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Abstract. A 16-month (July 2018–October 2019) dataset of
size-resolved aerosol composition is used to examine the
sources and characteristics of five organic acids (oxalate,
succinate, adipate, maleate, phthalate) and methanesulfonate
(MSA) in Metro Manila, Philippines. As one of the most
polluted megacities globally, Metro Manila offers a view
of how diverse sources and meteorology impact the rela-
tive amounts and size distributions of these species. A to-
tal of 66 sample sets were collected with a Micro-Orifice
Uniform Deposit Impactor (MOUDI), of which 54 sets were
analyzed for composition. Organic acids and MSA surpris-
ingly were less abundant than in other global regions that
are also densely populated. The combined species accounted
for an average of 0.80± 0.66 % of total gravimetric mass be-
tween 0.056 and 18 µm, still leaving 33.74 % of mass unac-
counted for after considering black carbon and water-soluble
ions and elements. The unresolved mass is suggested to con-
sist of non-water-soluble metals as well as both water-soluble
and non-water-soluble organics. Oxalate was approximately
an order of magnitude more abundant than the other five
species (149± 94 ng m−3 versus others being < 10 ng m−3)
across the 0.056–18 µm size range. Both positive matrix fac-
torization (PMF) and correlation analysis are conducted with
tracer species to investigate the possible sources of organic

acids and MSA. Enhanced biomass burning influence in the
2018 southwest monsoon resulted in especially high levels
of submicrometer succinate, MSA, oxalate, and phthalate.
Peculiarly, MSA had negligible contributions from marine
sources but instead was linked to biomass burning and com-
bustion. Enhanced precipitation during the two monsoon sea-
sons (8 June–4 October 2018 and 14 June–7 October 2019)
coincided with a stronger influence from local emissions
rather than long-range transport, leading to notable concen-
tration enhancements in both the sub- and supermicrometer
ranges for some species (e.g., maleate and phthalate). While
secondary formation via gas-to-particle conversion is con-
sistent with submicrometer peaks for the organic acids and
MSA, several species (i.e., phthalate, adipate, succinate, ox-
alate) exhibited a prominent peak in the coarse mode, largely
owing to their association with crustal emissions (i.e., more
alkaline aerosol type) rather than sea salt. Oxalate’s strong
association with sulfate in the submicrometer mode supports
an aqueous-phase formation pathway for the study region.
However, high concentrations during periods of low rain and
high solar radiation suggest photo-oxidation is an important
formation pathway.
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1 Introduction

Organic acids are ubiquitous components of ambient par-
ticulate matter and can contribute appreciably to total mass
concentrations in diverse regions ranging from the Arctic to
deserts (e.g., Barbaro et al., 2017; Gao et al., 2003; Kawa-
mura et al., 2005). Furthermore, another class of species
contributing to ambient aerosol mass is organosulfur com-
pounds, with methanesulfonate (MSA) being an example
species (Bardouki et al., 2003b; Ding et al., 2017; Falkovich
et al., 2005; Kerminen et al., 1999; Maudlin et al., 2015;
Ziemba et al., 2011). The spatiotemporal and size-resolved
mass concentration profiles of organic and sulfonic acids are
difficult to characterize and can significantly vary depending
on the time of day, season, region, and meteorological pro-
file (Adam et al., 2020; Bagtasa et al., 2019; Kobayashi et
al., 2004; Maudlin et al., 2015; Mochida et al., 2003; Reid
et al., 2013). It is necessary to quantify their relative abun-
dances and to understand factors affecting their production
and eventual removal to be able to quantify their influence
on aerosol hygroscopic and optical properties (Beaver et al.,
2008; Cai et al., 2017; Freedman et al., 2009; Marsh et al.,
2017, 2019; Myhre and Nielsen, 2004; Peng et al., 2016;
Xue et al., 2009). Low-molecular-weight organic acids are
water-soluble and can range widely in hygroscopicity when
in their pure salt form depending on factors such as carbon
number (Prenni et al., 2001; Saxena and Hildemann, 1996;
Sorooshian et al., 2008) and interactions with other com-
ponents in multicomponent aerosol particles (Drozd et al.,
2014).

Organic acids are generally believed to effectively scat-
ter light and have a cooling effect on climate (McGinty et
al., 2009; Myhre and Nielsen, 2004), although their overall
impact on properties such as refractive index in multicom-
ponent aerosols is poorly characterized. Refractive indices
for species investigated in this work range widely from 1.43
(MSA) to 1.62 (phthalic acid). MSA is assumed to be purely
scattering, similar to sulfate (Hodshire et al., 2019), and to
have hygroscopic properties close to those of ammonium sul-
fate (Asmi et al., 2010; Fossum et al., 2018). However, its
hygroscopic and optical behavior is not fully understood and
is still an active area of research (Liu et al., 2011; Peng and
Chan, 2001; Tang et al., 2019, 2015; Zeng et al., 2014).

