Articles | Volume 20, issue 24
https://doi.org/10.5194/acp-20-15907-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-15907-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Sources and characteristics of size-resolved particulate organic acids and methanesulfonate in a coastal megacity: Manila, Philippines
Department of Chemical and Environmental Engineering, University of
Arizona, Tucson, Arizona 85721, USA
Melliza Templonuevo Cruz
Manila Observatory, Quezon City, 1108, Philippines
Institute of Environmental Science and Meteorology, University of the
Philippines, Diliman, Quezon City, 1101, Philippines
Paola Angela Bañaga
Manila Observatory, Quezon City, 1108, Philippines
Department of Physics, School of Science and Engineering, Ateneo de
Manila University, Quezon City, 1108, Philippines
Grace Betito
Manila Observatory, Quezon City, 1108, Philippines
Department of Physics, School of Science and Engineering, Ateneo de
Manila University, Quezon City, 1108, Philippines
Rachel A. Braun
Department of Chemical and Environmental Engineering, University of
Arizona, Tucson, Arizona 85721, USA
Mojtaba Azadi Aghdam
Department of Chemical and Environmental Engineering, University of
Arizona, Tucson, Arizona 85721, USA
Maria Obiminda Cambaliza
Manila Observatory, Quezon City, 1108, Philippines
Department of Physics, School of Science and Engineering, Ateneo de
Manila University, Quezon City, 1108, Philippines
Genevieve Rose Lorenzo
Manila Observatory, Quezon City, 1108, Philippines
Department of Hydrology and Atmospheric Sciences, University of
Arizona, Tucson, Arizona 85721, USA
Alexander B. MacDonald
Department of Chemical and Environmental Engineering, University of
Arizona, Tucson, Arizona 85721, USA
Miguel Ricardo A. Hilario
Manila Observatory, Quezon City, 1108, Philippines
Preciosa Corazon Pabroa
Philippine Nuclear Research Institute – Department of Science and
Technology, Commonwealth Avenue, Diliman, Quezon City, 1101, Philippines
John Robin Yee
Philippine Nuclear Research Institute – Department of Science and
Technology, Commonwealth Avenue, Diliman, Quezon City, 1101, Philippines
James Bernard Simpas
Manila Observatory, Quezon City, 1108, Philippines
Department of Physics, School of Science and Engineering, Ateneo de
Manila University, Quezon City, 1108, Philippines
Armin Sorooshian
Department of Chemical and Environmental Engineering, University of
Arizona, Tucson, Arizona 85721, USA
Department of Hydrology and Atmospheric Sciences, University of
Arizona, Tucson, Arizona 85721, USA
Related authors
Ewan Crosbie, Luke D. Ziemba, Michael A. Shook, Claire E. Robinson, Edward L. Winstead, K. Lee Thornhill, Rachel A. Braun, Alexander B. MacDonald, Connor Stahl, Armin Sorooshian, Susan C. van den Heever, Joshua P. DiGangi, Glenn S. Diskin, Sarah Woods, Paola Bañaga, Matthew D. Brown, Francesca Gallo, Miguel Ricardo A. Hilario, Carolyn E. Jordan, Gabrielle R. Leung, Richard H. Moore, Kevin J. Sanchez, Taylor J. Shingler, and Elizabeth B. Wiggins
Atmos. Chem. Phys., 22, 13269–13302, https://doi.org/10.5194/acp-22-13269-2022, https://doi.org/10.5194/acp-22-13269-2022, 2022
Short summary
Short summary
The linkage between cloud droplet and aerosol particle chemical composition was analyzed using samples collected in a polluted tropical marine environment. Variations in the droplet composition were related to physical and dynamical processes in clouds to assess their relative significance across three cases that spanned a range of rainfall amounts. In spite of the pollution, sea salt still remained a major contributor to the droplet composition and was preferentially enhanced in rainwater.
Connor Stahl, Ewan Crosbie, Paola Angela Bañaga, Grace Betito, Rachel A. Braun, Zenn Marie Cainglet, Maria Obiminda Cambaliza, Melliza Templonuevo Cruz, Julie Mae Dado, Miguel Ricardo A. Hilario, Gabrielle Frances Leung, Alexander B. MacDonald, Angela Monina Magnaye, Jeffrey Reid, Claire Robinson, Michael A. Shook, James Bernard Simpas, Shane Marie Visaga, Edward Winstead, Luke Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 21, 14109–14129, https://doi.org/10.5194/acp-21-14109-2021, https://doi.org/10.5194/acp-21-14109-2021, 2021
Short summary
Short summary
A total of 159 cloud water samples were collected and measured for total organic carbon (TOC) during CAMP2Ex. On average, 30 % of TOC was speciated based on carboxylic/sulfonic acids and dimethylamine. Results provide a critical constraint on cloud composition and vertical profiles of TOC and organic species ranging from ~250 m to ~ 7 km and representing a variety of cloud types and air mass source influences such as biomass burning, marine emissions, anthropogenic activity, and dust.
Genevieve Rose Lorenzo, Paola Angela Bañaga, Maria Obiminda Cambaliza, Melliza Templonuevo Cruz, Mojtaba AzadiAghdam, Avelino Arellano, Grace Betito, Rachel Braun, Andrea F. Corral, Hossein Dadashazar, Eva-Lou Edwards, Edwin Eloranta, Robert Holz, Gabrielle Leung, Lin Ma, Alexander B. MacDonald, Jeffrey S. Reid, James Bernard Simpas, Connor Stahl, Shane Marie Visaga, and Armin Sorooshian
Atmos. Chem. Phys., 21, 6155–6173, https://doi.org/10.5194/acp-21-6155-2021, https://doi.org/10.5194/acp-21-6155-2021, 2021
Short summary
Short summary
Firework emissions change the physicochemical and optical properties of water-soluble particles, which subsequently alters the background aerosol’s respirability, influence on surroundings, ability to uptake gases, and viability as cloud condensation nuclei (CCN). There was heavy aerosol loading due to fireworks in the boundary layer. The aerosol constituents were largely water-soluble and submicrometer in size due to both inorganic salts in firework materials and gas-to-particle conversion.
Jingyi Chen, Hailong Wang, Bo Zhang, Hongyu Liu, David Painemal, Armin Sorooshian, Sheng-Lun Tai, and Christiane Voigt
EGUsphere, https://doi.org/10.22541/essoar.175376670.02806644/v1, https://doi.org/10.22541/essoar.175376670.02806644/v1, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
NASA-validated modeling shows +4K SST & +25 % gradients distinctly alter boundary layer dynamics, cloud physics in cold-air outbreaks. Warmer SST reduces cloud cover; increases size, elongation; hydrometeors shift to ice. Sharper Gradients boost liquid water (cold upwind); reduces ice; disrupts organization. Also, SST changes alter cloud-top properties via entrained airmass origin. Resolving ocean-atmosphere coupling in global models is essential for accurate cloud feedback projections.
Jeffrey S. Reid, Robert E. Holz, Chris A. Hostetler, Richard A. Ferrare, Juli I. Rubin, Elizabeth J. Thompson, Susan C. van den Heever, Corey G. Amiot, Sharon P. Burton, Joshua P. DiGangi, Glenn S. Diskin, Joshua H. Cossuth, Daniel P. Eleuterio, Edwin W. Eloranta, Ralph Kuehn, Willem J. Marais, Hal B. Maring, Armin Sorooshian, Kenneth L. Thornhill, Charles R. Trepte, Jian Wang, Peng Xian, and Luke D. Ziemba
EGUsphere, https://doi.org/10.5194/egusphere-2025-2605, https://doi.org/10.5194/egusphere-2025-2605, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We document air and ship born measurements of the vertical distribution of pollution and biomass burning aerosol particles transported within the Maritime Continent’s monsoonal flows for 1000’s of kilometers, and yet still exhibit intricate patterns around clouds near the ocean’s surface. Findings demonstrate that, while aerosol transport occurs near the surface, there is heterogeneity in particle extinction that must be considered for both in situ observations and satellite retrievals.
Ewan Crosbie, Johnathan W. Hair, Amin R. Nehrir, Richard A. Ferrare, Chris Hostetler, Taylor Shingler, David Harper, Marta Fenn, James Collins, Rory Barton-Grimley, Brian Collister, K. Lee Thornhill, Christiane Voigt, Simon Kirschler, and Armin Sorooshian
Atmos. Meas. Tech., 18, 2639–2658, https://doi.org/10.5194/amt-18-2639-2025, https://doi.org/10.5194/amt-18-2639-2025, 2025
Short summary
Short summary
A method was developed to extract information from airborne lidar observations about the distribution of ice and liquid water within clouds. The method specifically targets signatures of horizontal and vertical gradients in ice and water that appear in the polarization of the lidar signals. The method was tested against direct measurements of the cloud properties collected by a second aircraft.
Yafang Guo, Mohammad Amin Mirrezaei, Armin Sorooshian, and Avelino F. Arellano
Atmos. Chem. Phys., 25, 5591–5616, https://doi.org/10.5194/acp-25-5591-2025, https://doi.org/10.5194/acp-25-5591-2025, 2025
Short summary
Short summary
We assess the contributions of fire and anthropogenic emissions to O3 levels in Phoenix, Arizona, during a period of intense heat and drought conditions. We find that fire exacerbates O3 pollution and that interactions between weather, climate, and air chemistry are important to consider. This has implications for activities related to formulating emission reduction strategies in areas that are currently understudied yet becoming relevant due to reports of increasing global aridity.
Emily D. Lenhardt, Lan Gao, Chris A. Hostetler, Richard A. Ferrare, Sharon P. Burton, Richard H. Moore, Luke D. Ziemba, Ewan Crosbie, Armin Sorooshian, Cassidy Soloff, and Jens Redemann
EGUsphere, https://doi.org/10.5194/egusphere-2025-2422, https://doi.org/10.5194/egusphere-2025-2422, 2025
Short summary
Short summary
Small particles that form cloud droplets greatly impact Earth's climate, but are very difficult to measure. If we can measure them using satellite-based instruments, we greatly increase the amount of available data on their concentrations. In this study we find that including information about particle size is most important to measure them accurately from such satellite-based instruments. This can inform future studies on how to obtain more accurate information about small particles.
Genevieve Rose Lorenzo, Luke D. Ziemba, Avelino F. Arellano, Mary C. Barth, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Richard Ferrare, Miguel Ricardo A. Hilario, Michael A. Shook, Simone Tilmes, Jian Wang, Qian Xiao, Jun Zhang, and Armin Sorooshian
Atmos. Chem. Phys., 25, 5469–5495, https://doi.org/10.5194/acp-25-5469-2025, https://doi.org/10.5194/acp-25-5469-2025, 2025
Short summary
Short summary
Novel aerosol hygroscopicity analyses of CAMP2Ex (Cloud, Aerosol, and Monsoon Processes Philippines Experiment) field campaign data show low aerosol hygroscopicity values in Southeast Asia. Organic carbon from smoke decreases hygroscopicity to levels more like those in continental than in polluted marine regions. Hygroscopicity changes at cloud level demonstrate how surface particles impact clouds in the region, affecting model representation of aerosol and cloud interactions in similar polluted marine regions with high organic carbon emissions.
Florian Tornow, Ann Fridlind, George Tselioudis, Brian Cairns, Andrew Ackerman, Seethala Chellappan, David Painemal, Paquita Zuidema, Christiane Voigt, Simon Kirschler, and Armin Sorooshian
Atmos. Chem. Phys., 25, 5053–5074, https://doi.org/10.5194/acp-25-5053-2025, https://doi.org/10.5194/acp-25-5053-2025, 2025
Short summary
Short summary
The recent NASA campaign ACTIVATE (Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment) performed 71 tandem flights in mid-latitude marine cold-air outbreaks off the US eastern seaboard. We provide meteorological and cloud transition stage context, allowing us to identify days that are most suitable for Lagrangian modeling and analysis. Surveyed cloud properties show signatures of cloud microphysical processes, such as cloud-top entrainment and secondary ice formation.
Joshua P. DiGangi, Glenn S. Diskin, Subin Yoon, Sergio L. Alvarez, James H. Flynn, Claire E. Robinson, Michael A. Shook, K. Lee Thornhill, Edward L. Winstead, Luke D. Ziemba, Maria Obiminda L. Cambaliza, James B. Simpas, Miguel Ricardo A. Hilario, and Armin Sorooshian
EGUsphere, https://doi.org/10.5194/egusphere-2025-1454, https://doi.org/10.5194/egusphere-2025-1454, 2025
Short summary
Short summary
Both fire and urban emissions are major contributors to air pollution in Southeast Asia. Relative increases in measurements of methane and carbon monoxide gases during an aircraft campaign near the Philippines in 2019 were used to isolate pollution emissions from fires vs urban sources. Results were compared to atmospheric transport models to determine the sources' regional origins, and relationships between pollution indicators relevant to poor air quality were investigated for each source.
Kira Zeider, Kayla McCauley, Sanja Dmitrovic, Leong Wai Siu, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Simon Kirschler, John B. Nowak, Michael A. Shook, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, Paquita Zuidema, and Armin Sorooshian
Atmos. Chem. Phys., 25, 2407–2422, https://doi.org/10.5194/acp-25-2407-2025, https://doi.org/10.5194/acp-25-2407-2025, 2025
Short summary
Short summary
In situ aircraft data collected over the northwest Atlantic Ocean are utilized to compare aerosol conditions and turbulence between near-surface and below-cloud-base altitudes for different regimes of coupling strength between those two levels, along with how cloud microphysical properties vary across those regimes. Stronger coupling yields more homogenous aerosol structure vertically along with higher cloud drop concentrations and sea salt influence in clouds.
Hongyu Liu, Bo Zhang, Richard H. Moore, Luke D. Ziemba, Richard A. Ferrare, Hyundeok Choi, Armin Sorooshian, David Painemal, Hailong Wang, Michael A. Shook, Amy Jo Scarino, Johnathan W. Hair, Ewan C. Crosbie, Marta A. Fenn, Taylor J. Shingler, Chris A. Hostetler, Gao Chen, Mary M. Kleb, Gan Luo, Fangqun Yu, Mark A. Vaughan, Yongxiang Hu, Glenn S. Diskin, John B. Nowak, Joshua P. DiGangi, Yonghoon Choi, Christoph A. Keller, and Matthew S. Johnson
Atmos. Chem. Phys., 25, 2087–2121, https://doi.org/10.5194/acp-25-2087-2025, https://doi.org/10.5194/acp-25-2087-2025, 2025
Short summary
Short summary
We use the GEOS-Chem model to simulate aerosol distributions and properties over the western North Atlantic Ocean (WNAO) during the winter and summer deployments in 2020 of the NASA ACTIVATE mission. Model results are evaluated against aircraft, ground-based, and satellite observations. The improved understanding of life cycle, composition, transport pathways, and distribution of aerosols has important implications for characterizing aerosol–cloud–meteorology interactions over WNAO.
