Articles | Volume 20, issue 3
Atmos. Chem. Phys., 20, 1737–1755, 2020
https://doi.org/10.5194/acp-20-1737-2020
Atmos. Chem. Phys., 20, 1737–1755, 2020
https://doi.org/10.5194/acp-20-1737-2020
Research article
13 Feb 2020
Research article | 13 Feb 2020

Response of middle atmospheric temperature to the 27 d solar cycle: an analysis of 13 years of microwave limb sounder data

Piao Rong et al.

Related authors

Is it possible to estimate aerosol optical depth from historic colour paintings?
Christian von Savigny, Anna Lange, Anne Hemkendreis, Christoph Hoffmann, and Alexei Rozanov
Clim. Past Discuss., https://doi.org/10.5194/cp-2022-38,https://doi.org/10.5194/cp-2022-38, 2022
Preprint under review for CP
Short summary
Process-based microphysical characterization of a strong mid-latitude convective system using aircraft in situ cloud measurements
Mireia Papke Chica, Valerian Hahn, Tiziana Braeuer, Elena de la Torre Castro, Florian Ewald, Mathias Gergely, Simon Kirschler, Luca Bugliaro Goggia, Stefanie Knobloch, Martina Kraemer, Johannes Lucke, Johanna Mayer, Raphael Maerkl, Manuel Moser, Laura Tomsche, Tina Jurkat-Witschas, Martin Zoeger, Christian von Savigny, and Christiane Voigt
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-255,https://doi.org/10.5194/acp-2022-255, 2022
Preprint under review for ACP
Short summary
Comparison of mesospheric sodium profile retrievals from OSIRIS and SCIAMACHY nightglow measurements
Julia Koch, Adam Bourassa, Nick Lloyd, Chris Roth, and Christian von Savigny
Atmos. Chem. Phys., 22, 3191–3202, https://doi.org/10.5194/acp-22-3191-2022,https://doi.org/10.5194/acp-22-3191-2022, 2022
Short summary
On the colour of noctilucent clouds
Anna Lange, Gerd Baumgarten, Alexei Rozanov, and Christian von Savigny
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2022-10,https://doi.org/10.5194/angeo-2022-10, 2022
Revised manuscript under review for ANGEO
Short summary
Improved cloud detection for the Aura Microwave Limb Sounder (MLS): training an artificial neural network on colocated MLS and Aqua MODIS data
Frank Werner, Nathaniel J. Livesey, Michael J. Schwartz, William G. Read, Michelle L. Santee, and Galina Wind
Atmos. Meas. Tech., 14, 7749–7773, https://doi.org/10.5194/amt-14-7749-2021,https://doi.org/10.5194/amt-14-7749-2021, 2021
Short summary

Related subject area

Subject: Radiation | Research Activity: Remote Sensing | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
Intercomparison of stratospheric temperature profiles from a ground-based microwave radiometer with other techniques
Francisco Navas-Guzmán, Niklaus Kämpfer, Franziska Schranz, Wolfgang Steinbrecht, and Alexander Haefele
Atmos. Chem. Phys., 17, 14085–14104, https://doi.org/10.5194/acp-17-14085-2017,https://doi.org/10.5194/acp-17-14085-2017, 2017
Short summary
Characterization of the long-term radiosonde temperature biases in the upper troposphere and lower stratosphere using COSMIC and Metop-A/GRAS data from 2006 to 2014
Shu-peng Ho, Liang Peng, and Holger Vömel
Atmos. Chem. Phys., 17, 4493–4511, https://doi.org/10.5194/acp-17-4493-2017,https://doi.org/10.5194/acp-17-4493-2017, 2017
Short summary
A method for merging nadir-sounding climate records, with an application to the global-mean stratospheric temperature data sets from SSU and AMSU
C. McLandress, T. G. Shepherd, A. I. Jonsson, T. von Clarmann, and B. Funke
Atmos. Chem. Phys., 15, 9271–9284, https://doi.org/10.5194/acp-15-9271-2015,https://doi.org/10.5194/acp-15-9271-2015, 2015
Short summary
The use of IASI data to identify systematic errors in the ECMWF forecasts of temperature in the upper stratosphere
G. Masiello, M. Matricardi, and C. Serio
Atmos. Chem. Phys., 11, 1009–1021, https://doi.org/10.5194/acp-11-1009-2011,https://doi.org/10.5194/acp-11-1009-2011, 2011
Comparison of UV irradiances from Aura/Ozone Monitoring Instrument (OMI) with Brewer measurements at El Arenosillo (Spain) – Part 1: Analysis of parameter influence
M. Antón, V. E. Cachorro, J. M. Vilaplana, C. Toledano, N. A. Krotkov, A. Arola, A. Serrano, and B. de la Morena
Atmos. Chem. Phys., 10, 5979–5989, https://doi.org/10.5194/acp-10-5979-2010,https://doi.org/10.5194/acp-10-5979-2010, 2010

Cited articles

Beig, G.: Overview of the mesospheric temperature trend and factors of uncertainty, Phys. Chem. Earth, 27, 509–519, https://doi.org/10.1016/S1474-7065(02)00032-3, 2002. a
Beig, G., Scheer, J., Mlynczak, M. G., and Keckhut, P.: Overview of the temperature response in the mesosphere and lower thermosphere to solar activity, Rev. Geophys., 46, RG3002, https://doi.org/10.1029/2007RG000236, 2008. a
Brasseur, G.: The response of the middle atmosphere to long-term and short-term solar variability: A two dimensional model, J. Geophys. Res., 98, 23079–23090, https://doi.org/10.1029/93JD02406, 1993. a, b
Cebula, R. P. and Deland, M. T.: Comparisons of the NOAA11 SBUV/2, UARS SOLSTICE, and UARS SUSIM MgII solar activity proxy indices, Sol. Phys., 177, 117–132, https://doi.org/10.1023/A:1004994727399, 1998. a
Chree, C.: Some phenomena of sunspots and of terrestrial magnetism at Kew Observatory, Philos. T. Roy. Soc. Lond. A, 212, 75–116, https://doi.org/10.1098/rsta.1913.0003, 1912. a
Download
Short summary
We study the presence and characteristics of 27 d solar signatures in middle atmospheric temperature observed by the microwave limb sounder on NASA's Aura spacecraft. This is a highly interesting and significant subject because the physical and chemical mechanisms leading to these 27 d solar-driven signatures are, in many cases, not well understood. The analysis shows that highly significant 27 d solar signatures in middle atmospheric temperature are present at many altitudes and latitudes.
Altmetrics
Final-revised paper
Preprint