Decades of research into atmospheric organic acids and
MSA have yielded rich insights into their sources, produc-
tion mechanisms, and fate in the atmosphere (Baboukas et
al., 2000; Bardouki et al., 2003a; Gondwe et al., 2004; Kawa-
mura and Bikkina, 2016; Limbeck et al., 2001; Norton et
al., 1983; Ovadnevaite et al., 2014; Sorooshian et al., 2009;
van Pinxteren et al., 2015). MSA is produced predominantly
from the oxidation of dimethylsulfide (DMS) emitted from
oceans (Bates et al., 2004; Davis et al., 1998; Kerminen et
al., 2017), but it also can be linked to biomass burning, urban,
and agricultural emissions (Sorooshian et al., 2015). Sources
of organic acids include primary emissions from biomass

burning, biogenic activity, and the combustion of fossil fu-
els (Kawamura and Kaplan, 1987) and secondary forma-
tion via gas-to-particle conversion processes stemming from
both biogenic (Carlton et al., 2006) and anthropogenic emis-
sions (Sorooshian et al., 2007b). Secondary processing can
include both aqueous-phase chemistry in clouds (Blando and
Turpin, 2000; Ervens, 2018; Ervens et al., 2014; Hoffmann
et al., 2019; Rose et al., 2018; Sareen et al., 2016; Warneck,
2005) and photo-oxidation of volatile organic compounds
(VOCs) in cloud-free air (Andreae and Crutzen, 1997; Ge-
lencsér and Varga, 2005). These various sources and pro-
duction pathways result in mono- and dicarboxylic acids be-
ing prevalent across a range of aerosol sizes (Bardouki et
al., 2003b; Kavouras and Stephanou, 2002; Neusüss et al.,
2000; Yao et al., 2002). Little is reported in terms of the
size-resolved nature of organic acids and MSA over long
periods (> 6 months) of time with high sampling frequency
(weekly or better). Although insights have already been gath-
ered from size-resolved measurement studies (Table S1),
most measurement reports are based on bulk mass concen-
tration measurements (Chebbi and Carlier, 1996; Kawamura
and Bikkina, 2016). Studying the seasonal variations of size-
resolved organic acid and MSA aerosols could prove vital
in improved understanding of their formation and removal
mechanisms and associated sensitivity to seasonally depen-
dent sources and meteorological factors.

The Philippines is an important region to study aerosols
due to the wide range of both meteorological conditions
and diverse local and regional emissions sources (Alas et
al., 2018; Bagtasa and Yuan, 2020; Braun et al., 2020; Hi-
lario et al., 2020a; Kecorius et al., 2017). In addition to
aerosol sources from nearby regions (Hilario et al., 2020b),
the Philippines also has a significant source of local pollu-
tion, largely consisting of vehicular emissions due to high
population density (Madueño et al., 2019), the use of out-
dated vehicles (Biona et al., 2017), ship exhaust from high-
density shipping lanes (Streets et al., 1997, 2000), and more
lenient air regulations leading to significant air pollution due
to rapid growth and urbanization (Alas et al., 2018; Kecorius
et al., 2017). This leads to Metro Manila containing some
of the highest black carbon (BC) concentrations in South-
east Asia and quite possibly the world (Alas et al., 2018;
Hopke et al., 2011; Kecorius et al., 2017; Kim Oanh et al.,
2006). Past aerosol characterization work for that region has
focused mainly on gravimetric analysis of total bulk mass
(e.g., PM2.5, PM10) (Bagtasa et al., 2018, 2019; Cohen et al.,
2009; Kim Oanh et al., 2006), water-soluble inorganic and
organic ion speciation (AzadiAghdam et al., 2019; Braun et
al., 2020; Cruz et al., 2019; Kim Oanh et al., 2006; Simpas
et al., 2014; Stahl et al., 2020a), and BC analysis (Alas et
al., 2018; Bautista et al., 2014; Kecorius et al., 2017; Taka-
hashi et al., 2014). In an analysis of two size-resolved aerosol
sets in Manila, a significant portion of the total mass unac-
counted for by the water-soluble inorganic, water-soluble or-
ganic, and BC components was attributed to (but not limited
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to) organics and non-water-soluble metals (Cruz et al., 2019).
However, a concentrated effort to characterize the contribu-
tions of the water-soluble organic acids to the total aerosol
mass in Manila over the course of a full year has not been
undertaken.

The aim of this study is to use a 16-month-long dataset of
size-resolved composition in Quezon City in Metro Manila
to address the following questions: (i) how much do organic
acids and MSA contribute to the region’s aerosol mass con-
centrations? (ii) What are the seasonal differences in the mass
size distribution profile of organic acids and MSA, and what
drives the changes? (iii) What are the sources and predomi-
nant formation mechanisms of these species in the sub- and
supermicrometer diameter ranges? The results of this study
are put in broad context by comparing findings to those in
other regions.

2 Methods

2.1 Study site description

Metro Manila is comprised of 16 cities and a municipality
totaling a population of about 12.9 million people and a col-
lective population density of 20 800 km−2 (Alas et al., 2018;
PSA, 2016). Quezon City is the most populated city in Metro
Manila containing 2.94 million people with a population den-
sity of 18 000 km−2 (PSA, 2016), which is among the highest
in the world. Because of these reasons, Metro Manila is a fit-
ting location for examining locally produced anthropogenic
aerosols superimposed on a variety of other marine and con-
tinentally influenced air masses transported from upwind re-
gions (Kim Oanh et al., 2006).

Measurements were conducted over a 16-month period be-
tween July 2018 and October 2019 at Manila Observatory
(MO; 14.64◦ N, 121.08◦ E) on the third floor (∼ 85 m a.s.l.)
of an office building, which is on the Ateneo de Manila Uni-
versity campus in Quezon City, Philippines (Fig. 1). Sam-
pling was conducted approximately 100 m away from the
nearest road on campus, and therefore campus emissions do
not impact sampling to a large degree, qualifying the moni-
toring site as an urban mixed background site (Hilario et al.,
2020a) capturing local, regional, and long-range-transported
emissions. The following four seasons were the focus of
the sampling period: the 2018 southwest monsoon (SWM18,
8 June–4 October 2018) (PAGASA, 2018a, b), a transitional
period (5–25 October 2018), the northeast monsoon (NEM,
26 October 2018–13 June 2019) (PAGASA, 2018c), and
the 2019 southwest monsoon (SWM19, 14 June–7 October
2019) (PAGASA, 2019a, b). These seasons have also been
defined in other works (i.e., Akasaka et al., 2007; Cruz et al.,
2013; Matsumoto et al., 2020) and can predominately be sep-
arated into two general seasons, wet (SWM) and dry (NEM).
Generally, there is a second transitional period in May that
transitions between the NEM and SWM (Bagtasa and Yuan,

2020); however, recent studies suggest that the transition is
abrupt (Matsumoto et al., 2020). Consequently, the second
transitional period was combined with the NEM season.