Sanja Dmitrovic, Joseph S. Schlosser, Ryan Bennett, Brian Cairns, Gao Chen, Glenn S. Diskin, Richard A. Ferrare, Johnathan W. Hair, Michael A. Jones, Jeffrey S. Reid, Taylor J. Shingler, Michael A. Shook, Armin Sorooshian, Kenneth L. Thornhill, Luke D. Ziemba, and Snorre Stamnes
EGUsphere, https://doi.org/10.5194/egusphere-2024-3088, https://doi.org/10.5194/egusphere-2024-3088, 2024
Short summary
Short summary
This study focuses on aerosol particles, which critically influence the atmosphere by scattering and absorbing light. To understand these interactions, airborne field campaigns deploy instruments that can measure these particles’ directly or indirectly via remote sensing. We introduce the In Situ Aerosol Retrieval Algorithm (ISARA) to ensure consistency between aerosol measurements and show that the two data sets generally align, with some deviation caused by the presence of larger particles.
Soodabeh Namdari, Sanja Dmitrovic, Gao Chen, Yonghoon Choi, Ewan Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Richard A. Ferrare, Johnathan W. Hair, Simon Kirschler, John B. Nowak, Kenneth L. Thornhill, Christiane Voigt, Holger Vömel, Xubin Zeng, and Armin Sorooshian
EGUsphere, https://doi.org/10.5194/egusphere-2024-3024, https://doi.org/10.5194/egusphere-2024-3024, 2024
Short summary
Short summary
We conducted this study to assess the accuracy of airborne measurements of wind, temperature, and humidity, essential for understanding atmospheric processes. Using data from NASA's ACTIVATE campaign, we compared measurements from the TAMMS and DLH aboard a Falcon aircraft with dropsondes from a King Air, matching data points based on location and time using statistical methods. The study showed strong agreement, confirming the reliability of these methods for advancing climate models.
Cassidy Soloff, Taiwo Ajayi, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Marta A. Fenn, Richard A. Ferrare, Francesca Gallo, Johnathan W. Hair, Miguel Ricardo A. Hilario, Simon Kirschler, Richard H. Moore, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 24, 10385–10408, https://doi.org/10.5194/acp-24-10385-2024, https://doi.org/10.5194/acp-24-10385-2024, 2024
Short summary
Short summary
Using aircraft measurements over the northwestern Atlantic between the US East Coast and Bermuda and trajectory modeling of continental outflow, we identify trace gas and particle properties that exhibit gradients with offshore distance and quantify these changes with high-resolution measurements of concentrations and particle chemistry, size, and scattering properties. This work furthers our understanding of the complex interactions between continental and marine environments.
Shuaiqi Tang, Hailong Wang, Xiang-Yu Li, Jingyi Chen, Armin Sorooshian, Xubin Zeng, Ewan Crosbie, Kenneth L. Thornhill, Luke D. Ziemba, and Christiane Voigt
Atmos. Chem. Phys., 24, 10073–10092, https://doi.org/10.5194/acp-24-10073-2024, https://doi.org/10.5194/acp-24-10073-2024, 2024
Short summary
Short summary
We examined marine boundary layer clouds and their interactions with aerosols in the E3SM single-column model (SCM) for a case study. The SCM shows good agreement when simulating the clouds with high-resolution models. It reproduces the relationship between cloud droplet and aerosol particle number concentrations as produced in global models. However, the relationship between cloud liquid water and droplet number concentration is different, warranting further investigation.
Taiwo Ajayi, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Marta A. Fenn, Richard A. Ferrare, Johnathan W. Hair, Miguel Ricardo A. Hilario, Chris A. Hostetler, Simon Kirschler, Richard H. Moore, Taylor J. Shingler, Michael A. Shook, Cassidy Soloff, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 24, 9197–9218, https://doi.org/10.5194/acp-24-9197-2024, https://doi.org/10.5194/acp-24-9197-2024, 2024
Short summary
Short summary
This study uses airborne data to examine vertical profiles of trace gases, aerosol particles, and meteorological variables over a remote marine area (Bermuda). Results show distinct differences based on both air mass source region (North America, Ocean, Caribbean/North Africa) and altitude for a given air mass type. This work highlights the sensitivity of remote marine areas to long-range transport and the importance of considering the vertical dependence of trace gas and aerosol properties.
Kira Zeider, Grace Betito, Anthony Bucholtz, Peng Xian, Annette Walker, and Armin Sorooshian
Atmos. Chem. Phys., 24, 9059–9083, https://doi.org/10.5194/acp-24-9059-2024, https://doi.org/10.5194/acp-24-9059-2024, 2024
Short summary
Short summary
The predominant wind direction along the California coast (northerly) reverses several times during the summer (to southerly). The effects of these wind reversals on aerosol and cloud characteristics are not well understood. Using data from multiple datasets we found that southerly flow periods had enhanced signatures of anthropogenic emissions due to shipping and continental sources, and clouds had more but smaller droplets.
Sanja Dmitrovic, Johnathan W. Hair, Brian L. Collister, Ewan Crosbie, Marta A. Fenn, Richard A. Ferrare, David B. Harper, Chris A. Hostetler, Yongxiang Hu, John A. Reagan, Claire E. Robinson, Shane T. Seaman, Taylor J. Shingler, Kenneth L. Thornhill, Holger Vömel, Xubin Zeng, and Armin Sorooshian
Atmos. Meas. Tech., 17, 3515–3532, https://doi.org/10.5194/amt-17-3515-2024, https://doi.org/10.5194/amt-17-3515-2024, 2024
Short summary
Short summary
This study introduces and evaluates a new ocean surface wind speed product from the NASA Langley Research Center (LARC) airborne High-Spectral-Resolution Lidar – Generation 2 (HSRL-2) during the NASA ACTIVATE mission. We show that HSRL-2 surface wind speed data are accurate when compared to ground-truth dropsonde measurements. Therefore, the HSRL-2 instrument is able obtain accurate, high-resolution surface wind speed data in airborne field campaigns.
Ewan Crosbie, Luke D. Ziemba, Michael A. Shook, Taylor Shingler, Johnathan W. Hair, Armin Sorooshian, Richard A. Ferrare, Brian Cairns, Yonghoon Choi, Joshua DiGangi, Glenn S. Diskin, Chris Hostetler, Simon Kirschler, Richard H. Moore, David Painemal, Claire Robinson, Shane T. Seaman, K. Lee Thornhill, Christiane Voigt, and Edward Winstead
Atmos. Chem. Phys., 24, 6123–6152, https://doi.org/10.5194/acp-24-6123-2024, https://doi.org/10.5194/acp-24-6123-2024, 2024
Short summary
Short summary
Marine clouds are found to clump together in regions or lines, readily discernible from satellite images of the ocean. While clustering is also a feature of deep storm clouds, we focus on smaller cloud systems associated with fair weather and brief localized showers. Two aircraft sampled the region around these shallow systems: one incorporated measurements taken within, adjacent to, and below the clouds, while the other provided a survey from above using remote sensing techniques.
Yafang Guo, Chayan Roychoudhury, Mohammad Amin Mirrezaei, Rajesh Kumar, Armin Sorooshian, and Avelino F. Arellano
Geosci. Model Dev., 17, 4331–4353, https://doi.org/10.5194/gmd-17-4331-2024, https://doi.org/10.5194/gmd-17-4331-2024, 2024
Short summary
Short summary
This research focuses on surface ozone (O3) pollution in Arizona, a historically air-quality-challenged arid and semi-arid region in the US. The unique characteristics of this kind of region, e.g., intense heat, minimal moisture, and persistent desert shrubs, play a vital role in comprehending O3 exceedances. Using the WRF-Chem model, we analyzed O3 levels in the pre-monsoon month, revealing the model's skill in capturing diurnal and MDA8 O3 levels.
Leong Wai Siu, Joseph S. Schlosser, David Painemal, Brian Cairns, Marta A. Fenn, Richard A. Ferrare, Johnathan W. Hair, Chris A. Hostetler, Longlei Li, Mary M. Kleb, Amy Jo Scarino, Taylor J. Shingler, Armin Sorooshian, Snorre A. Stamnes, and Xubin Zeng
Atmos. Meas. Tech., 17, 2739–2759, https://doi.org/10.5194/amt-17-2739-2024, https://doi.org/10.5194/amt-17-2739-2024, 2024
Short summary
Short summary
An unprecedented 3-year aerosol dataset was collected from a recent NASA field campaign over the western North Atlantic Ocean, which offers a special opportunity to evaluate two state-of-the-art remote sensing instruments, one lidar and the other polarimeter, on the same aircraft. Special attention has been paid to validate aerosol optical depth data and their uncertainties when no reference dataset is available. Physical reasons for the disagreement between two instruments are discussed.
Eva-Lou Edwards, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Claire E. Robinson, Michael A. Shook, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 24, 3349–3378, https://doi.org/10.5194/acp-24-3349-2024, https://doi.org/10.5194/acp-24-3349-2024, 2024
Short summary
Short summary
We investigate Cl− depletion in sea salt particles over the northwest Atlantic from December 2021 to June 2022 using an airborne dataset. Losses of Cl− are greatest in May and least in December–February and March. Inorganic acidic species can account for all depletion observed for December–February, March, and June near Bermuda but none in May. Quantifying Cl− depletion as a percentage captures seasonal trends in depletion but fails to convey the effects it may have on atmospheric oxidation.
Miguel Ricardo A. Hilario, Avelino F. Arellano, Ali Behrangi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Michael A. Shook, Luke D. Ziemba, and Armin Sorooshian
Atmos. Meas. Tech., 17, 37–55, https://doi.org/10.5194/amt-17-37-2024, https://doi.org/10.5194/amt-17-37-2024, 2024
Short summary
Short summary
Wet scavenging strongly influences aerosol lifetime and interactions but is a large uncertainty in global models. We present a method to identify meteorological variables relevant for estimating wet scavenging. During long-range transport over the tropical western Pacific, relative humidity and the frequency of humid conditions are better predictors of scavenging than precipitation. This method can be applied to other regions, and our findings can inform scavenging parameterizations in models.
Simon Kirschler, Christiane Voigt, Bruce E. Anderson, Gao Chen, Ewan C. Crosbie, Richard A. Ferrare, Valerian Hahn, Johnathan W. Hair, Stefan Kaufmann, Richard H. Moore, David Painemal, Claire E. Robinson, Kevin J. Sanchez, Amy J. Scarino, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 23, 10731–10750, https://doi.org/10.5194/acp-23-10731-2023, https://doi.org/10.5194/acp-23-10731-2023, 2023
Short summary
Short summary
In this study we present an overview of liquid and mixed-phase clouds and precipitation in the marine boundary layer over the western North Atlantic Ocean. We compare microphysical properties of pure liquid clouds to mixed-phase clouds and show that the initiation of the ice phase in mixed-phase clouds promotes precipitation. The observational data presented in this study are well suited for investigating the processes that give rise to liquid and mixed-phase clouds, ice, and precipitation.
Genevieve Rose Lorenzo, Avelino F. Arellano, Maria Obiminda Cambaliza, Christopher Castro, Melliza Templonuevo Cruz, Larry Di Girolamo, Glenn Franco Gacal, Miguel Ricardo A. Hilario, Nofel Lagrosas, Hans Jarett Ong, James Bernard Simpas, Sherdon Niño Uy, and Armin Sorooshian
Atmos. Chem. Phys., 23, 10579–10608, https://doi.org/10.5194/acp-23-10579-2023, https://doi.org/10.5194/acp-23-10579-2023, 2023
Short summary
Short summary
Aerosol and weather interactions in Southeast Asia are complex and understudied. An emerging aerosol climatology was established in Metro Manila, the Philippines, from aerosol particle physicochemical properties and meteorology, revealing five sources. Even with local traffic, transported smoke from biomass burning, aged dust, and cloud processing, background marine particles dominate and correspond to lower aerosol optical depth in Metro Manila compared to other Southeast Asian megacities.
Qian Xiao, Jiaoshi Zhang, Yang Wang, Luke D. Ziemba, Ewan Crosbie, Edward L. Winstead, Claire E. Robinson, Joshua P. DiGangi, Glenn S. Diskin, Jeffrey S. Reid, K. Sebastian Schmidt, Armin Sorooshian, Miguel Ricardo A. Hilario, Sarah Woods, Paul Lawson, Snorre A. Stamnes, and Jian Wang
Atmos. Chem. Phys., 23, 9853–9871, https://doi.org/10.5194/acp-23-9853-2023, https://doi.org/10.5194/acp-23-9853-2023, 2023
Short summary
Short summary
Using recent airborne measurements, we show that the influences of anthropogenic emissions, transport, convective clouds, and meteorology lead to new particle formation (NPF) under a variety of conditions and at different altitudes in tropical marine environments. NPF is enhanced by fresh urban emissions in convective outflow but is suppressed in air masses influenced by aged urban emissions where reactive precursors are mostly consumed while particle surface area remains relatively high.
Armin Sorooshian, Mikhail D. Alexandrov, Adam D. Bell, Ryan Bennett, Grace Betito, Sharon P. Burton, Megan E. Buzanowicz, Brian Cairns, Eduard V. Chemyakin, Gao Chen, Yonghoon Choi, Brian L. Collister, Anthony L. Cook, Andrea F. Corral, Ewan C. Crosbie, Bastiaan van Diedenhoven, Joshua P. DiGangi, Glenn S. Diskin, Sanja Dmitrovic, Eva-Lou Edwards, Marta A. Fenn, Richard A. Ferrare, David van Gilst, Johnathan W. Hair, David B. Harper, Miguel Ricardo A. Hilario, Chris A. Hostetler, Nathan Jester, Michael Jones, Simon Kirschler, Mary M. Kleb, John M. Kusterer, Sean Leavor, Joseph W. Lee, Hongyu Liu, Kayla McCauley, Richard H. Moore, Joseph Nied, Anthony Notari, John B. Nowak, David Painemal, Kasey E. Phillips, Claire E. Robinson, Amy Jo Scarino, Joseph S. Schlosser, Shane T. Seaman, Chellappan Seethala, Taylor J. Shingler, Michael A. Shook, Kenneth A. Sinclair, William L. Smith Jr., Douglas A. Spangenberg, Snorre A. Stamnes, Kenneth L. Thornhill, Christiane Voigt, Holger Vömel, Andrzej P. Wasilewski, Hailong Wang, Edward L. Winstead, Kira Zeider, Xubin Zeng, Bo Zhang, Luke D. Ziemba, and Paquita Zuidema
Earth Syst. Sci. Data, 15, 3419–3472, https://doi.org/10.5194/essd-15-3419-2023, https://doi.org/10.5194/essd-15-3419-2023, 2023
Short summary
Short summary
The NASA Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment (ACTIVATE) produced a unique dataset for research into aerosol–cloud–meteorology interactions. HU-25 Falcon and King Air aircraft conducted systematic and spatially coordinated flights over the northwest Atlantic Ocean. This paper describes the ACTIVATE flight strategy, instrument and complementary dataset products, data access and usage details, and data application notes.
