Articles | Volume 20, issue 3
Atmos. Chem. Phys., 20, 1627–1639, 2020
Atmos. Chem. Phys., 20, 1627–1639, 2020

Research article 10 Feb 2020

Research article | 10 Feb 2020

On the limit to the accuracy of regional-scale air quality models

S. Trivikrama Rao et al.

Related authors

Evaluating trends and seasonality in modeled PM2.5 concentrations using empirical mode decomposition
Huiying Luo, Marina Astitha, Christian Hogrefe, Rohit Mathur, and S. Trivikrama Rao
Atmos. Chem. Phys., 20, 13801–13815,,, 2020
Short summary
Online coupled regional meteorology chemistry models in Europe: current status and prospects
A. Baklanov, K. Schlünzen, P. Suppan, J. Baldasano, D. Brunner, S. Aksoyoglu, G. Carmichael, J. Douros, J. Flemming, R. Forkel, S. Galmarini, M. Gauss, G. Grell, M. Hirtl, S. Joffre, O. Jorba, E. Kaas, M. Kaasik, G. Kallos, X. Kong, U. Korsholm, A. Kurganskiy, J. Kushta, U. Lohmann, A. Mahura, A. Manders-Groot, A. Maurizi, N. Moussiopoulos, S. T. Rao, N. Savage, C. Seigneur, R. S. Sokhi, E. Solazzo, S. Solomos, B. Sørensen, G. Tsegas, E. Vignati, B. Vogel, and Y. Zhang
Atmos. Chem. Phys., 14, 317–398,,, 2014
Evaluating the capability of regional-scale air quality models to capture the vertical distribution of pollutants
E. Solazzo, R. Bianconi, G. Pirovano, M. D. Moran, R. Vautard, C. Hogrefe, K. W. Appel, V. Matthias, P. Grossi, B. Bessagnet, J. Brandt, C. Chemel, J. H. Christensen, R. Forkel, X. V. Francis, A. B. Hansen, S. McKeen, U. Nopmongcol, M. Prank, K. N. Sartelet, A. Segers, J. D. Silver, G. Yarwood, J. Werhahn, J. Zhang, S. T. Rao, and S. Galmarini
Geosci. Model Dev., 6, 791–818,,, 2013

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Impact of regional Northern Hemisphere mid-latitude anthropogenic sulfur dioxide emissions on local and remote tropospheric oxidants
Daniel M. Westervelt, Arlene M. Fiore, Colleen B. Baublitz, and Gustavo Correa
Atmos. Chem. Phys., 21, 6799–6810,,, 2021
Short summary
Impact of organic molecular structure on the estimation of atmospherically relevant physicochemical parameters
Gabriel Isaacman-VanWertz and Bernard Aumont
Atmos. Chem. Phys., 21, 6541–6563,,, 2021
Short summary
Spatial and temporal variability in the hydroxyl (OH) radical: understanding the role of large-scale climate features and their influence on OH through its dynamical and photochemical drivers
Daniel C. Anderson, Bryan N. Duncan, Arlene M. Fiore, Colleen B. Baublitz, Melanie B. Follette-Cook, Julie M. Nicely, and Glenn M. Wolfe
Atmos. Chem. Phys., 21, 6481–6508,,, 2021
Short summary
Analysis of atmospheric ammonia over South and East Asia based on the MOZART-4 model and its comparison with satellite and surface observations
Pooja V. Pawar, Sachin D. Ghude, Chinmay Jena, Andrea Móring, Mark A. Sutton, Santosh Kulkarni, Deen Mani Lal, Divya Surendran, Martin Van Damme, Lieven Clarisse, Pierre-François Coheur, Xuejun Liu, Gaurav Govardhan, Wen Xu, Jize Jiang, and Tapan Kumar Adhya
Atmos. Chem. Phys., 21, 6389–6409,,, 2021
Short summary
Air quality and health benefits from ultra-low emission control policy indicated by continuous emission monitoring: a case study in the Yangtze River Delta region, China
Yan Zhang, Yu Zhao, Meng Gao, Xin Bo, and Chris P. Nielsen
Atmos. Chem. Phys., 21, 6411–6430,,, 2021
Short summary

Cited articles

Appel, K. W., Chemel, C., Roselle, S. J., Francis, X. V., Hu, R.-M., Sokhi, R. S., Rao, S. T., and Galmarini, S.: Examination of the Community Multiscale Air Quality (CMAQ) model performance over the North American and European domains. Atmospheric Environment, AQMEII: An International Initiative for the Evaluation of Regional-Scale Air Quality Models – Phase 1, 53, 142–155,, 2012. 
Astitha, M., Luo, H., Rao, S. T., Hogrefe, C., Mathur, R., and Kumar, N.: Dynamic evaluation of two decades of WRF-CMAQ ozone simulations over the contiguous United States, Atmos. Environ., 164, 102–116,, 2017. 
Biswas, J. and Rao, S. T.: Uncertainties in episodic ozone modeling stemming from uncertainties in the meteorological fields, J. Appl. Meteor., 40, 117–136, 2001. 
Bocquet, M., Elbern, H., Eskes, H., Hirtl, M., Žabkar, R., Carmichael, G. R., Flemming, J., Inness, A., Pagowski, M., Pérez Camaño, J. L., Saide, P. E., San Jose, R., Sofiev, M., Vira, J., Baklanov, A., Carnevale, C., Grell, G., and Seigneur, C.: Data assimilation in atmospheric chemistry models: current status and future prospects for coupled chemistry meteorology models, Atmos. Chem. Phys., 15, 5325–5358,, 2015. 
Short summary
Since numerical air quality models do not explicitly simulate stochastic variations in the atmosphere, there will always be differences between modeled and measured pollutant levels even when the model's physics, chemistry, numerical analysis, and its input data are perfect. This paper quantifies the inherent uncertainty in regional models due to the stochastic nature of the atmosphere. A knowledge of the expected error helps model developers in evaluating the real progress in improving models.
Final-revised paper