2.2 Instrument description

Ambient aerosol was collected with a Micro-Orifice Uni-
form Deposit Impactor II (MOUDI II 120R, MSP Corpo-
ration; Marple et al. 2014) using Teflon substrates (PTFE
membrane, 2 µm pores, 46.2 mm diameter, Whatman). The
MOUDI-II is a 10-stage impactor with aerodynamic cutpoint
diameters (Dp) of 10, 5.6, 3.2, 1.8, 1.0, 0.56, 0.32, 0.18, 0.10,
and 0.056 µm, with a nominal flow rate of ∼ 30 L min−1. A
total of 66 MOUDI sets were collected on a weekly basis,
usually over a 48 h period; however, only 54 sets were ana-
lyzed for ions, and 47 of those sets were also analyzed for
elements. A 48 h period was chosen because it offered an op-
timal compromise between gathering samples with fine tem-
poral resolution and samples with a sufficiently large chemi-
cal signal to exceed analytical limits of detection. Details of
the sample sets are shown in Table S2 and can be found in
more detail in Stahl et al. (2020a), but a brief summary of the
storage and extraction methods will be described here. Sub-
strates were stored in a freezer at −20◦ C after samples were
collected from the MOUDI until extractions could be car-
ried out, which on average was approximately 2 weeks. The
stored substrates were then extracted by sonication in Milli-
Q water (18.2 M� cm) for 30 min. After sonication, solutions
were immediately analyzed to prevent degradation, while the
remaining extracts were stored in a refrigerator for additional
analyses. There have been studies that discuss the effects of
sonication oxidation degrading organic species (i.e., Miljevic
et al., 2014). It was determined through experimental tests
that no significant degradation occurred during the sonica-
tion process for the species being analyzed in this study.

Water-soluble organic acids, MSA, and inorganic ions
were speciated and quantified using ion chromatography (IC;
Thermo Scientific Dionex ICS-2100 system), with a flow
rate of 0.4 mL min−1. The anionic species of relevance to
this study were MSA, chloride (Cl−), nitrate (NO−3 ), sul-
fate (SO2−

4 ), adipate, succinate, maleate, oxalate, and phtha-
late. These anions were resolved using potassium hydroxide
(KOH) eluent, an AS11-HC 250 mm column, and an AERS
500e suppressor. The cationic species of relevance to this
study was sodium (Na+), which was detected using methane-
sulfonic acid eluent, a CS12A 250 mm column, and a CERS
500e suppressor. The IC instrument methods for anion and
cation analysis can be found in Stahl et al. (2020a). Water-
soluble elements were measured using a triple quadrupole
inductively coupled plasma mass spectrometer (ICP-QQQ;
Agilent 8800 Series). The quantified elements of relevance
to this study include Al, As, Cd, K, Ni, Pb, Rb, Ti, and V.
Limits of detection (LOD) and recoveries were calculated for
all ionic and elemental species and are provided in Table S3.
Aside from the species that are the focus of this study (or-
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Figure 1. HYSPLIT back-trajectories for four seasons: (a) 2018 southwest monsoon (SWM18), (b) transitional period, (c) northeast monsoon
(NEM), and (d) 2019 southwest monsoon (SWM19). Results shown are based on 72 h back-trajectories collected every 6 h during sampling
periods. The top left corner of (a) zooms in on Metro Manila, with Manila Observatory (MO) marked. The black star in each panel represents
the sampling site. Map data: © Google Earth, Maxar Technologies, CNES/Airbus, Data SIO, NOAA, U.S. Navy, NGA, GEBCO.

ganic acids and MSA), the other elements and ions were in-
cluded as they are useful tracers for different aerosol sources
to aid in source apportionment. Although pyruvate was speci-
ated with IC, it is not considered with the other organic acids
because it was below the LOD for 48 of the 54 sets. It should
also be noted that only a subset of species used for analyses
was listed here. The full suite of species can be seen in Stahl
et al. (2020a).

A total of 11 of the 66 MOUDI sets included simulta-
neously operated MOUDI instruments next to each other to
complement the chemical speciation analysis with gravimet-
ric analysis. A Sartorius ME5-F microbalance (sensitivity of
±1 µg) was used in an air-buffered room with controlled tem-
perature (20–23 ◦C) and relative humidity (RH: 30 %–40 %).
Each substrate was passed near an antistatic tip for approx-
imately 30 s to minimize bias due to electrostatic charge.
Multiple weight measurements were conducted before and
after sampling, with the difference between weighings be-

ing less than 10 µg for each condition, respectively. The dif-
ference between substrate weights before and after sampling
was equated to total gravimetric mass.

Black carbon was measured using a Multi-wavelength Ab-
sorption Black Carbon Instrument (MABI; Australian Nu-
clear Science and Technology Organisation). The MABI op-
tically quantifies black carbon concentrations by detecting
the absorption at seven wavelengths (405, 465, 525, 639,
870, 940, and 1050 nm); however, the wavelength at 870 nm
is used here as black carbon is the primary absorber at that
wavelength (Cruz et al., 2019; Ramachandran and Rajesh,
2007; Ran et al., 2016).