Edward Gryspeerdt, Adam C. Povey, Roy G. Grainger, Otto Hasekamp, N. Christina Hsu, Jane P. Mulcahy, Andrew M. Sayer, and Armin Sorooshian
Atmos. Chem. Phys., 23, 4115–4122, https://doi.org/10.5194/acp-23-4115-2023, https://doi.org/10.5194/acp-23-4115-2023, 2023
Short summary
Short summary
The impact of aerosols on clouds is one of the largest uncertainties in the human forcing of the climate. Aerosol can increase the concentrations of droplets in clouds, but observational and model studies produce widely varying estimates of this effect. We show that these estimates can be reconciled if only polluted clouds are studied, but this is insufficient to constrain the climate impact of aerosol. The uncertainty in aerosol impact on clouds is currently driven by cases with little aerosol.
Hossein Dadashazar, Andrea F. Corral, Ewan Crosbie, Sanja Dmitrovic, Simon Kirschler, Kayla McCauley, Richard Moore, Claire Robinson, Joseph S. Schlosser, Michael Shook, K. Lee Thornhill, Christiane Voigt, Edward Winstead, Luke Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 22, 13897–13913, https://doi.org/10.5194/acp-22-13897-2022, https://doi.org/10.5194/acp-22-13897-2022, 2022
Short summary
Short summary
Multi-season airborne data over the northwestern Atlantic show that organic mass fraction and the relative amount of oxygenated organics within that fraction are enhanced in droplet residual particles as compared to particles below and above cloud. In-cloud aqueous processing is shown to be a potential driver of this compositional shift in cloud. This implies that aerosol–cloud interactions in the region reduce aerosol hygroscopicity due to the jump in the organic : sulfate ratio in cloud.
Ewan Crosbie, Luke D. Ziemba, Michael A. Shook, Claire E. Robinson, Edward L. Winstead, K. Lee Thornhill, Rachel A. Braun, Alexander B. MacDonald, Connor Stahl, Armin Sorooshian, Susan C. van den Heever, Joshua P. DiGangi, Glenn S. Diskin, Sarah Woods, Paola Bañaga, Matthew D. Brown, Francesca Gallo, Miguel Ricardo A. Hilario, Carolyn E. Jordan, Gabrielle R. Leung, Richard H. Moore, Kevin J. Sanchez, Taylor J. Shingler, and Elizabeth B. Wiggins
Atmos. Chem. Phys., 22, 13269–13302, https://doi.org/10.5194/acp-22-13269-2022, https://doi.org/10.5194/acp-22-13269-2022, 2022
Short summary
Short summary
The linkage between cloud droplet and aerosol particle chemical composition was analyzed using samples collected in a polluted tropical marine environment. Variations in the droplet composition were related to physical and dynamical processes in clouds to assess their relative significance across three cases that spanned a range of rainfall amounts. In spite of the pollution, sea salt still remained a major contributor to the droplet composition and was preferentially enhanced in rainwater.
Eva-Lou Edwards, Jeffrey S. Reid, Peng Xian, Sharon P. Burton, Anthony L. Cook, Ewan C. Crosbie, Marta A. Fenn, Richard A. Ferrare, Sean W. Freeman, John W. Hair, David B. Harper, Chris A. Hostetler, Claire E. Robinson, Amy Jo Scarino, Michael A. Shook, G. Alexander Sokolowsky, Susan C. van den Heever, Edward L. Winstead, Sarah Woods, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 22, 12961–12983, https://doi.org/10.5194/acp-22-12961-2022, https://doi.org/10.5194/acp-22-12961-2022, 2022
Short summary
Short summary
This study compares NAAPS-RA model simulations of aerosol optical thickness (AOT) and extinction to those retrieved with a high spectral resolution lidar near the Philippines. Agreement for AOT was good, and extinction agreement was strongest below 1500 m. Substituting dropsonde relative humidities into NAAPS-RA did not drastically improve agreement, and we discuss potential reasons why. Accurately modeling future conditions in this region is crucial due to its susceptibility to climate change.
Edward Gryspeerdt, Daniel T. McCoy, Ewan Crosbie, Richard H. Moore, Graeme J. Nott, David Painemal, Jennifer Small-Griswold, Armin Sorooshian, and Luke Ziemba
Atmos. Meas. Tech., 15, 3875–3892, https://doi.org/10.5194/amt-15-3875-2022, https://doi.org/10.5194/amt-15-3875-2022, 2022
Short summary
Short summary
Droplet number concentration is a key property of clouds, influencing a variety of cloud processes. It is also used for estimating the cloud response to aerosols. The satellite retrieval depends on a number of assumptions – different sampling strategies are used to select cases where these assumptions are most likely to hold. Here we investigate the impact of these strategies on the agreement with in situ data, the droplet number climatology and estimates of the indirect radiative forcing.
Simon Kirschler, Christiane Voigt, Bruce Anderson, Ramon Campos Braga, Gao Chen, Andrea F. Corral, Ewan Crosbie, Hossein Dadashazar, Richard A. Ferrare, Valerian Hahn, Johannes Hendricks, Stefan Kaufmann, Richard Moore, Mira L. Pöhlker, Claire Robinson, Amy J. Scarino, Dominik Schollmayer, Michael A. Shook, K. Lee Thornhill, Edward Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 22, 8299–8319, https://doi.org/10.5194/acp-22-8299-2022, https://doi.org/10.5194/acp-22-8299-2022, 2022
Short summary
Short summary
In this study we show that the vertical velocity dominantly impacts the cloud droplet number concentration (NC) of low-level clouds over the western North Atlantic in the winter and summer season, while the cloud condensation nuclei concentration, aerosol size distribution and chemical composition impact NC within a season. The observational data presented in this study can evaluate and improve the representation of aerosol–cloud interactions for a wide range of conditions.
Joseph S. Schlosser, Connor Stahl, Armin Sorooshian, Yen Thi-Hoang Le, Ki-Joon Jeon, Peng Xian, Carolyn E. Jordan, Katherine R. Travis, James H. Crawford, Sung Yong Gong, Hye-Jung Shin, In-Ho Song, and Jong-sang Youn
Atmos. Chem. Phys., 22, 7505–7522, https://doi.org/10.5194/acp-22-7505-2022, https://doi.org/10.5194/acp-22-7505-2022, 2022
Short summary
Short summary
During a major haze pollution episode in March 2019, anthropogenic emissions were dominant in the boundary layer over Incheon and Seoul, South Korea. Using supermicrometer and submicrometer size- and chemistry-resolved aerosol particle measurements taken during this haze pollution period, this work shows that local emissions and a shallow boundary layer, enhanced humidity, and low temperature promoted local heterogeneous formation of secondary inorganic and organic aerosol species.
Meloë S. F. Kacenelenbogen, Qian Tan, Sharon P. Burton, Otto P. Hasekamp, Karl D. Froyd, Yohei Shinozuka, Andreas J. Beyersdorf, Luke Ziemba, Kenneth L. Thornhill, Jack E. Dibb, Taylor Shingler, Armin Sorooshian, Reed W. Espinosa, Vanderlei Martins, Jose L. Jimenez, Pedro Campuzano-Jost, Joshua P. Schwarz, Matthew S. Johnson, Jens Redemann, and Gregory L. Schuster
Atmos. Chem. Phys., 22, 3713–3742, https://doi.org/10.5194/acp-22-3713-2022, https://doi.org/10.5194/acp-22-3713-2022, 2022
Short summary
Short summary
The impact of aerosols on Earth's radiation budget and human health is important and strongly depends on their composition. One desire of our scientific community is to derive the composition of the aerosol from satellite sensors. However, satellites observe aerosol optical properties (and not aerosol composition) based on remote sensing instrumentation. This study assesses how much aerosol optical properties can tell us about aerosol composition.
Matthew W. Christensen, Andrew Gettelman, Jan Cermak, Guy Dagan, Michael Diamond, Alyson Douglas, Graham Feingold, Franziska Glassmeier, Tom Goren, Daniel P. Grosvenor, Edward Gryspeerdt, Ralph Kahn, Zhanqing Li, Po-Lun Ma, Florent Malavelle, Isabel L. McCoy, Daniel T. McCoy, Greg McFarquhar, Johannes Mülmenstädt, Sandip Pal, Anna Possner, Adam Povey, Johannes Quaas, Daniel Rosenfeld, Anja Schmidt, Roland Schrödner, Armin Sorooshian, Philip Stier, Velle Toll, Duncan Watson-Parris, Robert Wood, Mingxi Yang, and Tianle Yuan
Atmos. Chem. Phys., 22, 641–674, https://doi.org/10.5194/acp-22-641-2022, https://doi.org/10.5194/acp-22-641-2022, 2022
Short summary
Short summary
Trace gases and aerosols (tiny airborne particles) are released from a variety of point sources around the globe. Examples include volcanoes, industrial chimneys, forest fires, and ship stacks. These sources provide opportunistic experiments with which to quantify the role of aerosols in modifying cloud properties. We review the current state of understanding on the influence of aerosol on climate built from the wide range of natural and anthropogenic laboratories investigated in recent decades.
Hossein Dadashazar, Majid Alipanah, Miguel Ricardo A. Hilario, Ewan Crosbie, Simon Kirschler, Hongyu Liu, Richard H. Moore, Andrew J. Peters, Amy Jo Scarino, Michael Shook, K. Lee Thornhill, Christiane Voigt, Hailong Wang, Edward Winstead, Bo Zhang, Luke Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 21, 16121–16141, https://doi.org/10.5194/acp-21-16121-2021, https://doi.org/10.5194/acp-21-16121-2021, 2021
Short summary
Short summary
This study investigates precipitation impacts on long-range transport of North American outflow over the western North Atlantic Ocean (WNAO). Results demonstrate that precipitation scavenging plays a significant role in modifying surface aerosol concentrations over the WNAO, especially in winter and spring due to large-scale scavenging processes. This study highlights how precipitation impacts surface aerosol properties with relevance for other marine regions vulnerable to continental outflow.
Connor Stahl, Ewan Crosbie, Paola Angela Bañaga, Grace Betito, Rachel A. Braun, Zenn Marie Cainglet, Maria Obiminda Cambaliza, Melliza Templonuevo Cruz, Julie Mae Dado, Miguel Ricardo A. Hilario, Gabrielle Frances Leung, Alexander B. MacDonald, Angela Monina Magnaye, Jeffrey Reid, Claire Robinson, Michael A. Shook, James Bernard Simpas, Shane Marie Visaga, Edward Winstead, Luke Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 21, 14109–14129, https://doi.org/10.5194/acp-21-14109-2021, https://doi.org/10.5194/acp-21-14109-2021, 2021
Short summary
Short summary
A total of 159 cloud water samples were collected and measured for total organic carbon (TOC) during CAMP2Ex. On average, 30 % of TOC was speciated based on carboxylic/sulfonic acids and dimethylamine. Results provide a critical constraint on cloud composition and vertical profiles of TOC and organic species ranging from ~250 m to ~ 7 km and representing a variety of cloud types and air mass source influences such as biomass burning, marine emissions, anthropogenic activity, and dust.
Hossein Dadashazar, David Painemal, Majid Alipanah, Michael Brunke, Seethala Chellappan, Andrea F. Corral, Ewan Crosbie, Simon Kirschler, Hongyu Liu, Richard H. Moore, Claire Robinson, Amy Jo Scarino, Michael Shook, Kenneth Sinclair, K. Lee Thornhill, Christiane Voigt, Hailong Wang, Edward Winstead, Xubin Zeng, Luke Ziemba, Paquita Zuidema, and Armin Sorooshian
Atmos. Chem. Phys., 21, 10499–10526, https://doi.org/10.5194/acp-21-10499-2021, https://doi.org/10.5194/acp-21-10499-2021, 2021
Short summary
Short summary
This study investigates the seasonal cycle of cloud drop number concentration (Nd) over the western North Atlantic Ocean (WNAO) using multiple datasets. Reasons for the puzzling discrepancy between the seasonal cycles of Nd and aerosol concentration were identified. Results indicate that Nd is highest in winter (when aerosol proxy values are often lowest) due to conditions both linked to cold-air outbreaks and that promote greater droplet activation.
Genevieve Rose Lorenzo, Paola Angela Bañaga, Maria Obiminda Cambaliza, Melliza Templonuevo Cruz, Mojtaba AzadiAghdam, Avelino Arellano, Grace Betito, Rachel Braun, Andrea F. Corral, Hossein Dadashazar, Eva-Lou Edwards, Edwin Eloranta, Robert Holz, Gabrielle Leung, Lin Ma, Alexander B. MacDonald, Jeffrey S. Reid, James Bernard Simpas, Connor Stahl, Shane Marie Visaga, and Armin Sorooshian
Atmos. Chem. Phys., 21, 6155–6173, https://doi.org/10.5194/acp-21-6155-2021, https://doi.org/10.5194/acp-21-6155-2021, 2021
Short summary
Short summary
Firework emissions change the physicochemical and optical properties of water-soluble particles, which subsequently alters the background aerosol’s respirability, influence on surroundings, ability to uptake gases, and viability as cloud condensation nuclei (CCN). There was heavy aerosol loading due to fireworks in the boundary layer. The aerosol constituents were largely water-soluble and submicrometer in size due to both inorganic salts in firework materials and gas-to-particle conversion.
Miguel Ricardo A. Hilario, Ewan Crosbie, Michael Shook, Jeffrey S. Reid, Maria Obiminda L. Cambaliza, James Bernard B. Simpas, Luke Ziemba, Joshua P. DiGangi, Glenn S. Diskin, Phu Nguyen, F. Joseph Turk, Edward Winstead, Claire E. Robinson, Jian Wang, Jiaoshi Zhang, Yang Wang, Subin Yoon, James Flynn, Sergio L. Alvarez, Ali Behrangi, and Armin Sorooshian
Atmos. Chem. Phys., 21, 3777–3802, https://doi.org/10.5194/acp-21-3777-2021, https://doi.org/10.5194/acp-21-3777-2021, 2021
Short summary
Short summary
This study characterizes long-range transport from major Asian pollution sources into the tropical northwest Pacific and the impact of scavenging on these air masses. We combined aircraft observations, HYSPLIT trajectories, reanalysis, and satellite retrievals to reveal distinct composition and size distribution profiles associated with specific emission sources and wet scavenging. The results of this work have implications for international policymaking related to climate and health.
