys., 25, 327–346, https://doi.org/10.5194/acp-25-327-2025,https://doi.org/10.5194/acp-25-327-2025, 2025
Short summary
Viscosity of aqueous ammonium nitrate–organic particles: equilibrium partitioning may be a reasonable assumption for most tropospheric conditions
Liviana K. Klein, Allan K. Bertram, Andreas Zuend, Florence Gregson, and Ulrich K. Krieger
Atmos. Chem. Phys., 24, 13341–13359, https://doi.org/10.5194/acp-24-13341-2024,https://doi.org/10.5194/acp-24-13341-2024, 2024
Short summary
Implications of Reduced-Complexity Aerosol Thermodynamics on Organic Aerosol Mass Concentration and Composition over North America
Camilo Serrano Damha, Kyle Gorkowski, and Andreas Zuend
EGUsphere, https://doi.org/10.5194/egusphere-2024-2712,https://doi.org/10.5194/egusphere-2024-2712, 2024
Short summary
A thermodynamic framework for bulk–surface partitioning in finite-volume mixed organic–inorganic aerosol particles and cloud droplets
Ryan Schmedding and Andreas Zuend
Atmos. Chem. Phys., 23, 7741–7765, https://doi.org/10.5194/acp-23-7741-2023,https://doi.org/10.5194/acp-23-7741-2023, 2023
Short summary
Viscosity and physical state of sucrose mixed with ammonium sulfate droplets
Rani Jeong, Joseph Lilek, Andreas Zuend, Rongshuang Xu, Man Nin Chan, Dohyun Kim, Hi Gyu Moon, and Mijung Song
Atmos. Chem. Phys., 22, 8805–8817, https://doi.org/10.5194/acp-22-8805-2022,https://doi.org/10.5194/acp-22-8805-2022, 2022
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Influence of land cover change on atmospheric organic gases, aerosols, and radiative effects
Ryan Vella, Matthew Forrest, Andrea Pozzer, Alexandra P. Tsimpidi, Thomas Hickler, Jos Lelieveld, and Holger Tost
Atmos. Chem. Phys., 25, 243–262, https://doi.org/10.5194/acp-25-243-2025,https://doi.org/10.5194/acp-25-243-2025, 2025
Short summary
Quantifying the impacts of marine aerosols over the southeast Atlantic Ocean using a chemical transport model: implications for aerosol–cloud interactions
Mashiat Hossain, Rebecca M. Garland, and Hannah M. Horowitz
Atmos. Chem. Phys., 24, 14123–14143, https://doi.org/10.5194/acp-24-14123-2024,https://doi.org/10.5194/acp-24-14123-2024, 2024
Short summary
Quantifying the impact of global nitrate aerosol on tropospheric composition fields and its production from lightning NOx
Ashok K. Luhar, Anthony C. Jones, and Jonathan M. Wilkinson
Atmos. Chem. Phys., 24, 14005–14028, https://doi.org/10.5194/acp-24-14005-2024,https://doi.org/10.5194/acp-24-14005-2024, 2024
Short summary
Rapid oxidation of phenolic compounds by O3 and HO: effects of the air–water interface and mineral dust in tropospheric chemical processes
Yanru Huo, Mingxue Li, Xueyu Wang, Jianfei Sun, Yuxin Zhou, Yuhui Ma, and Maoxia He
Atmos. Chem. Phys., 24, 12409–12423, https://doi.org/10.5194/acp-24-12409-2024,https://doi.org/10.5194/acp-24-12409-2024, 2024
Short summary
Modeling the contribution of leads to sea spray aerosol in the high Arctic
Rémy Lapere, Louis Marelle, Pierre Rampal, Laurent Brodeau, Christian Melsheimer, Gunnar Spreen, and Jennie L. Thomas
Atmos. Chem. Phys., 24, 12107–12132, https://doi.org/10.5194/acp-24-12107-2024,https://doi.org/10.5194/acp-24-12107-2024, 2024
Short summary

Cited articles

Abramson, E., Imre, D., Beránek, J., Wilson, J., and Zelenyuk, A.: Experimental determination of chemical diffusion within secondary organic aerosol particles, Phys. Chem. Chem. Phys., 15, 2983, https://doi.org/10.1039/c2cp44013j, 2013. a
Angell, C.: Relaxation in liquids, polymers and plastic crystals – strong/fragile patterns and problems, J. Non-Cryst. Solids, 131, 13–31, https://doi.org/10.1016/0022-3093(91)90266-9, 1991. a, b, c
Angell, C.: Entropy and Fragility in Supercooling Liquids, J. Res. Natl. Inst. Stand. Technol., 102, 171, https://doi.org/10.6028/jres.102.013, 1997. a, b
Angell, C. A.: Formation of Glasses from Liquids and Biolymers, Adv. Sci., 267, 1924–1935, https://doi.org/10.1126/science.267.5206.1924, 1995. a
Angell, C. A., Bressel, R. D., Green, J. L., Kanno, H., Oguni, M., and Sare, E. J.: Liquid Fragility and the Glass Transition in Water and Aqueous Solutions, J. Food Eng., 102, 2627–2650, https://doi.org/10.1016/0260-8774(94)90028-0, 2002. a, b
Download
Short summary
Organic aerosols have been shown to exist often in a semi-solid or amorphous, glassy state. Highly viscous particles behave differently than their well-mixed liquid analogues with consequences for a variety of aerosol processes. Here, we introduce a new predictive mixture viscosity model called AIOMFAC-VISC. It enables us to predict the viscosity of aqueous organic mixtures as a function of temperature and chemical composition, covering the full range of liquid, semi-solid, and glassy states.
Altmetrics
Final-revised paper
Preprint