Meteorological parameters were measured at MO during
the study period using a Davis Vantage Pro2™ Plus auto-
matic weather station, which was located on the roof. Mea-
sured parameters of relevance included temperature, accu-
mulated rain, RH, and solar radiation. Data were collected
in 5 min increments and were cleaned based on the method
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of Bañares et al. (2018) to verify values were in acceptable
ranges. The meteorological parameters, except for rain, were
averaged over each sampling period, while rain was summed
over time to obtain the accumulated precipitation for a sam-
pling period. There were two periods during which the au-
tomatic weather station located at MO had missing values,
6 November–27 November 2018 and 7 August–3 Septem-
ber 2019. In these cases, missing values were substituted
with values from a secondary automatic weather station lo-
cated approximately 2 km away (14.63◦ N, 121.06◦ E), and
if missing data still persisted, a tertiary station located 5 km
away (14.67◦ N, 121.11◦ E) was used. Identical data cleaning
procedures were implemented for the secondary and tertiary
sites.

2.3 Concentration weighted trajectories (CWTs)

A CWT analysis was conducted to identify sources of de-
tected species. The method assigns a weighted concentration
to a grid that is calculated by finding the mean of sample con-
centrations that have trajectories crossing a particular cell in
the grid (e.g., Dimitriou, 2015; Dimitriou et al., 2015; Hi-
lario et al., 2020a; Hsu et al., 2003). The software TrajS-
tat (Wang et al., 2009) determines CWT profiles by using
back-trajectories from the NOAA Hybrid Single-Particle La-
grangian Integrated Trajectory (HYSPLIT) model (Rolph et
al., 2017; Stein et al., 2015). Using the Global Data Assimila-
tion System (GDAS) and the model vertical velocity method,
3 d back-trajectories were obtained with an ending altitude
of 500 m a.g.l.. The choice of 500 m is based on representa-
tiveness of the mixed layer and it having been widely used
in other studies (e.g., Crosbie et al., 2014; Mora et al., 2017;
Sorooshian et al., 2011). Trajectories were obtained every 6 h
after MOUDI sampling began for each sample set, yielding
approximately nine trajectories per set. A grid domain of 95
to 150◦ E longitude and −5 to 45◦ N latitude was used, with
a grid cell resolution of 0.5◦× 0.5◦. The analysis was per-
formed for each measured organic acid and MSA for the full
diameter range of MOUDI sets (0.056–18 µm). A weighting
function was applied to the CWT plots to minimize uncer-
tainty.

2.4 Positive matrix factorization (PMF)

PMF analysis was applied to identify sources and their rel-
ative importance for the mass concentration budgets of the
species discussed in this work (Paatero and Tapper, 1994).
Model simulations were conducted based on MOUDI data
for the diameter range of 0.056–18 µm. A total of 19 species
(Al, Ti, K, Rb, V, Ni, As, Cd, Pb, Na+, Cl−, NO−3 , SO2−

4 ,
MSA, adipate, succinate, maleate, oxalate, and phthalate)
were included in the analysis and categorized as “strong”.
Each individual stage of MOUDI sets was considered an in-
dependent variable for the analysis. Missing values or values
below the detection limit were replaced with zeros, with the

exception of sets for which ICP-QQQ analysis was not per-
formed (57, 59, 60, 61, 62, 64, 65). These missing values
were replaced with the geometric mean for each respective
stage. The uncertainty for each stage and species was calcu-
lated as follows:

Uncertainty= 0.05×[x] +LOD, (1)

where [x] is the concentration of the species (Reff et al.,
2007). No additional uncertainty was added to account for
any unconsidered errors for all species. The uncertainty of
the model output was evaluated using displacement (DISP),
bootstrapping (BS), and bootstrapping with displacement
(BS-DISP). For BS, 100 resamples were used, and a value
of 0.6 was used as a threshold for the correlation coefficient
(r) to pass as successful mapping for each simulation.

To qualify as a valid result, reported PMF results had to
meet the following criteria: (i) factors are mapped with BS
runs, (ii) there are no factor swaps in DISP, (iii) displace-
ments from its fitted values (dQ) are close or equal to 0 %,
and (iv) there are no factor swaps in BS-DISP, where Al, Ti,
K, Rb, V, Ni, As, Cd, Pb, Na+, Cl−, NO−3 , and SO2−

4 were
displaced. PMF diagnostics can be seen in Table S4 based on
the method of Brown et al. (2015).

3 Background on measured acids

A brief overview of the species being examined is first pro-
vided before reviewing concentration statistics. MSA is an
oxidation product of dimethylsulfide (DMS) emitted primar-
ily from the ocean (Berresheim, 1987; Saltzman et al., 1983),
but it can also be formed from dimethyl sulfoxide (DMSO)
emitted from anthropogenic sources such as industrial waste
(Yuan et al., 2004). Gaseous MSA can become associated
with particulate matter via new particle formation (Dawson
et al., 2012) and through heterogeneous reactions or conden-
sation onto existing particles (De Bruyn et al., 1994; Hanson,
2005).