Cited articles
Adam, M. G., Chiang, A. W. J., and Balasubramanian, R.: Insights into
characteristics of light absorbing carbonaceous aerosols over an urban
location in Southeast Asia, Environ. Pollut., 257, 113425,
https://doi.org/10.1016/j.envpol.2019.113425, 2020.
Agarwal, R., Shukla, K., Kumar, S., Aggarwal, S. G., and Kawamura, K.:
Chemical composition of waste burning organic aerosols at landfill and urban
sites in Delhi, Atmos Pollut Res, 11, 554–565, https://doi.org/10.1016/j.apr.2019.12.004,
2020.
Akasaka, I., Morishima, W., and Mikami, T.: Seasonal march and its spatial
difference of rainfall in the Philippines, Int. J. Climatol., 27, 715–725,
https://doi.org/10.1002/joc.1428, 2007.
Alas, H. D., Müller, T., Birmili, W., Kecorius, S., Cambaliza, M. O.,
Simpas, J. B. B., Cayetano, M., Weinhold, K., Vallar, E., Galvez, M. C., and
Wiedensohler, A.: Spatial Characterization of Black Carbon Mass
Concentration in the Atmosphere of a Southeast Asian Megacity: An Air
Quality Case Study for Metro Manila, Philippines, Aerosol. Air. Qual. Res., 18,
2301–2317, https://doi.org/10.4209/aaqr.2017.08.0281, 2018.
Allen, A. G., Nemitz, E., Shi, J. P., Harrison, R. M., and Greenwood, J. C.:
Size distributions of trace metals in atmospheric aerosols in the United
Kingdom, Atmos. Environ., 35, 4581–4591, https://doi.org/10.1016/s1352-2310(01)00190-x, 2001.
Allen, H. C., Laux, J. M., Vogt, R., Finlayson-Pitts, B. J., and Hemminger,
J. C.: Water-Induced Reorganization of Ultrathin Nitrate Films on NaCl:
Implications for the Tropospheric Chemistry of Sea Salt Particles, J. Phys.
Chem., 100, 6371–6375, https://doi.org/10.1021/jp953675a, 1996.
Andreae, M. O.: Soot carbon and excess fine potassium: long-range transport
of combustion-derived aerosols, Science, 220, 1148–1151,
https://doi.org/10.1126/science.220.4602.1148, 1983.
Andreae, M. O. and Crutzen, P. J.: Atmospheric Aerosols: Biogeochemical
Sources and Role in Atmospheric Chemistry, Science, 276, 1052–1058,
https://doi.org/10.1126/science.276.5315.1052, 1997.
Artaxo, P., Gerab, F., Yamasoe, M. A., and Martins, J. V.: Fine mode aerosol
composition at three long-term atmospheric monitoring sites in the Amazon
Basin, J. Geophys. Res., 99, 22857–22868, https://doi.org/10.1029/94jd01023, 1994.
Asmi, E., Frey, A., Virkkula, A., Ehn, M., Manninen, H. E., Timonen, H., Tolonen-Kivimäki, O., Aurela, M., Hillamo, R., and Kulmala, M.: Hygroscopicity and chemical composition of Antarctic sub-micrometre aerosol particles and observations of new particle formation, Atmos. Chem. Phys., 10, 4253–4271, https://doi.org/10.5194/acp-10-4253-2010, 2010.
Atwood, S. A., Reid, J. S., Kreidenweis, S. M., Blake, D. R., Jonsson, H. H., Lagrosas, N. D., Xian, P., Reid, E. A., Sessions, W. R., and Simpas, J. B.: Size-resolved aerosol and cloud condensation nuclei (CCN) properties in the remote marine South China Sea – Part 1: Observations and source classification, Atmos. Chem. Phys., 17, 1105–1123, https://doi.org/10.5194/acp-17-1105-2017, 2017.
AzadiAghdam, M., Braun, R. A., Edwards, E.-L., Bañaga, P. A., Cruz, M.
T., Betito, G., Cambaliza, M. O., Dadashazar, H., Lorenzo, G. R., Ma, L.,
MacDonald, A. B., Nguyen, P., Simpas, J. B., Stahl, C., and Sorooshian, A.:
On the nature of sea salt aerosol at a coastal megacity: Insights from
Manila, Philippines in Southeast Asia, Atmos. Environ., 216, 116922,
https://doi.org/10.1016/j.atmosenv.2019.116922, 2019.
Baboukas, E. D., Kanakidou, M., and Mihalopoulos, N.: Carboxylic acids in
gas and particulate phase above the Atlantic Ocean, J. Geophys. Res.-Atmos.,
105, 14459–14471, https://doi.org/10.1029/1999jd900977, 2000.
Bagtasa, G., Cayetano, M. G., and Yuan, C.-S.: Seasonal variation and chemical characterization of PM2.5 in northwestern Philippines, Atmos. Chem. Phys., 18, 4965–4980, https://doi.org/10.5194/acp-18-4965-2018, 2018.
Bagtasa, G., Cayetano, M. G., Yuan, C.-S., Uchino, O., Sakai, T., Izumi, T.,
Morino, I., Nagai, T., Macatangay, R. C., and Velazco, V. A.: Long-range
transport of aerosols from East and Southeast Asia to northern Philippines
and its direct radiative forcing effect, Atmos. Environ., 218, 117007,
https://doi.org/10.1016/j.atmosenv.2019.117007, 2019.
Bagtasa, G., and Yuan, C.-S.: Influence of local meteorology on the chemical
characteristics of fine particulates in Metropolitan Manila in the
Philippines, Atmos. Pollut. Res., 11, 1359–1369, https://doi.org/10.1016/j.apr.2020.05.013,
2020.
Bañares, E. N., Narisma, G. T. T., Simpas, J. B. B., Cruz, F. A. T.,
Lorenzo, G. R. H., Cambaliza, M. O., and Coronel, R. C.: Diurnal
characterization of localized convective rain events in urban Metro Manila,
Philippines, AGUFM, 2018, A11J-2367, 2018.
Barbaro, E., Padoan, S., Kirchgeorg, T., Zangrando, R., Toscano, G.,
Barbante, C., and Gambaro, A.: Particle size distribution of inorganic and
organic ions in coastal and inland Antarctic aerosol, Environ. Sci. Pollut. Res.
Int., 24, 2724–2733, https://doi.org/10.1007/s11356-016-8042-x, 2017.
Bardouki, H., Berresheim, H., Vrekoussis, M., Sciare, J., Kouvarakis, G., Oikonomou, K., Schneider, J., and Mihalopoulos, N.: Gaseous (DMS, MSA, SO2, H2SO4 and DMSO) and particulate (sulfate and methanesulfonate) sulfur species over the northeastern coast of Crete, Atmos. Chem. Phys., 3, 1871–1886, https://doi.org/10.5194/acp-3-1871-2003, 2003a.
Bardouki, H., Liakakou, H., Economou, C., Sciare, J., Smolìk, J.,
Ždìmal, V., Eleftheriadis, K., Lazaridis, M., Dye, C., and
Mihalopoulos, N.: Chemical composition of size-resolved atmospheric aerosols
in the eastern Mediterranean during summer and winter, Atmos. Environ., 37,
195–208, https://doi.org/10.1016/s1352-2310(02)00859-2, 2003b.
Bates, T. S., Lamb, B. K., Guenther, A., Dignon, J., and Stoiber, R. E.:
Sulfur emissions to the atmosphere from natural sourees, J. Atmos. Chem., 14,
315–337, https://doi.org/10.1007/bf00115242, 2004.
Bautista, A. T., Pabroa, P. C. B., Santos, F. L., Racho, J. M. D., and
Quirit, L. L.: Carbonaceous particulate matter characterization in an urban
and a rural site in the Philippines, Atmos. Pollut. Res., 5, 245–252,
https://doi.org/10.5094/apr.2014.030, 2014.
Beaver, M. R., Garland, R. M., Hasenkopf, C. A., Baynard, T., Ravishankara,
A. R., and Tolbert, M. A.: A laboratory investigation of the relative
humidity dependence of light extinction by organic compounds from lignin
combustion, Environ. Res. Lett., 3, 045003, https://doi.org/10.1088/1748-9326/3/4/045003, 2008.
Berresheim, H.: Biogenic sulfur emissions from the Subantarctic and
Antarctic Oceans, J. Geophys. Res., 92, 13245–13262, https://doi.org/10.1029/JD092iD11p13245,
1987.
Bikkina, S., Kawamura, K., Miyazaki, Y., and Fu, P.: High abundances of
oxalic, azelaic, and glyoxylic acids and methylglyoxal in the open ocean
with high biological activity: Implication for secondary OA formation from
isoprene, Geophys. Res. Lett., 41, 3649–3657, https://doi.org/10.1002/2014gl059913, 2014.
Biona, J. B., Mejia, M., Tacderas, M., dela Cruz, N., Dematera, K., and Romero, J.: Alternative Technologies for
the Philippine Utility Jeepney: A Cost-Benefit Study; Blacksmith Institute and Clean Air Asia: Pasig City,
Philippines, available at: https://cleanairasia.org/wp-content/uploads/2017/04/Jeepney-CB-Study.pdf (last access: 1 July 2020), 2017.
Blando, J. D. and Turpin, B. J.: Secondary organic aerosol formation in
cloud and fog droplets: a literature evaluation of plausibility, Atmos. Environ., 34, 1623–1632, https://doi.org/10.1016/s1352-2310(99)00392-1, 2000.
Braun, R. A., Aghdam, M. A., Bañaga, P. A., Betito, G., Cambaliza, M. O., Cruz, M. T., Lorenzo, G. R., MacDonald, A. B., Simpas, J. B., Stahl, C., and Sorooshian, A.: Long-range aerosol transport and impacts on size-resolved aerosol composition in Metro Manila, Philippines, Atmos. Chem. Phys., 20, 2387–2405, https://doi.org/10.5194/acp-20-2387-2020, 2020.
Brown, S. G., Eberly, S., Paatero, P., and Norris, G. A.: Methods for
estimating uncertainty in PMF solutions: examples with ambient air and water
quality data and guidance on reporting PMF results, Sci. Total Environ.,
518, 626–635, https://doi.org/10.1016/j.scitotenv.2015.01.022, 2015.
Cai, C., Marsh, A., Zhang, Y. H., and Reid, J. P.: Group Contribution
Approach To Predict the Refractive Index of Pure Organic Components in
Ambient Organic Aerosol, Environ. Sci. Technol., 51, 9683–9690,
https://doi.org/10.1021/acs.est.7b01756, 2017.
Carlton, A. G., Turpin, B. J., Lim, H.-J., Altieri, K. E., and Seitzinger,
S.: Link between isoprene and secondary organic aerosol (SOA): Pyruvic acid
oxidation yields low volatility organic acids in clouds, Geophys. Res. Lett.,
33, L06822, https://doi.org/10.1029/2005gl025374, 2006.
Chebbi, A. and Carlier, P.: Carboxylic acids in the troposphere,
occurrence, sources, and sinks: A review, Atmos. Environ., 30, 4233–4249,
https://doi.org/10.1016/1352-2310(96)00102-1, 1996.
Chow, J. C., Watson, J. G., Kuhns, H., Etyemezian, V., Lowenthal, D. H.,
Crow, D., Kohl, S. D., Engelbrecht, J. P., and Green, M. C.: Source profiles
for industrial, mobile, and area sources in the Big Bend Regional Aerosol
Visibility and Observational study, Chemosphere, 54, 185–208,
https://doi.org/10.1016/j.chemosphere.2003.07.004, 2004.
Claeys, M., Vermeylen, R., Yasmeen, F., Gómez-González, Y., Chi, X.,
Maenhaut, W., Mészáros, T., and Salma, I.: Chemical characterisation
of humic-like substances from urban, rural and tropical biomass burning
environments using liquid chromatography with UV/vis photodiode array
detection and electrospray ionisation mass spectrometry, Environ. Chem., 9,
273–284, https://doi.org/10.1071/en11163, 2012.
Cohen, D. D., Stelcer, E., Santos, F. L., Prior, M., Thompson, C., and
Pabroa, P. C. B.: Fingerprinting and source apportionment of fine particle
pollution in Manila by IBA and PMF techniques: A 7-year study, X-Ray
Spectrom, 38, 18–25, https://doi.org/10.1002/xrs.1112, 2009.
Crosbie, E., Sorooshian, A., Monfared, N. A., Shingler, T., and Esmaili, O.:
A multi-year aerosol characterization for the greater Tehran area using
satellite, surface, and modeling data, Atmosphere, 5, 178–197,
https://doi.org/10.3390/atmos5020178, 2014.
Cruz, F. T., Narisma, G. T., Villafuerte, M. Q., Cheng Chua, K. U., and
Olaguera, L. M.: A climatological analysis of the southwest monsoon rainfall
in the Philippines, Atmos. Res., 122, 609–616, https://doi.org/10.1016/j.atmosres.2012.06.010,
2013.
Cruz, M. T., Bañaga, P. A., Betito, G., Braun, R. A., Stahl, C., Aghdam, M. A., Cambaliza, M. O., Dadashazar, H., Hilario, M. R., Lorenzo, G. R., Ma, L., MacDonald, A. B., Pabroa, P. C., Yee, J. R., Simpas, J. B., and Sorooshian, A.: Size-resolved composition and morphology of particulate matter during the southwest monsoon in Metro Manila, Philippines, Atmos. Chem. Phys., 19, 10675–10696, https://doi.org/10.5194/acp-19-10675-2019, 2019.
Dasgupta, P. K., Campbell, S. W., Al-Horr, R. S., Ullah, S. M. R., Li, J.,
Amalfitano, C., and Poor, N. D.: Conversion of sea salt aerosol to NaNO3 and
the production of HCl: Analysis of temporal behavior of aerosol
chloride/nitrate and gaseous HCl∕HNO3 concentrations with AIM, Atmos. Environ., 41, 4242–4257, https://doi.org/10.1016/j.atmosenv.2006.09.054, 2007.
Davis, D., Chen, G., Kasibhatla, P., Jefferson, A., Tanner, D., Eisele, F.,
Lenschow, D., Neff, W., and Berresheim, H.: DMS oxidation in the Antarctic
marine boundary layer: Comparison of model simulations and held observations
of DMS, DMSO, DMSO2, H2SO4(g), MSA(g), and MSA(p), J. Geophys. Res.-Atmos., 103,
1657-1678, https://doi.org/10.1029/97jd03452, 1998.
Dawson, M. L., Varner, M. E., Perraud, V., Ezell, M. J., Gerber, R. B., and
Finlayson-Pitts, B. J.: Simplified mechanism for new particle formation from
methanesulfonic acid, amines, and water via experiments and ab initio
calculations, P. Natl. Acad. Sci. USA, 109, 18719–18724,
https://doi.org/10.1073/pnas.1211878109, 2012.
De Bruyn, W. J., Shorter, J. A., Davidovits, P., Worsnop, D. R., Zahniser,
M. S., and Kolb, C. E.: Uptake of gas phase sulfur species methanesulfonic
acid, dimethylsulfoxide, and dimethyl sulfone by aqueous surfaces, J. Geophys. Res., 99, 16927–16932, https://doi.org/10.1029/94jd00684, 1994.
Decesari, S., Fuzzi, S., Facchini, M. C., Mircea, M., Emblico, L., Cavalli, F., Maenhaut, W., Chi, X., Schkolnik, G., Falkovich, A., Rudich, Y., Claeys, M., Pashynska, V., Vas, G., Kourtchev, I., Vermeylen, R., Hoffer, A., Andreae, M. O., Tagliavini, E., Moretti, F., and Artaxo, P.: Characterization of the organic composition of aerosols from Rondônia, Brazil, during the LBA-SMOCC 2002 experiment and its representation through model compounds, Atmos. Chem. Phys., 6, 375–402, https://doi.org/10.5194/acp-6-375-2006, 2006.
Deshmukh, D. K., Kawamura, K., Lazaar, M., Kunwar, B., and Boreddy, S. K. R.: Dicarboxylic acids, oxoacids, benzoic acid, α-dicarbonyls, WSOC, OC, and ions in spring aerosols from Okinawa Island in the western North Pacific Rim: size distributions and formation processes, Atmos. Chem. Phys., 16, 5263–5282, https://doi.org/10.5194/acp-16-5263-2016, 2016.
Dimitriou, K.: The dependence of PM size distribution from meteorology and
local-regional contributions, in Valencia (Spain)-A CWT model approach,
Aerosol. Air. Qual. Res., 15, 1979–1989, https://doi.org/10.4209/aaqr.2015.03.0162, 2015.
Dimitriou, K., Remoundaki, E., Mantas, E., and Kassomenos, P.: Spatial
distribution of source areas of PM2.5 by Concentration Weighted Trajectory
(CWT) model applied in PM2.5 concentration and composition data, Atmos. Environ., 116, 138–145, https://doi.org/10.1016/j.atmosenv.2015.06.021, 2015.
Ding, X. X., Kong, L. D., Du, C. T., Zhanzakova, A., Fu, H. B., Tang, X. F.,
Wang, L., Yang, X., Chen, J. M., and Cheng, T. T.: Characteristics of
size-resolved atmospheric inorganic and carbonaceous aerosols in urban
Shanghai, Atmos. Environ., 167, 625–641, https://doi.org/10.1016/j.atmosenv.2017.08.043, 2017.
Drozd, G., Woo, J., Häkkinen, S. A. K., Nenes, A., and McNeill, V. F.: Inorganic salts interact with oxalic acid in submicron particles to form material with low hygroscopicity and volatility, Atmos. Chem. Phys., 14, 5205–5215, https://doi.org/10.5194/acp-14-5205-2014, 2014.
Du, Z., He, K., Cheng, Y., Duan, F., Ma, Y., Liu, J., Zhang, X., Zheng, M.,
and Weber, R.: A yearlong study of water-soluble organic carbon in Beijing
I: Sources and its primary vs. secondary nature, Atmos. Environ.,
92, 514–521, 2014.
Echalar, F., Gaudichet, A., Cachier, H., and Artaxo, P.: Aerosol emissions
by tropical forest and savanna biomass burning: Characteristic trace
elements and fluxes, Geophys. Res. Lett., 22, 3039–3042, https://doi.org/10.1029/95gl03170,
1995.
Ervens, B., Feingold, G., Clegg, S. L., and Kreidenweis, S. M.: A modeling
study of aqueous production of dicarboxylic acids: 2. Implications for cloud
microphysics, J. Geophys. Res., 109, D15206, https://doi.org/10.1029/2004jd004575, 2004.
Ervens, B., Sorooshian, A., Lim, Y. B., and Turpin, B. J.: Key parameters
controlling OH-initiated formation of secondary organic aerosol in the
aqueous phase (aqSOA), J. Geophys. Res.-Atmos., 119, 3997–4016,
https://doi.org/10.1002/2013jd021021, 2014.
Ervens, B.: Progress and Problems in Modeling Chemical Processing in Cloud
Droplets and Wet Aerosol Particles, in: Multiphase Environmental Chemistry
in the Atmosphere, ACS Symposium Series, ACS Publications, 327–345, 2018.
Falkovich, A. H., Schkolnik, G., Ganor, E., and Rudich, Y.: Adsorption of
organic compounds pertinent to urban environments onto mineral dust
particles, J. Geophys. Res., 109, D02208, https://doi.org/10.1029/2003jd003919, 2004.
Falkovich, A. H., Graber, E. R., Schkolnik, G., Rudich, Y., Maenhaut, W., and Artaxo, P.: Low molecular weight organic acids in aerosol particles from Rondônia, Brazil, during the biomass-burning, transition and wet periods, Atmos. Chem. Phys., 5, 781–797, https://doi.org/10.5194/acp-5-781-2005, 2005.
Fine, P. M., Chakrabarti, B., Krudysz, M., Schauer, J. J., and Sioutas, C.:
Diurnal variations of individual organic compound constituents of ultrafine
and accumulation mode particulate matter in the Los Angeles Basin, Environ. Sci. Technol., 38, 1296–1304, https://doi.org/10.1021/es0348389, 2004.
Fitzgerald, J. W.: Marine aerosols: A review, Atmos. Environ., 25,
533–545, https://doi.org/10.1016/0960-1686(91)90050-h, 1991.
Fossum, K. N., Ovadnevaite, J., Ceburnis, D., Dall'Osto, M., Marullo, S.,
Bellacicco, M., Simo, R., Liu, D., Flynn, M., Zuend, A., and O'Dowd, C.:
Summertime Primary and Secondary Contributions to Southern Ocean Cloud
Condensation Nuclei, Sci. Rep., 8, 13844, https://doi.org/10.1038/s41598-018-32047-4, 2018.
Freedman, M. A., Hasenkopf, C. A., Beaver, M. R., and Tolbert, M. A.:
Optical properties of internally mixed aerosol particles composed of
dicarboxylic acids and ammonium sulfate, J. Phys. Chem. A, 113, 13584–13592,
https://doi.org/10.1021/jp906240y, 2009.
Fu, P. Q., Kawamura, K., Chen, J., Li, J., Sun, Y. L., Liu, Y., Tachibana, E., Aggarwal, S. G., Okuzawa, K., Tanimoto, H., Kanaya, Y., and Wang, Z. F.: Diurnal variations of organic molecular tracers and stable carbon isotopic composition in atmospheric aerosols over Mt. Tai in the North China Plain: an influence of biomass burning, Atmos. Chem. Phys., 12, 8359–8375, https://doi.org/10.5194/acp-12-8359-2012, 2012.
Gao, S., Hegg, D. A., Hobbs, P. V., Kirchstetter, T. W., Magi, B. I., and
Sadilek, M.: Water-soluble organic components in aerosols associated with
savanna fires in southern Africa: Identification, evolution, and
distribution, J. Geophys. Res.-Atmos., 108, 8491, https://doi.org/10.1029/2002jd002324, 2003.
Gao, Y., Arimoto, R., Duce, R. A., Chen, L. Q., Zhou, M. Y., and Gu, D. Y.:
Atmospheric non-sea-salt sulfate, nitrate and methanesulfonate over the
China Sea, J. Geophys. Res.-Atmos., 101, 12601–12611, https://doi.org/10.1029/96jd00866, 1996.
Ge, C., Wang, J., Reid, J. S., Posselt, D. J., Xian, P., and Hyer, E.:
Mesoscale modeling of smoke transport from equatorial Southeast Asian
Maritime Continent to the Philippines: First comparison of ensemble analysis
with in situ observations, J. Geophys. Res.-Atmos., 122, 5380–5398,
https://doi.org/10.1002/2016jd026241, 2017.
Gelencsér and Varga: Evaluation of the atmospheric significance of multiphase reactions in atmospheric secondary organic aerosol formation, Atmos. Chem. Phys., 5, 2823–2831, https://doi.org/10.5194/acp-5-2823-2005, 2005.
Golly, B., Waked, A., Weber, S., Samake, A., Jacob, V., Conil, S.,
Rangognio, J., Chrétien, E., Vagnot, M. P., Robic, P. Y., Besombes, J.
L., and Jaffrezo, J. L.: Organic markers and OC source apportionment for
seasonal variations of PM2.5 at 5 rural sites in France, Atmos. Environ., 198,
142–157, https://doi.org/10.1016/j.atmosenv.201810.027, 2019.
Gondwe, M., Krol, M., Klaassen, W., Gieskes, W., and de Baar, H.: Comparison
of modeled versus measured MSA:nss SO4 = ratios: A global analysis, Global Biogeochem. Cy., 18, GB2006, https://doi.org/10.1029/2003gb002144, 2004.
Graham, B., Mayol-Bracero, O. L., Guyon, P., Roberts, G. C., Decesari, S.,
Facchini, M. C., Artaxo, P., Maenhaut, W., Koll, P., and Andreae, M. O.:
Water-soluble organic compounds in biomass burning aerosols over Amazonia1.
Characterization by NMR and GC-MS, J. Geophys. Res., 107, 14–16,
https://doi.org/10.1029/2001jd000336, 2002.
Greenfield, S. M.: Rain scavenging of radioactive particulate matter from
the atmosphere, J. Meteorol., 14, 115–125, https://doi.org/10.1175/1520-0469(1957)0142.0.CO,
1957.
Grosjean, D., Van Cauwenberghe, K., Schmid, J. P., Kelley, P. E., and Pitts,
J. N.: Identification of C3-C10 aliphatic dicarboxylic acids in airborne
particulate matter, Environ. Sci. Technol., 12, 313–317, https://doi.org/10.1021/es60139a005,
1978.
Gullett, B. K., Linak, W. P., Touati, A., Wasson, S. J., Gatica, S., and
King, C. J.: Characterization of air emissions and residual ash from open
burning of electronic wastes during simulated rudimentary recycling
operations, J. Mater. Cycles Waste., 9, 69–79, https://doi.org/10.1007/s10163-006-0161-x, 2007.
Hanson, D. R.: Mass accommodation of H2SO4 and CH3SO3H on water-sulfuric
acid solutions from 6% to 97% RH, J. Phys. Chem. A, 109, 6919–6927,
https://doi.org/10.1021/jp0510443, 2005.
Harrison, R. M., Beddows, D. C., and Dall'Osto, M.: PMF analysis of
wide-range particle size spectra collected on a major highway, Environ. Sci. Technol., 45, 5522–5528, https://doi.org/10.1021/es2006622, 2011.
Hatakeyama, S., Ohno, M., Weng, J., Takagi, H., and Akimoto, H.: Mechanism
for the formation of gaseous and particulate products from ozone-cycloalkene
reactions in air, Environ. Sci. Technol., 21, 52–57, https://doi.org/10.1021/es00155a005, 1987.
Hegde, P., Kawamura, K., Girach, I., and Nair, P. R.: Characterisation of
water-soluble organic aerosols at a site on the southwest coast of India,
J. Atmos. Chem., 73, 181–205, 2016.
Hilario, M. R. A., Cruz, M. T., Bañaga, P. A., Betito, G., Braun, R. A.,
Stahl, C., Cambaliza, M. O., Lorenzo, G. R., MacDonald, A. B., AzadiAghdam,
M., Pabroa, P. C., Yee, J. R., Simpas, J. B., and Sorooshian, A.:
Characterizing weekly cycles of particulate matter in a coastal megacity:
The importance of a seasonal, size-resolved, and chemically-speciated
analysis, J. Geophys. Res.-Atmos., 125, e2020JD032614, https://doi.org/10.1029/2020JD032614, 2020a.
Hilario, M. R. A., Cruz, M. T., Cambaliza, M. O. L., Reid, J. S., Xian, P., Simpas, J. B., Lagrosas, N. D., Uy, S. N. Y., Cliff, S., and Zhao, Y.: Investigating size-segregated sources of elemental composition of particulate matter in the South China Sea during the 2011 Vasco cruise, Atmos. Chem. Phys., 20, 1255–1276, https://doi.org/10.5194/acp-20-1255-2020, 2020b.
Ho, K. F., Lee, S. C., Cao, J. J., Kawamura, K., Watanabe, T., Cheng, Y.,
and Chow, J. C.: Dicarboxylic acids, ketocarboxylic acids and dicarbonyls in
the urban roadside area of Hong Kong, Atmos. Environ., 40, 3030–3040,
https://doi.org/10.1016/j.atmosenv.2005.11.069, 2006.
Hodshire, A. L., Campuzano-Jost, P., Kodros, J. K., Croft, B., Nault, B. A., Schroder, J. C., Jimenez, J. L., and Pierce, J. R.: The potential role of methanesulfonic acid (MSA) in aerosol formation and growth and the associated radiative forcings, Atmos. Chem. Phys., 19, 3137–3160, https://doi.org/10.5194/acp-19-3137-2019, 2019.
Hoffmann, E. H., Tilgner, A., Schrodner, R., Brauer, P., Wolke, R., and
Herrmann, H.: An advanced modeling study on the impacts and atmospheric
implications of multiphase dimethyl sulfide chemistry, P. Natl. Acad. Sci. USA, 113, 11776–11781, https://doi.org/10.1073/pnas.1606320113, 2016.
Hoffmann, E. H., Tilgner, A., Vogelsberg, U., Wolke, R., and Herrmann, H.:
Near-Explicit Multiphase Modeling of Halogen Chemistry in a Mixed Urban and
Maritime Coastal Area, ACS Earth Space Chem., 3, 2452–2471,
https://doi.org/10.1021/acsearthspacechem.9b00184, 2019.
Hopke, P. K., Cohen, D. D., Begum, B. A., Biswas, S. K., Ni, B., Pandit, G.
G., Santoso, M., Chung, Y.-S., Rahman, S. A., Hamzah, M. S., Davy, P.,
Markwitz, A., Waheed, S., Siddique, N., Santos, F. L., Pabroa, P. C. B.,
Seneviratne, M. C. S., Wimolwattanapun, W., Bunprapob, S., Vuong, T. B., and
Markowicz, A.: Urban air quality in the Asian region, Sci. Total Environ.,
409, 4140, https://doi.org/10.1016/j.scitotenv.2011.06.028, 2011.