Of the three saturated dicarboxylic acids, succinate (C4)
and adipate (C6) are larger chain dicarboxylic acids linked
to ozonolysis of cyclic alkenes, which is common in areas
with extensive vehicular emissions (Grosjean et al., 1978;
Hatakeyama et al., 1987). They can also be emitted via pro-
cesses such as meat cooking (Rogge et al., 1993) and biomass
burning (Kawamura et al., 2013; Pereira et al., 1982) and can
be secondarily formed by the photo-oxidation of higher chain
organic acids, such as azelaic acid (Bikkina et al., 2014; Er-
vens et al., 2004). Oxalate (C2) is the smallest of the three
acids and is usually the most abundant on a mass basis of
all dicarboxylic acids in tropospheric aerosols as it repre-
sents an end product in the oxidation of both larger-chain car-
boxylic acids and also glyoxylic acid (Ervens et al., 2004). It
can be emitted via direct emissions such as from biomass
burning (Graham et al., 2002; Narukawa et al., 1999; Xu
et al., 2020) and combustion exhaust (Kawamura and Ka-
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plan, 1987; Kawamura and Yasui, 2005; Wang et al., 2010)
and from various biogenic sources (Kawamura and Kaplan,
1987).

Maleate (C4) is an unsaturated dicarboxylic acid originat-
ing from combustion engines, including via direct emissions
(Kawamura and Kaplan, 1987) and secondarily produced
from the photo-oxidation of benzene (Rogge et al., 1993).
Lastly, phthalate (C8) represents an aromatic dicarboxylic
acid associated with incomplete combustion of vehicular
emissions (Kawamura and Kaplan, 1987) and oxidation of
naphthalene or other polycyclic aromatic hydrocarbons (Fine
et al., 2004; Kawamura and Ikushima, 2002; Kawamura and
Yasui, 2005). However, it has also been linked to biomass
burning (Kumar et al., 2015) and burning of plastic mate-
rial such as polyvinyl chloride (PVC) products, garbage, and
plastic bags (Agarwal et al., 2020; Claeys et al., 2012; Fu
et al., 2012; Li et al., 2019; Nguyen et al., 2016; Simoneit et
al., 2005). Secondary formation via aqueous-phase chemistry
has been documented for these organic acids (Kunwar et al.,
2019; Sorooshian et al., 2007a, 2010, 2006; Wonaschuetz et
al., 2012) and MSA (Hoffmann et al., 2016).

4 Results

4.1 Meteorology and transport patterns

Meteorological data are summarized based on average
values temporally coincident with each MOUDI sample
set period for each of the seasons. The exception to
this was the accumulated rainfall, which was summed
for the MOUDI set duration. Temperatures were stable
during the different seasons: 28.0± 1.04 ◦C (SWM18),
28.9± 0.8 ◦C (transitional), 28.3± 1.9 ◦C (NEM), and
28.4± 1.5 ◦C (SWM19). Solar radiation was the high-
est during the transitional (279.61± 19.68 W m−2) and
NEM (304.01± 67.54 W m−2) seasons and lowest dur-
ing the SWM18 (225.32± 56.26 W m−2) and SWM19
(256.05± 86.88 W m−2) seasons, owing largely to more
cloud cover. Accumulated rain was highest for both
SWM seasons (SWM18: 29.78± 27.28 mm; SWM19:
16.66± 23.98 mm) and much lower during the transitional
(1.00± 1.11 mm) and NEM (2.20± 6.70 mm) seasons. Rel-
ative humidity was relatively consistent across seasons:
SWM18 (69.6± 5.0 %), transitional (69.2± 2.2 %), NEM
season (62.4± 8.0 %), SWM19 (72.6± 11.7 %). Finally,
Fig. 1 summarizes predominant wind patterns for each sea-
son based on HYSPLIT back-trajectories collected every 6 h
during sampling periods. The SWM18 and SWM19 seasons
were characterized by predominantly southwesterly winds,
while the NEM and transitional seasons experienced mostly
northeasterly winds. In conclusion, there was much higher
potential for wet scavenging during the SWM seasons, with
the potential for more photochemical reactivity in the NEM
and transitional seasons owing to enhanced incident solar

Figure 2. Size-resolved comparison of total mass versus the sum
of measured organic acids and MSA. The black curve represents
total mass, and the red curve represents the summed organic acids
and MSA. Solid lines are the averages, and shaded areas are 1 stan-
dard deviation. These plots were made based on data from the 11
MOUDI chemical sets with accompanying gravimetric measure-
ments. The average percent contribution of the organic acids and
MSA to total mass is provided for each size bin. Refer to Fig. S1
for the seasonally resolved version of this figure.

radiation. As humidity was generally enhanced year round,
there was the likelihood of aqueous-phase processing to oc-
cur in all seasons. The combination of sustained RH, low
boundary layer height, and high surface-level particle con-
centrations has been suggested to counteract the effects
of wet deposition on total particle concentration in Metro
Manila (Hilario et al., 2020a).

4.2 Bulk aerosol measurements

The range, mean, and standard deviation of concentra-
tions integrated across the MOUDI diameter range (0.056–
18 µm) are shown in Table 1 for each organic acid
and MSA for all seasons. In order of decreasing con-
centration, the following was the order of abundance
based on the cumulative dataset: oxalate (149± 94 ng m−3)
> succinate (10± 22 ng m−3) >maleate (10± 20 ng m−3)
> phthalate (9± 14 ng m−3) > adipate (7.6± 9.4 ng m−3)
>MSA (5.4± 5.2 ng m−3). The relative order of abundance
varies for the sub- and supermicrometer ranges, with the only
consistent feature being that oxalate was the most abundant
species. This result was consistent with past works show-
ing oxalate to be the most abundant organic acid in differ-
ent global regions (e.g., Decesari et al. 2006; Kerminen et
al. 1999; Sorooshian et al. 2007b; Ziemba et al. 2011).