Hsu, S. C., Liu, S. C., Huang, Y. T., Chou, C. C., Lung, S. C., Liu, T. H.,
Tu, J. Y., and Tsai, F.: Long-range southeastward transport of Asian
biosmoke pollution: Signature detected by aerosol potassium in northern
Taiwan, J. Geophys. Res.-Atmos., 114, D14301, https://doi.org/10.1029/2009JD011725, 2009.
Hsu, Y.-K., Holsen, T. M., and Hopke, P. K.: Comparison of hybrid receptor
models to locate PCB sources in Chicago, Atmos. Environ., 37, 545–562,
https://doi.org/10.1016/S1352-2310(02)00886-5, 2003.
Iijima, A., Sato, K., Yano, K., Tago, H., Kato, M., Kimura, H., and Furuta,
N.: Particle size and composition distribution analysis of automotive brake
abrasion dusts for the evaluation of antimony sources of airborne
particulate matter, Atmos. Environ., 41, 4908–4919,
https://doi.org/10.1016/j.atmosenv.2007.02.005, 2007.
Kautzman, K. E., Surratt, J. D., Chan, M. N., Chan, A. W., Hersey, S. P.,
Chhabra, P. S., Dalleska, N. F., Wennberg, P. O., Flagan, R. C., and
Seinfeld, J. H.: Chemical composition of gas- and aerosol-phase products
from the photooxidation of naphthalene, J. Phys. Chem. A, 114, 913–934,
https://doi.org/10.1021/jp908530s, 2010.
Kavouras, I. G. and Stephanou, E. G.: Particle size distribution of organic
primary and secondary aerosol constituents in urban, background marine, and
forest atmosphere, J. Geophys. Res., 107, 4069, https://doi.org/10.1029/2000jd000278, 2002.
Kawamura, K. and Kaplan, I. R.: Motor exhaust emissions as a primary source
for dicarboxylic acids in Los Angeles ambient air, Environ. Sci. Technol., 21,
105–110, https://doi.org/10.1021/es00155a014, 1987.
Kawamura, K. and Ikushima, K.: Seasonal changes in the distribution of
dicarboxylic acids in the urban atmosphere, Environ. Sci. Technol., 27,
2227–2235, https://doi.org/10.1021/es00047a033, 2002.
Kawamura, K., Imai, Y., and Barrie, L. A.: Photochemical production and loss
of organic acids in high Arctic aerosols during long-range transport and
polar sunrise ozone depletion events, Atmos. Environ., 39, 599–614,
2005.
Kawamura, K. and Yasui, O.: Diurnal changes in the distribution of
dicarboxylic acids, ketocarboxylic acids and dicarbonyls in the urban Tokyo
atmosphere, Atmos. Environ., 39, 1945–1960, https://doi.org/10.1016/j.atmosenv.2004.12.014,
2005.
Kawamura, K., Tachibana, E., Okuzawa, K., Aggarwal, S. G., Kanaya, Y., and Wang, Z. F.: High abundances of water-soluble dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in the mountaintop aerosols over the North China Plain during wheat burning season, Atmos. Chem. Phys., 13, 8285–8302, https://doi.org/10.5194/acp-13-8285-2013, 2013.
Kawamura, K. and Bikkina, S.: A review of dicarboxylic acids and related
compounds in atmospheric aerosols: Molecular distributions, sources and
transformation, Atmos. Res., 170, 140–160, https://doi.org/10.1016/j.atmosres.2015.11.018,
2016.
Kecorius, S., Madueño, L., Vallar, E., Alas, H., Betito, G., Birmili,
W., Cambaliza, M. O., Catipay, G., Gonzaga-Cayetano, M., Galvez, M. C.,
Lorenzo, G., Müller, T., Simpas, J. B., Tamayo, E. G., and Wiedensohler,
A.: Aerosol particle mixing state, refractory particle number size
distributions and emission factors in a polluted urban environment: Case
study of Metro Manila, Philippines, Atmos. Environ., 170, 169–183,
https://doi.org/10.1016/j.atmosenv.2017.09.037, 2017.
Kerminen, V.-M., Teinilä, K., Hillamo, R., and Mäkelä, T.:
Size-segregated chemistry of particulate dicarboxylic acids in the Arctic
atmosphere, Atmos. Environ., 33, 2089–2100, https://doi.org/10.1016/s1352-2310(98)00350-1,
1999.
Kerminen, V.-M., Aurela, M., Hillamo, R. E., and Virkkula, A.: Formation of
particulate MSA: deductions from size distribution measurements in the
Finnish Arctic, Tellus B, 49, 159–171, https://doi.org/10.3402/tellusb.v49i2.15959, 2017.
Kim Oanh, N. T., Upadhyay, N., Zhuang, Y. H., Hao, Z. P., Murthy, D. V. S.,
Lestari, P., Villarin, J. T., Chengchua, K., Co, H. X., and Dung, N. T.:
Particulate air pollution in six Asian cities: Spatial and temporal
distributions, and associated sources, Atmos. Environ., 40, 3367–3380,
https://doi.org/10.1016/j.atmosenv.2006.01.050, 2006.
Kleindienst, T. E., Jaoui, M., Lewandowski, M., Offenberg, J. H., and Docherty, K. S.: The formation of SOA and chemical tracer compounds from the photooxidation of naphthalene and its methyl analogs in the presence and absence of nitrogen oxides, Atmos. Chem. Phys., 12, 8711–8726, https://doi.org/10.5194/acp-12-8711-2012, 2012.
Kobayashi, H., Matsunaga, T., Hoyano, A., Aoki, M., Komori, D., and
Boonyawat, S.: Satellite estimation of photosynthetically active radiation
in Southeast Asia: Impacts of smoke and cloud cover, J. Geophys. Res.-Atmos.,
109, D04102, https://doi.org/10.1029/2003jd003807, 2004.
Kumar, S., Aggarwal, S. G., Gupta, P. K., and Kawamura, K.: Investigation of
the tracers for plastic-enriched waste burning aerosols, Atmos. Environ., 108,
49–58, https://doi.org/10.1016/j.atmosenv.2015.02.066, 2015.
Kundu, S., Kawamura, K., Andreae, T. W., Hoffer, A., and Andreae, M. O.: Molecular distributions of dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in biomass burning aerosols: implications for photochemical production and degradation in smoke layers, Atmos. Chem. Phys., 10, 2209–2225, https://doi.org/10.5194/acp-10-2209-2010, 2010.
Kunwar, B., Kawamura, K., Fujiwara, S., Fu, P., Miyazaki, Y., and Pokhrel,
A.: Dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls in
atmospheric aerosols from Mt. Fuji, Japan: Implication for primary emission
versus secondary formation, Atmos. Res., 221, 58–71,
https://doi.org/10.1016/j.atmosres.2019.01.021, 2019.
Li, J., Wang, G., Zhang, Q., Li, J., Wu, C., Jiang, W., Zhu, T., and Zeng, L.: Molecular characteristics and diurnal variations of organic aerosols at a rural site in the North China Plain with implications for the influence of regional biomass burning, Atmos. Chem. Phys., 19, 10481–10496, https://doi.org/10.5194/acp-19-10481-2019, 2019.
Limbeck, A., Puxbaum, H., Otter, L., and Scholes, M. C.: Semivolatile
behavior of dicarboxylic acids and other polar organic species at a rural
background site (Nylsvley, RSA), Atmos. Environ., 35, 1853–1862,
https://doi.org/10.1016/s1352-2310(00)00497-0, 2001.
Linak, W. P., Miller, C. A., and Wendt, J. O.: Comparison of particle size
distributions and elemental partitioning from the combustion of pulverized
coal and residual fuel oil, J. Air Waste. Manag. Assoc., 50, 1532–1544,
https://doi.org/10.1080/10473289.2000.10464171, 2000.
Liu, Y., Minofar, B., Desyaterik, Y., Dames, E., Zhu, Z., Cain, J. P.,
Hopkins, R. J., Gilles, M. K., Wang, H., Jungwirth, P., and Laskin, A.:
Internal structure, hygroscopic and reactive properties of mixed sodium
methanesulfonate-sodium chloride particles, Phys. Chem. Chem. Phys., 13,
11846–11857, https://doi.org/10.1039/c1cp20444k, 2011.
Ma, L., Dadashazar, H., Braun, R. A., MacDonald, A. B., Aghdam, M. A.,
Maudlin, L. C., and Sorooshian, A.: Size-resolved characteristics of
water-soluble particulate elements in a coastal area: Source identification,
influence of wildfires, and diurnal variability, Atmos. Environ., 206, 72–84,
https://doi.org/10.1016/j.atmosenv.2019.02.045, 2019.
Madueño, L., Kecorius, S., Birmili, W., Müller, T., Simpas, J.,
Vallar, E., Galvez, M. C., Cayetano, M., and Wiedensohler, A.: Aerosol
Particle and Black Carbon Emission Factors of Vehicular Fleet in Manila,
Philippines, Atmosphere, 10, 603, https://doi.org/10.3390/atmos10100603, 2019.
Mahowald, N., Jickells, T. D., Baker, A. R., Artaxo, P., Benitez-Nelson, C.
R., Bergametti, G., Bond, T. C., Chen, Y., Cohen, D. D., Herut, B., Kubilay,
N., Losno, R., Luo, C., Maenhaut, W., McGee, K. A., Okin, G. S., Siefert, R.
L., and Tsukuda, S.: Global distribution of atmospheric phosphorus sources,
concentrations and deposition rates, and anthropogenic impacts, Global Biogeochem. Cy., 22, GB4026, https://doi.org/10.1029/2008gb003240, 2008.
Malm, W. C., Sisler, J. F., Huffman, D., Eldred, R. A., and Cahill, T. A.:
Spatial and seasonal trends in particle concentration and optical extinction
in the United States, J. Geophys. Res.-Atmos., 99, 1347–1370, https://doi.org/10.1029/93jd02916,
1994.
Mardi, A. H., Dadashazar, H., MacDonald, A. B., Braun, R. A., Crosbie, E.,
Xian, P., Thorsen, T. J., Coggon, M. M., Fenn, M. A., Ferrare, R. A., Hair,
J. W., Woods, R. K., Jonsson, H. H., Flagan, R. C., Seinfeld, J. H., and
Sorooshian, A.: Biomass Burning Plumes in the Vicinity of the California
Coast: Airborne Characterization of Physicochemical Properties, Heating
Rates, and Spatiotemporal Features, J. Geophys. Res.-Atmos., 123,
13560–13582, https://doi.org/10.1029/2018jd029134, 2018.
Marple, V., Olson, B., Romay, F., Hudak, G., Geerts, S. M., and Lundgren,
D.: Second Generation Micro-Orifice Uniform Deposit Impactor, 120 MOUDI-II:
Design, Evaluation, and Application to Long-Term Ambient Sampling, Aerosol
Sci. Tech., 48, 427–433, https://doi.org/10.1080/02786826.2014.884274, 2014.
Marsh, A., Miles, R. E. H., Rovelli, G., Cowling, A. G., Nandy, L., Dutcher, C. S., and Reid, J. P.: Influence of organic compound functionality on aerosol hygroscopicity: dicarboxylic acids, alkyl-substituents, sugars and amino acids, Atmos. Chem. Phys., 17, 5583–5599, https://doi.org/10.5194/acp-17-5583-2017, 2017.
Marsh, A., Rovelli, G., Miles, R. E. H., and Reid, J. P.: Complexity of
Measuring and Representing the Hygroscopicity of Mixed Component Aerosol, J. Phys. Chem. A, 123, 1648–1660, https://doi.org/10.1021/acs.jpca.8b11623, 2019.
Matsumoto, J., Olaguera, L. M. P., Nguyen-Le, D., Kubota, H., and
Villafuerte, M. Q.: Climatological seasonal changes of wind and rainfall in
the Philippines, Int. J. Climatol., 40, 4843–4857, https://doi.org/10.1002/joc.6492, 2020.
Maudlin, L. C., Wang, Z., Jonsson, H. H., and Sorooshian, A.: Impact of
wildfires on size-resolved aerosol composition at a coastal California site,
Atmos. Environ., 119, 59–68, https://doi.org/10.1016/j.atmosenv.2015.08.039, 2015.
McGinty, S. M., Kapala, M. K., and Niedziela, R. F.: Mid-infrared complex
refractive indices for oleic acid and optical properties of model oleic
acid/water aerosols, Phys. Chem. Chem. Phys., 11, 7998–8004, https://doi.org/10.1039/b905371a,
2009.
Miljevic, B., Hedayat, F., Stevanovic, S., Fairfull-Smith, K. E., Bottle,
S., and Ristovski, Z.: To sonicate or not to sonicate PM filters: Reactive
oxygen species generation upon ultrasonic irradiation, Aerosol Sci. Tech.,
48, 1276–1284, https://doi.org/10.1080/02786826.2014.981330, 2014.
Mochida, M., Umemoto, N., Kawamura, K., and Uematsu, M.: Bimodal size
distribution of C2-C4 dicarboxylic acids in the marine aerosols, Geophys. Res. Lett., 30, 1672, https://doi.org/10.1029/2003gl017451, 2003.
Mooibroek, D., Schaap, M., Weijers, E. P., and Hoogerbrugge, R.: Source
apportionment and spatial variability of PM2.5 using measurements at five
sites in the Netherlands, Atmos. Environ., 45, 4180–4191,
https://doi.org/10.1016/j.atmosenv.2011.05.017, 2011.
Mora, M., Braun, R. A., Shingler, T., and Sorooshian, A.: Analysis of
remotely sensed and surface data of aerosols and meteorology for the Mexico
Megalopolis Area between 2003 and 2015, J. Geophys. Res.-Atmos., 122, 8705–8723,
https://doi.org/10.1002/2017JD026739, 2017.
Myhre, C. E. L. and Nielsen, C. J.: Optical properties in the UV and visible spectral region of organic acids relevant to tropospheric aerosols, Atmos. Chem. Phys., 4, 1759–1769, https://doi.org/10.5194/acp-4-1759-2004, 2004.
Narukawa, M., Kawamura, K., Takeuchi, N., and Nakajima, T.: Distribution of
dicarboxylic acids and carbon isotopic compositions in aerosols from 1997
Indonesian forest fires, Geophys. Res. Lett., 26, 3101–3104,
https://doi.org/10.1029/1999gl010810, 1999.
Neusüss, C., Pelzing, M., Plewka, A., and Herrmann, H.: A new analytical
approach for size-resolved speciation of organic compounds in atmospheric
aerosol particles: Methods and first results, J. Geophys. Res.-Atmos., 105,
4513–4527, https://doi.org/10.1029/1999jd901038, 2000.
Nguyen, D. L., Kawamura, K., Ono, K., Ram, S. S., Engling, G., Lee, C.-T.,
Lin, N.-H., Chang, S.-C., Chuang, M.-T., and Hsiao, T.-C.: Comprehensive
PM2.5 organic molecular composition and stable carbon isotope ratios at
Sonla, Vietnam: Fingerprint of biomass burning components, Aerosol. Air. Qual. Res., 16, 2618–2634, https://doi.org/10.4209/aaqr.2015.07.0459 2016.
Norton, R. B., Roberts, J. M., and Huebert, B. J.: Tropospheric oxalate,
Geophys. Res. Lett., 10, 517–520, https://doi.org/10.1029/GL010i007p00517, 1983.
Ovadnevaite, J., Ceburnis, D., Leinert, S., Dall'Osto, M., Canagaratna, M.,
O'Doherty, S., Berresheim, H., and O'Dowd, C.: Submicron NE Atlantic marine
aerosol chemical composition and abundance: Seasonal trends and air mass
categorization, J. Geophys. Res.-Atmos., 119, 11850–11863,
https://doi.org/10.1002/2013jd021330, 2014.
Paatero, P. and Tapper, U.: Positive matrix factorization: A non-negative
factor model with optimal utilization of error estimates of data values,
Environmetrics, 5, 111–126, 1994.
Pabroa, P. C. B., Santos, F. L., Morco, R. P., Racho, J. M. D., Bautista
Vii, A. T., and Bucal, C. G. D.: Receptor modeling studies for the
characterization of air particulate lead pollution sources in Valenzuela
sampling site (Philippines), Atmos. Pollut. Res., 2, 213–218,
https://doi.org/10.5094/apr.2011.027, 2011.
PAGASA: Termination of the southwest monsoon: available at: http://bagong.pagasa.dost.gov.ph/press-release/30 (last access: 1 July 2020), 2018a.
PAGASA: Onset of the rainy season: available at: http://bagong.pagasa.dost.gov.ph/press-release/29 (last access: 1 July 2020), 2018b.
PAGASA: Onset of the northeast monsoon: available at: http://bagong.pagasa.dost.gov.ph/press-release/32 (last access: 1 July 2020), 2018c.
PAGASA: Onset of the rainy season: available at: http://bagong.pagasa.dost.gov.ph/press-release/50 (last access: 1 July 2020), 2019a.
PAGASA: Transition to northeast monsoon: available at: http://bagong.pagasa.dost.gov.ph/press-release/56 (last access: 1 July 2020), 2019b.
Paris, R. and Desboeufs, K.: Effect of atmospheric organic complexation on
iron-bearing dust solubility, Atmos Chem Phys, 13, 4895-4905,
https://doi.org/10.5194/acp-13-4895-2013, 2013.
Peng, C. and Chan, C. K.: The water cycles of water-soluble organic salts
of atmospheric importance, Atmos. Environ., 35, 1183–1192,
https://doi.org/10.1016/s1352-2310(00)00426-x, 2001.
Peng, C., Jing, B., Guo, Y. C., Zhang, Y. H., and Ge, M. F.: Hygroscopic
Behavior of Multicomponent Aerosols Involving NaCl and Dicarboxylic Acids, J. Phys. Chem. A, 120, 1029–1038, https://doi.org/10.1021/acs.jpca.5b09373, 2016.
Pereira, W. E., Rostad, C. E., Taylor, H. E., and Klein, J. M.:
Characterization of organic contaminants in environmental samples associated
with Mount St. Helens 1980 volcanic eruption, Environ. Sci. Technol., 16,
387–396, https://doi.org/10.1021/es00101a005, 1982.
Prabhakar, G., Sorooshian, A., Toffol, E., Arellano, A. F., and Betterton,
E. A.: Spatiotemporal Distribution of Airborne Particulate Metals and
Metalloids in a Populated Arid Region, Atmos. Environ., 92, 339–347,
https://doi.org/10.1016/j.atmosenv.2014.04.044, 2014.
Pratt, K. A., Murphy, S. M., Subramanian, R., DeMott, P. J., Kok, G. L., Campos, T., Rogers, D. C., Prenni, A. J., Heymsfield, A. J., Seinfeld, J. H., and Prather, K. A.: Flight-based chemical characterization of biomass burning aerosols within two prescribed burn smoke plumes, Atmos. Chem. Phys., 11, 12549–12565, https://doi.org/10.5194/acp-11-12549-2011, 2011.
Prenni, A. J., DeMott, P. J., Kreidenweis, S. M., Sherman, D. E., Russell,
L. M., and Ming, Y.: The Effects of Low Molecular Weight Dicarboxylic Acids
on Cloud Formation, J. Phys. Chem. A, 105, 11240–11248, https://doi.org/10.1021/jp012427d,
2001.
PSA: Highlights of the Philippine population 2015 census of population:
available at: https://psa.gov.ph/content/highlights-philippine-population-2015-census-population,
last access: 7 January 2016.
Ramachandran, S. and Rajesh, T. A.: Black carbon aerosol mass
concentrations over Ahmedabad, an urban location in western India:
Comparison with urban sites in Asia, Europe, Canada, and the United States,
J. Geophys. Res., 112, D06211, https://doi.org/10.1029/2006jd007488, 2007.
Ran, L., Deng, Z. Z., Wang, P. C., and Xia, X. A.: Black carbon and
wavelength-dependent aerosol absorption in the North China Plain based on
two-year aethalometer measurements, Atmos. Environ., 142, 132–144,
https://doi.org/10.1016/j.atmosenv.2016.07.014, 2016.
Reff, A., Eberly, S. I., and Bhave, P. V.: Receptor modeling of ambient
particulate matter data using positive matrix factorization: review of
existing methods, J. Air Waste. Manag. Assoc., 57, 146–154,
https://doi.org/10.1080/10473289.2007.10465319, 2007.
Reid, J. S., Hobbs, P. V., Ferek, R. J., Blake, D. R., Martins, J. V.,
Dunlap, M. R., and Liousse, C.: Physical, chemical, and optical properties
of regional hazes dominated by smoke in Brazil, J. Geophys. Res.-Atmos., 103,
32059–32080, https://doi.org/10.1029/98jd00458, 1998.
Reid, J. S., Koppmann, R., Eck, T. F., and Eleuterio, D. P.: A review of biomass burning emissions part II: intensive physical properties of biomass burning particles, Atmos. Chem. Phys., 5, 799–825, https://doi.org/10.5194/acp-5-799-2005, 2005.
Reid, J. S., Hyer, E. J., Johnson, R. S., Holben, B. N., Yokelson, R. J.,
Zhang, J., Campbell, J. R., Christopher, S. A., Di Girolamo, L., Giglio, L.,
Holz, R. E., Kearney, C., Miettinen, J., Reid, E. A., Turk, F. J., Wang, J.,
Xian, P., Zhao, G., Balasubramanian, R., Chew, B. N., Janjai, S., Lagrosas,
N., Lestari, P., Lin, N.-H., Mahmud, M., Nguyen, A. X., Norris, B., Oanh, N.
T. K., Oo, M., Salinas, S. V., Welton, E. J., and Liew, S. C.: Observing and
understanding the Southeast Asian aerosol system by remote sensing: An
initial review and analysis for the Seven Southeast Asian Studies (7SEAS)
program, Atmos. Res., 122, 403–468, https://doi.org/10.1016/j.atmosres.2012.06.005, 2013.
Reid, J. S., Xian, P., Holben, B. N., Hyer, E. J., Reid, E. A., Salinas, S. V., Zhang, J., Campbell, J. R., Chew, B. N., Holz, R. E., Kuciauskas, A. P., Lagrosas, N., Posselt, D. J., Sampson, C. R., Walker, A. L., Welton, E. J., and Zhang, C.: Aerosol meteorology of the Maritime Continent for the 2012 7SEAS southwest monsoon intensive study – Part 1: regional-scale phenomena, Atmos. Chem. Phys., 16, 14041–14056, https://doi.org/10.5194/acp-16-14041-2016, 2016.
Rogge, W. F., Mazurek, M. A., Hildemann, L. M., Cass, G. R., and Simoneit,
B. R. T.: Quantification of urban organic aerosols at a molecular level:
Identification, abundance and seasonal variation, Atmos. Environ., 27,
1309–1330, https://doi.org/10.1016/0960-1686(93)90257-y, 1993.
Rolph, G., Stein, A., and Stunder, B.: Real-time Environmental Applications
and Display sYstem: READY, Environ. Modell Softw., 95, 210–228,
https://doi.org/10.1016/j.envsoft.2017.06.025, 2017.
Rose, C., Chaumerliac, N., Deguillaume, L., Perroux, H., Mouchel-Vallon, C., Leriche, M., Patryl, L., and Armand, P.: Modeling the partitioning of organic chemical species in cloud phases with CLEPS (1.1), Atmos. Chem. Phys., 18, 2225–2242, https://doi.org/10.5194/acp-18-2225-2018, 2018.
Russell, L. M., Maria, S. F., and Myneni, S. C. B.: Mapping organic coatings
on atmospheric particles, Geophys. Res. Lett., 29, 21–24,
https://doi.org/10.1029/2002gl014874, 2002.
Saltzman, E. S., Savoie, D. L., Zika, R. G., and Prospero, J. M.: Methane
sulfonic acid in the marine atmosphere, J. Geophys. Res.-Oceans, 88,
10897–10902, https://doi.org/10.1029/JC088iC15p10897, 1983.
Sareen, N., Carlton, A. G., Surratt, J. D., Gold, A., Lee, B., Lopez-Hilfiker, F. D., Mohr, C., Thornton, J. A., Zhang, Z., Lim, Y. B., and Turpin, B. J.: Identifying precursors and aqueous organic aerosol formation pathways during the SOAS campaign, Atmos. Chem. Phys., 16, 14409–14420, https://doi.org/10.5194/acp-16-14409-2016, 2016.
Saxena, P., and Hildemann, L. M.: Water-soluble organics in atmospheric
particles: A critical review of the literature and application of
thermodynamics to identify candidate compounds, J. Atmos. Chem., 24, 57–109,
https://doi.org/10.1007/bf00053823, 1996.
Schlosser, J. S., Braun, R. A., Bradley, T., Dadashazar, H., MacDonald, A.
B., Aldhaif, A. A., Aghdam, M. A., Mardi, A. H., Xian, P., and Sorooshian,
A.: Analysis of aerosol composition data for western United States wildfires
between 2005 and 2015: Dust emissions, chloride depletion, and most enhanced
aerosol constituents, J. Geophys. Res.-Atmos., 122, 8951–8966, 2017.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric chemistry and physics, 3rd
ed., Wiley-Interscience, New York, 1152 pp., 2016.
Sempére, R. and Kawamura, K.: Comparative distributions of dicarboxylic
acids and related polar compounds in snow, rain and aerosols from urban
atmosphere, Atmos. Environ., 28, 449–459, https://doi.org/10.1016/1352-2310(94)90123-6, 1994.
Siffert, C. and Sulzberger, B.: Light-induced dissolution of hematite in
the presence of oxalate. A case study, Langmuir, 7, 1627–1634,
https://doi.org/10.1021/la00056a014, 1991.
Simoneit, B. R., Medeiros, P. M., and Didyk, B. M.: Combustion products of
plastics as indicators for refuse burning in the atmosphere, Environ. Sci. Technol., 39, 6961–6970, https://doi.org/10.1021/es050767x, 2005.
Simpas, J., Lorenzo, G., and Cruz, M.: Monitoring Particulate Matter Levels
and Composition for Source Apportionment Study in Metro Manila, Philippines,
in: Improving Air Quality in Asian Developing Countries: Compilation of
Research Findings, edited by: Kim Oanh, N. T., 239–261, 2014.
Singh, M., Jaques, P. A., and Sioutas, C.: Size distribution and diurnal
characteristics of particle-bound metals in source and receptor sites of the
Los Angeles Basin, Atmos. Environ., 36, 1675–1689,
https://doi.org/10.1016/s1352-2310(02)00166-8, 2002.
Song, J., Zhao, Y., Zhang, Y., Fu, P., Zheng, L., Yuan, Q., Wang, S., Huang,
X., Xu, W., Cao, Z., Gromov, S., and Lai, S.: Influence of biomass burning
on atmospheric aerosols over the western South China Sea: Insights from
ions, carbonaceous fractions and stable carbon isotope ratios, Environ.
Pollut., 242, 1800–1809, https://doi.org/10.1016/j.envpol.2018.07.088, 2018.
Sorooshian, A., Varutbangkul, V., Brechtel, F. J., Ervens, B., Feingold, G.,
Bahreini, R., Murphy, S. M., Holloway, J. S., Atlas, E. L., Buzorius, G.,
Jonsson, H., Flagan, R. C., and Seinfeld, J. H.: Oxalic acid in clear and
cloudy atmospheres: Analysis of data from International Consortium for
Atmospheric Research on Transport and Transformation 2004, J. Geophys. Res.-Atmos., 111, D23S45, https://doi.org/10.1029/2005jd006880, 2006.
Sorooshian, A., Lu, M. L., Brechtel, F. J., Jonsson, H., Feingold, G.,
Flagan, R. C., and Seinfeld, J. H.: On the source of organic acid aerosol
layers above clouds, Environ. Sci. Technol., 41, 4647–4654, https://doi.org/10.1021/es0630442,
2007a.
Sorooshian, A., Ng, N. L., Chan, A. W. H., Feingold, G., Flagan, R. C., and
Seinfeld, J. H.: Particulate organic acids and overall water-soluble aerosol
composition measurements from the 2006 Gulf of Mexico Atmospheric
Composition and Climate Study (GoMACCS), J. Geophys. Res.-Atmos., 112, D13201,
https://doi.org/10.1029/2007jd008537, 2007b.
Sorooshian, A., Hersey, S., Brechtel, F. J., Corless, A., Flagan, R. C., and
Seinfeld, J. H.: Rapid, Size-Resolved Aerosol Hygroscopic Growth
Measurements: Differential Aerosol Sizing and Hygroscopicity Spectrometer
Probe (DASH-SP), Aerosol Sci. Tech., 42, 445–464, https://doi.org/10.1080/02786820802178506,
2008.
Sorooshian, A., Padró, L. T., Nenes, A., Feingold, G., McComiskey, A.,
Hersey, S. P., Gates, H., Jonsson, H. H., Miller, S. D., Stephens, G. L.,
Flagan, R. C., and Seinfeld, J. H.: On the link between ocean biota
emissions, aerosol, and maritime clouds: Airborne, ground, and satellite
measurements off the coast of California, Global Biogeochem. Cy., 23, GB4007,
https://doi.org/10.1029/2009gb003464, 2009.