Figure 2 shows the combined contribution of the or-
ganic acids and MSA to total gravimetric mass, while
Table S5 summarizes percent contributions of individual
species to total mass for different size bins. Combined,
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the measured organic acids and MSA accounted for only
a small part of the total cumulative mass (0.80± 0.66 %)
across the 11 individual gravimetric sets. When the com-
bined contribution of organic acids and MSA to total gravi-
metric mass was separated by season, results are generally
the same (Fig. S1), with differences in the percent range
being as follows: SWM18= 0.64 %; transitional= 0.95 %;
NEM= 0.50 %–1.49 %; and SWM19= 0.23 %–0.83 %. The
highest contribution of these organic acids and MSA oc-
curred for MOUDI sets collected 12–14 March 2019 during
the NEM season, which accounted for 1.49 % (0.50 µg m−3)
of the total mass. The lowest contribution of these or-
ganic acids and MSA occurred for MOUDI sets col-
lected 11–13 September 2019 during the SWM19 sea-
son, which accounted for 0.23 % (0.06 µg m−3) of the to-
tal mass. The summed contributions of the six species were
nearly the same in the sub- and supermicrometer ranges
(0.78± 0.74 % and 0.84± 0.58 %, respectively). Their con-
tributions peaked in the two size bins covering the range
between 0.56 and 1.8 µm (0.56–1 µm: 1.06± 1.01 %; 1–
1.8 µm: 1.01± 0.78 %). After accounting for all measured
species (BC, water-soluble species), 33.74± 19.89 % (range:
23.86 %–50.88 %) of unresolved mass still remained. There-
fore, the six species of interest in this work only explain a
small amount of the region’s mass concentrations, and fur-
ther work is still needed to resolve the remaining compo-
nents, which presumably are dominated by water-insoluble
organics and elements. Of most need is to resolve those miss-
ing components in the supermicrometer range, for which Ta-
ble S5 shows that the unresolved fraction is 69.10± 25.91 %,
in contrast to 17.78± 17.25 % for the submicrometer range.

Although there are fairly wide ranges in concentration for
the individual species, a few features are noteworthy based
on the cumulative dataset. First, the oxalate concentrations
are lower than expected for such a highly polluted area, as
will be expanded upon in Sect. 5.5. Second, there is a signifi-
cant decrease in concentration after oxalate for the remaining
five species, which had similar mean concentrations. Lastly,
although the sampling site is on an island and close to ma-
rine sources, MSA is surprisingly the least abundant among
the six species of interest.

Mean mass concentrations of these species varied greatly
by season as visually shown in Fig. 3a and summarized nu-
merically in Table 1. In contrast, Fig. 3b shows that the mass
fractions of the six species did not change much seasonally,
owing to the dominance of oxalate (37.67–472.82 ng m−3),
which accounted for between 69.1 %–87.3 % of the cumula-
tive concentration of the six species across the four seasons.
Important features with regard to seasonal mass concentra-
tion differences include the following: (i) maleate concentra-
tions were much higher in the SWM18 and SWM19 seasons;
(ii) the lowest overall concentrations of most species, besides
oxalate and succinate (lowest in SWM19), were observed in
the NEM season; (iii) oxalate and phthalate were the only
species that peaked in the transitional period, whereas the

Figure 3. (a) Average concentrations (0.056–18 µm) for (left y
axis) MSA, adipate, succinate, maleate, and phthalate, in addition
to (right y axis) oxalate. Black bars represent 1 standard deviation.
(b) Percentage relative mass abundance of organic acids and MSA
separated based on season.

rest of the species peaked in either SWM18 or SWM19; and
(iv) succinate and phthalate were peculiarly much more en-
hanced in SWM18 than SWM19, pointing to significant vari-
ability between consecutive years.

4.3 Source apportionment

To help elucidate how different emissions sources impact
the six species, PMF analysis was conducted and yielded
a solution with five source factors using year-round data
(Fig. 4). The five sources are as follows in decreasing or-
der of their contribution to the total mass based on the sum
of species used in the PMF analysis (Fig. 4): combustion
(32.1 %), biomass burning (20.9 %), sea salt (20.9 %), crustal
(14.2 %), and waste processing (11.9 %). The contribution of
each source to the total concentration of organic acids and
MSA was as follows: combustion (33.5 %), biomass burn-
ing (29.0 %), crustal (27.0 %), waste processing (9.8 %), and
sea salt (0.6 %). The source factor names were determined

Atmos. Chem. Phys., 20, 15907–15935, 2020 https://doi.org/10.5194/acp-20-15907-2020
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Figure 4. Source factor profiles from positive matrix factorization (PMF) analysis. Blue bars represent the mass concentration contributing
to the respective factor, red filled squares represent the percentage of total species associated with that source factor, and black squares with
error bars represent the average, 5th, and 95th percentiles of bootstrapping with displacement (BS-DISP) values.

based on the enhancement of the following species (Fig. 4):
(i) crustal (Al, Ti) (Harrison et al., 2011; Malm et al., 1994;
Singh et al., 2002); (ii) biomass burning (K, Rb) (Andreae,
1983; Artaxo et al., 1994; Braun et al., 2020; Chow et al.,
2004; Echalar et al., 1995; Ma et al., 2019; Schlosser et al.,
2017; Thepnuan et al., 2019; Yamasoe et al., 2000); (iii)
sea salt (Na, Cl) (Seinfeld and Pandis, 2016); (iv) combus-
tion (V, Ni, As) (Allen et al., 2001; Linak et al., 2000; Ma-
howald et al., 2008; Mooibroek et al., 2011; Prabhakar et al.,
2014; Wasson et al., 2005); and (v) waste processing (Cd,
Pb) (Cruz et al., 2019; Gullett et al., 2007; Iijima et al., 2007;
Pabroa et al., 2011). While both SO2−

4 and NO−3 are secon-
darily produced, the latter is more commonly linked to su-
permicrometer particles (Allen et al., 1996; Dasgupta et al.,
2007; Fitzgerald, 1991; Maudlin et al., 2015), including in
the study region (Cruz et al., 2019). Additionally, Al, K, and
Cl are linked to biomass burning (Reid et al., 1998, 2005;
Schlosser et al., 2017; Wonaschütz et al., 2011). The source
factor names should be interpreted with caution, as a single
profile may consist of a mix of sources (e.g., waste process-
ing). It should be noted that Cruz et al. (2019) performed

Figure 5. Reconstructed mass size distributions of positive matrix
factorization (PMF) factors.

PMF analysis for only the SWM18 season, which yielded
similar and additional sources for only the SWM18 season,
whereas this study used year-round data.

To provide a size-resolved context for the five aerosol
sources, Fig. 5 shows their respective reconstructed mass size
distributions based on PMF output. Distributions for com-

https://doi.org/10.5194/acp-20-15907-2020 Atmos. Chem. Phys., 20, 15907–15935, 2020
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Table 2. Contributions of the five positive matrix factorization
(PMF) source factors to each individual organic acid and MSA.

Combustion Biomass Crustal Sea Waste
burning salt processing

Phthalate 27.4 % 49.5 % 13.3 % 9.9 % 0 %
Adipate 32.9 % 26.4 % 35.9 % 4.7 % 0 %
Succinate 0 % 90.3 % 9.7 % 0 % 0 %
Maleate 69.7 % 0 % 0.2 % 0 % 30.1 %
Oxalate 32.9 % 25.4 % 31.2 % 0 % 10.5 %
MSA 57.4 % 41.2 % 0.1 % 0 % 1.4 %

bustion, biomass burning, and waste processing primarily
peaked in the submicrometer range, while crustal and sea
salt sources primarily peaked in the supermicrometer range.
Combustion and biomass burning factors showed a domi-
nant peak between 0.32–0.56 µm, whereas waste processing
had a peak between 0.56–1 µm. The crustal and sea salt fac-
tors exhibited their peak concentrations between 1.8–5.6 µm.
Both crustal and biomass burning sources showed signs of
bimodal size distributions, with a minor peak in the sub- and
supermicrometer ranges, respectively.

As reported in Table 2, combustion was the largest con-
tributor to the cumulative mass concentrations of organic
acids and MSA, with the largest influence being for maleate
(69.7 %) and MSA (57.4 %). Biomass burning was marked
by its significant contribution to succinate (90.3 %). The sea
salt source showed minor contributions to phthalate (9.9 %)
and adipate (4.7 %). The crustal source contributed appre-
ciably to adipate (35.9 %) and oxalate (31.2 %), with the
rest of the organic acid or MSA species being less influ-
enced (0.1 %–13.3 %). Organic acids have been shown in
past work to be associated with mineral dust (Russell et al.,
2002), including both oxalic and adipic acids (Falkovich et
al., 2004; Kawamura et al., 2013; Sullivan and Prather, 2007;
Tsai et al., 2014), although less has been documented for adi-
pate. Wang et al. (2017) and Yao et al. (2003) both report
that gaseous acids are likely to adsorb onto supermicrome-
ter particles that are highly alkaline, such as dust. The waste
processing factor contributed to maleate (30.1 %), oxalate
(10.5 %), and MSA (1.4 %). An unexpected result was that
the sea salt factor did not contribute to MSA, even though
the latter is derived from ocean-emitted DMS; the results of
Table 2 suggest that other sources such as biomass burning
and industrial activities are more influential in the study re-
gion, similar to other regions like Beijing (Yuan et al., 2004)
and coastal and inland areas of California (Sorooshian et al.,
2015).

4.4 Species interrelationships

Correlation analysis was conducted for the same species used
in the PMF analysis to quantify interrelationships and to gain
additional insight into common production pathways. Corre-
lation coefficient (r) values are reported in Table 3 for the

sub- and supermicrometer ranges, whereas results for the full
size range are shown in Table S6. Values are only shown and
discussed subsequently for correlations with p values below
0.05. Unless otherwise stated, correlations discussed below
correspond to the full size range for simplicity, whereas no-
table results when contrasting the two size ranges (< 1 µm
and < 1 µm) are explicitly mentioned.

MSA exhibited a statistically significant correlation with
Rb (r = 0.37), suggestive of its link with biomass burning
as Rb has been shown in the study region to be a biomass
burning marker (Braun et al., 2020). Additionally, MSA was
correlated with Na, NO−3 , and SO2−

4 (r: 0.35–0.59), which
are associated with marine aerosol (e.g., sea salt, DMS, ship-
ping) but also biomass burning. The supermicrometer results
indicate MSA was correlated only with Na (r = 0.32), due
presumably to co-emission from both crustal and sea salt
sources, with the former commonly linked to biomass burn-
ing (Schlosser et al., 2017). For the submicrometer range,
MSA was correlated with Rb and SO2−

4 (r: 0.39–0.60),
which are derived from biomass burning and other forms of
combustion, consistent with smaller particles formed secon-
darily from gas-to-particle conversion processes. That is also
why MSA was well correlated with succinate, oxalate, and
phthalate (r: 0.53–0.67), which were also prominent species
in either (or both) of the biomass burning and combustion
factors.