Sorooshian, A., Murphy, S. M., Hersey, S., Bahreini, R., Jonsson, H.,
Flagan, R. C., and Seinfeld, J. H.: Constraining the contribution of organic
acids and AMSm/z44 to the organic aerosol budget: On the importance of
meteorology, aerosol hygroscopicity, and region, Geophys. Res. Lett., 37, L21807,
https://doi.org/10.1029/2010gl044951, 2010.
Sorooshian, A., Wonaschutz, A., Jarjour, E. G., Hashimoto, B. I., Schichtel,
B. A., and Betterton, E. A.: An aerosol climatology for a rapidly growing
arid region (southern Arizona): Major aerosol species and remotely sensed
aerosol properties, J. Geophys. Res.-Atmos., 116, 16, https://doi.org/10.1029/2011JD016197,
2011.
Sorooshian, A., Wang, Z., Coggon, M. M., Jonsson, H. H., and Ervens, B.:
Observations of sharp oxalate reductions in stratocumulus clouds at variable
altitudes: organic acid and metal measurements during the 2011 E-PEACE
campaign, Environ. Sci. Technol., 47, 7747–7756, https://doi.org/10.1021/es4012383, 2013.
Sorooshian, A., Crosbie, E., Maudlin, L. C., Youn, J. S., Wang, Z.,
Shingler, T., Ortega, A. M., Hersey, S., and Woods, R. K.: Surface and
airborne measurements of organosulfur and methanesulfonate over the Western
United States and coastal areas, J. Geophys. Res.-Atmos., 120, 8535–8548,
https://doi.org/10.1002/2015JD023822, 2015.
Stahl, C., Cruz, M. T., Banaga, P. A., Betito, G., Braun, R. A., Aghdam, M.
A., Cambaliza, M. O., Lorenzo, G. R., MacDonald, A. B., Pabroa, P. C., Yee,
J. R., Simpas, J. B., and Sorooshian, A.: An annual time series of weekly
size-resolved aerosol properties in the megacity of Metro Manila,
Philippines, Sci. Data, 7, 128, https://doi.org/10.1038/s41597-020-0466-y, 2020a.
Stahl, C., Cruz, M. T., Banaga, P. A., Betito, G., Braun, R. A., Aghdam, M.
A., Cambaliza, M. O., Lorenzo, G. R., MacDonald, A. B., Pabroa, P. C., Yee,
J. R., Simpas, J. B., and Sorooshian, A., An annual time series of weekly
size-resolved aerosol properties in the megacity of Metro Manila,
Philippines, figshare, https://doi.org/10.6084/m9.figshare.11861859, 2020b.
Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D.,
and Ngan, F.: NOAA's HYSPLIT Atmospheric Transport and Dispersion Modeling
System, B. Am. Meteorol. Soc., 96, 2059–2077, https://doi.org/10.1175/bams-d-14-00110.1, 2015.
Streets, D. G., Carmichael, G. R., and Arndt, R. L.: Sulfur dioxide
emissions and sulfur deposition from international shipping in Asian waters,
Atmos. Environ., 31, 1573–1582, https://doi.org/10.1016/s1352-2310(96)00204-x, 1997.
Streets, D. G., Guttikunda, S. K., and Carmichael, G. R.: The growing
contribution of sulfur emissions from ships in Asian waters, 1988–1995,
Atmos. Environ., 34, 4425–4439, https://doi.org/10.1016/s1352-2310(00)00175-8, 2000.
Sullivan, R. C. and Prather, K. A.: Investigations of the diurnal cycle and
mixing state of oxalic acid in individual particles in Asian aerosol
outflow, Environ. Sci. Technol., 41, 8062–8069, https://doi.org/10.1021/es071134g, 2007.
Takahashi, K., Nansai, K., Tohno, S., Nishizawa, M., Kurokawa, J.-i., and
Ohara, T.: Production-based emissions, consumption-based emissions and
consumption-based health impacts of PM2.5 carbonaceous aerosols in Asia,
Atmos. Environ., 97, 406–415, https://doi.org/10.1016/j.atmosenv.2014.04.028, 2014.
Tang, M., Guo, L., Bai, Y., Huang, R.-J., Wu, Z., Wang, Z., Zhang, G., Ding,
X., Hu, M., and Wang, X.: Impacts of methanesulfonate on the cloud
condensation nucleation activity of sea salt aerosol, Atmos. Environ., 201,
13–17, https://doi.org/10.1016/j.atmosenv.2018.12.034, 2019.
Tang, M. J., Whitehead, J., Davidson, N. M., Pope, F. D., Alfarra, M. R.,
McFiggans, G., and Kalberer, M.: Cloud condensation nucleation activities of
calcium carbonate and its atmospheric ageing products, Phys. Chem. Chem. Phys.,
17, 32194–32203, https://doi.org/10.1039/c5cp03795f, 2015.
Thepnuan, D., Chantara, S., Lee, C. T., Lin, N. H., and Tsai, Y. I.:
Molecular markers for biomass burning associated with the characterization
of PM2.5 and component sources during dry season haze episodes in Upper
South East Asia, Sci. Total Environ., 658, 708–722,
https://doi.org/10.1016/j.scitotenv.2018.12.201, 2019.
Tsai, Y. I., Kuo, S.-C., Young, L.-H., Hsieh, L.-Y., and Chen, P.-T.:
Atmospheric dry plus wet deposition and wet-only deposition of dicarboxylic
acids and inorganic compounds in a coastal suburban environment, Atmos. Environ., 89, 696–706, https://doi.org/10.1016/j.atmosenv.2014.03.013, 2014.
van Drooge, B. L. and Grimalt, J. O.: Particle size-resolved source apportionment of primary and secondary organic tracer compounds at urban and rural locations in Spain, Atmos. Chem. Phys., 15, 7735–7752, https://doi.org/10.5194/acp-15-7735-2015, 2015.
van Pinxteren, M., Fiedler, B., van Pinxteren, D., Iinuma, Y.,
Körtzinger, A., and Herrmann, H.: Chemical characterization of
sub-micrometer aerosol particles in the tropical Atlantic Ocean: marine and
biomass burning influences, J. Atmos. Chem., 72, 105–125,
https://doi.org/10.1007/s10874-015-9307-3, 2015.
Vasconcellos, P. C., Souza, D. Z., Sanchez-Ccoyllo, O., Bustillos, J. O.,
Lee, H., Santos, F. C., Nascimento, K. H., Araujo, M. P., Saarnio, K.,
Teinila, K., and Hillamo, R.: Determination of anthropogenic and biogenic
compounds on atmospheric aerosol collected in urban, biomass burning and
forest areas in Sao Paulo, Brazil, Sci. Total Environ., 408, 5836–5844,
https://doi.org/10.1016/j.scitotenv.2010.08.012, 2010.
Wang, G., Xie, M., Hu, S., Gao, S., Tachibana, E., and Kawamura, K.: Dicarboxylic acids, metals and isotopic compositions of C and N in atmospheric aerosols from inland China: implications for dust and coal burning emission and secondary aerosol formation, Atmos. Chem. Phys., 10, 6087–6096, https://doi.org/10.5194/acp-10-6087-2010, 2010.
Wang, G., Chen, C., Li, J., Zhou, B., Xie, M., Hu, S., Kawamura, K., and
Chen, Y.: Molecular composition and size distribution of sugars,
sugar-alcohols and carboxylic acids in airborne particles during a severe
urban haze event caused by wheat straw burning, Atmos. Environ., 45,
2473–2479, https://doi.org/10.1016/j.atmosenv.2011.02.045, 2011.
Wang, G., Kawamura, K., Cheng, C., Li, J., Cao, J., Zhang, R., Zhang, T.,
Liu, S., and Zhao, Z.: Molecular distribution and stable carbon isotopic
composition of dicarboxylic acids, ketocarboxylic acids, and
alpha-dicarbonyls in size-resolved atmospheric particles from Xi'an City,
China, Environ. Sci. Technol., 46, 4783–4791, https://doi.org/10.1021/es204322c, 2012.
Wang, G., Kawamura, K., Xie, M., Hu, S., Li, J., Zhou, B., Cao, J., and An,
Z.: Selected water-soluble organic compounds found in size-resolved aerosols
collected from urban, mountain and marine atmospheres over East Asia, Tellus
B, 63, 371–381, https://doi.org/10.1111/j.1600-0889.2011.00536.x, 2017.
Wang, J., Ge, C., Yang, Z., Hyer, E. J., Reid, J. S., Chew, B.-N., Mahmud,
M., Zhang, Y., and Zhang, M.: Mesoscale modeling of smoke transport over the
Southeast Asian Maritime Continent: Interplay of sea breeze, trade wind,
typhoon, and topography, Atmos. Res., 122, 486–503,
https://doi.org/10.1016/j.atmosres.2012.05.009, 2013.
Wang, Y. Q., Zhang, X. Y., and Draxler, R. R.: TrajStat: GIS-based software
that uses various trajectory statistical analysis methods to identify
potential sources from long-term air pollution measurement data, Environ.
Modell Softw., 24, 938-939, https://doi.org/10.1016/j.envsoft.2009.01.004, 2009.
Warneck, P.: Multi-Phase Chemistry of C2 and C3 Organic Compounds in the
Marine Atmosphere, J. Atmos. Chem., 51, 119–159, https://doi.org/10.1007/s10874-005-5984-7,
2005.
Wasson, S. J., Linak, W. P., Gullett, B. K., King, C. J., Touati, A.,
Huggins, F. E., Chen, Y., Shah, N., and Huffman, G. P.: Emissions of
chromium, copper, arsenic, and PCDDs/Fs from open burning of CCA-treated
wood, Environ. Sci. Technol., 39, 8865–8876, https://doi.org/10.1021/es050891g, 2005.
Wonaschuetz, A., Sorooshian, A., Ervens, B., Chuang, P. Y., Feingold, G.,
Murphy, S. M., de Gouw, J., Warneke, C., and Jonsson, H. H.: Aerosol and gas
re-distribution by shallow cumulus clouds: An investigation using airborne
measurements, J. Geophys. Res.-Atmos., 117, D17202, https://doi.org/10.1029/2012jd018089, 2012.
Wonaschütz, A., Hersey, S. P., Sorooshian, A., Craven, J. S., Metcalf, A. R., Flagan, R. C., and Seinfeld, J. H.: Impact of a large wildfire on water-soluble organic aerosol in a major urban area: the 2009 Station Fire in Los Angeles County, Atmos. Chem. Phys., 11, 8257–8270, https://doi.org/10.5194/acp-11-8257-2011, 2011.
Xian, P., Reid, J. S., Atwood, S. A., Johnson, R. S., Hyer, E. J., Westphal,
D. L., and Sessions, W.: Smoke aerosol transport patterns over the Maritime
Continent, Atmos. Res., 122, 469–485, https://doi.org/10.1016/j.atmosres.2012.05.006, 2013.
Xu, J., Tian, Y., Cheng, C., Wang, C., Lin, Q., Li, M., Wang, X., and Shi,
G.: Characteristics and source apportionment of ambient single particles in
Tianjin, China: The close association between oxalic acid and biomass
burning, Atmos. Res., 237, 104843, https://doi.org/10.1016/j.atmosres.2020.104843, 2020.
Xue, H., Khalizov, A. F., Wang, L., Zheng, J., and Zhang, R.: Effects of
dicarboxylic acid coating on the optical properties of soot, Phys. Chem. Chem. Phys., 11, 7869–7875, https://doi.org/10.1039/b904129j, 2009.
Yamasoe, M. A., Artaxo, P., Miguel, A. H., and Allen, A. G.: Chemical
composition of aerosol particles from direct emissions of vegetation fires
in the Amazon Basin: water-soluble species and trace elements, Atmos. Environ., 34, 1641–1653, https://doi.org/10.1016/s1352-2310(99)00329-5, 2000.
Yang, H., Yu, J. Z., Ho, S. S. H., Xu, J., Wu, W.-S., Wan, C. H., Wang, X.,
Wang, X., and Wang, L.: The chemical composition of inorganic and
carbonaceous materials in PM2.5 in Nanjing, China, Atmos. Environ., 39,
3735–3749, https://doi.org/10.1016/j.atmosenv.2005.03.010, 2005.
Yao, X., Fang, M., and Chan, C. K.: Size distributions and formation of
dicarboxylic acids in atmospheric particles, Atmos. Environ., 36, 2099–2107,
https://doi.org/10.1016/s1352-2310(02)00230-3, 2002.
Yao, X., Lau, A. P. S., Fang, M., Chan, C. K., and Hu, M.: Size
distributions and formation of ionic species in atmospheric particulate
pollutants in Beijing, China: 2 – dicarboxylic acids, Atmos. Environ., 37,
3001–3007, https://doi.org/10.1016/s1352-2310(03)00256-5, 2003.
Yu, J. Z., Huang, X.-F., Xu, J., and Hu, M.: When Aerosol Sulfate Goes Up,
So Does Oxalate: Implication for the Formation Mechanisms of Oxalate,
Environ. Sci. Technol., 39, 128–133, https://doi.org/10.1021/es049559f, 2005.
Yuan, H., Wang, Y., and Zhuang, G.: MSA in Beijing aerosol, Chinese Sci.
Bull., 49, 1020–1025, https://doi.org/10.1007/bf03184031, 2004.
Zeng, G., Kelley, J., Kish, J. D., and Liu, Y.: Temperature-dependent
deliquescent and efflorescent properties of methanesulfonate sodium studied
by ATR-FTIR spectroscopy, J. Phys. Chem. A, 118, 583–591, https://doi.org/10.1021/jp405896y,
2014.
Ziemba, L. D., Griffin, R. J., Whitlow, S., and Talbot, R. W.:
Characterization of water-soluble organic aerosol in coastal New England:
Implications of variations in size distribution, Atmos. Environ., 45,
7319–7329, https://doi.org/10.1016/j.atmosenv.2011.08.022, 2011.
Zuo, Y.: Kinetics of photochemical/chemical cycling of iron coupled with
organic substances in cloud and fog droplets, Geochim. Cosmochim. Ac., 59,
3123–3130, https://doi.org/10.1016/0016-7037(95)00201-A, 1995.
Short summary
Long-term (16-month) high-frequency (weekly) measurements of size-resolved aerosol composition are reported. Important insights are discussed about factors (e.g., transport, fires, precipitation, photo-oxidation) impacting the mass size distributions of organic and sulfonic acids at a coastal megacity with diverse meteorology. The size-resolved nature of the data yielded one such finding that organic acids preferentially adsorb to dust rather than sea salt particles.
Long-term (16-month) high-frequency (weekly) measurements of size-resolved aerosol composition...
Altmetrics
Final-revised paper
Preprint