Adipate only exhibited significant correlations with
maleate and phthalate for the full diameter range (r: 0.43–
0.45), while maleate was correlated only with adipate. In
contrast, succinate, oxalate, and phthalate were correlated
with a wide suite of species, indicating that maleate and adi-
pate exhibited more unique behavior in terms of their produc-
tion routes. Succinate, oxalate, and phthalate similarly ex-
hibited significant correlations with each other and species
linked to crustal sources (Al, Ti, Na), sea salt (Na), and
biomass burning (Rb). Succinate and oxalate in particular
were better correlated with tracer species related to either
dust or sea salt (Al, Na) in the supermicrometer range and
were correlated with each other also in that size range.

4.5 Cumulative size distribution variations

Mass size distributions for each individual organic acid and
MSA are shown for the full study period in Fig. S2, and
seasonal mass size distributions can be seen in Figs. 6–11.
General information for the cumulative dataset will be de-
scribed here before examining seasonal results in Sect. 5.
While significant variability exists between individual sets
for the cumulative dataset, a few general features are evident:
(i) mass size distributions all appear multimodal with the ex-
ception of maleate, which on average exhibited a unimodal
profile; (ii) all species show a larger peak in the submicrom-
eter range versus supermicrometer sizes; (iii) phthalate and
adipate show more comparable peaks in the sub- and super-
micrometer range; and (iv) the size bin in which the peaks
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Table 3. Pearson’s correlation matrices (r values) of water-soluble species for submicrometer (0.056–1.0 µm) and supermicrometer (1.0–
18 µm) sizes. Blank boxes indicate p values exceeding 0.05 and thus deemed to be statistically insignificant. Ad – adipate, Su – succinate,
Ma – maleate, Ox – oxalate, Ph – phthalate. A similar correlation matrix for the full size range (0.056–18 µm) is in Table S6.

occur varies between species. These results point to differ-
ences in the species with regard to their source, formation
mechanism, and eventual fate.

One factor relevant to the mass size distribution plots is
the source origin of sampled air masses. The CWT plots in
Fig. 12 reveal the bulk of the concentration of a few species
(e.g., phthalate, succinate, and MSA) was explained by
southwesterly flow. Consistent with the PMF results showing
that the biomass burning factor contributed the most to these
three species, the predominant fire sources were to the south-
west of Luzon. Past work has linked these areas to significant
biomass burning influence over Luzon and the South China

Sea during the SWM season (Atwood et al., 2017; Ge et al.,
2017; Hilario et al., 2020b; Reid et al., 2016; Song et al.,
2018; Wang et al., 2013; Xian et al., 2013). It is noteworthy
that the CWT maps for SWM18 reveal more influence from
the biomass burning hotspots to the southwest (e.g., Bor-
neo and Sumatra), in contrast to SWM19, pointing to more
biomass burning influence in the former season. Oxalate’s
CWT profile shows the most spatial heterogeneity in terms
of source regions; this is consistent with it being an end prod-
uct in the oxidation of other carboxylic acids that can orig-
inate from numerous sources. Finally, adipate and maleate
similarly showed a localized hotspot in terms of where their
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Figure 6. Seasonal size distributions of phthalate. Gray lines represent individual sets, dark colored lines are the average of all seasonal
distributions, and transparent colored areas represent 1 standard deviation. Note that the range of concentrations presented on the y axis
varies for each season.

greatest influence originated, approximately 290 km to the
north–northwest of MO. This could be partly linked to the
Sual coal-fired power station located near that area, where an
ash disposal site is also in close proximity. The uniquely sim-
ilar CWT maps between adipate and maleate are consistent,
with them having few correlations, if any, with species aside
from each other (Table S6). Subsequent sections discuss each
organic acid and MSA in more detail, beginning with larger
acids since knowledge of their behavior is important to better
understand the smaller acids.

5 Discussion

5.1 Phthalate

Results from Sect. 4 show that phthalate has the following
characteristics:

i. influenced most by biomass burning (49.5 %), followed
by combustion (27.4 %), crustal sources (13.3 %), and
then sea salt (9.9 %);

ii. significant correlations with more species in Table S6
than any other organic acid or MSA;

iii. comparable mass size distribution modes in the sub- and
supermicrometer size ranges;

iv. highest mass concentration in the transitional period but
also significantly different concentrations between the
two SWM seasons;

v. concentrations dominated by sources to the southwest.

A more detailed examination based on seasonally resolved
mass size distributions and CWT maps follows to try to gain
more insights into this species. Although not referenced here-
after, Table S7 provides numerical details about mass con-
centration mode sizes and associated concentrations for each
season and the cumulative dataset for each species.

The average size distributions for phthalate appeared bi-
modal for each individual season (Fig. 6). Depending on
the season, concentration peaks occurred in three separate
MOUDI stages for the submicrometer range and between
1.8–3.2 or 3.2–5.6 µm in the supermicrometer range. The

Atmos. Chem. Phys., 20, 15907–15935, 2020 https://doi.org/10.5194/acp-20-15907-2020



C. Stahl et al.: Organics in Southeast Asia 15919

Figure 7. Same as Fig. 6 but for adipate.

NEM season was unique in that the supermicrometer peak
was considerably more pronounced than in the submicrom-
eter range, which was a rare occurrence in this study for all
species except adipate. Phthalate appears in the submicrom-
eter range due to secondary formation by photo-oxidation
(i.e., Kautzman et al., 2010; Kawamura and Ikushima, 2002;
Kawamura and Yasui, 2005; Kleindienst et al., 2012) and
from primary emissions (i.e., combustion, biomass/waste
burning) (i.e., Deshmukh et al., 2016; Kawamura and Ka-
plan, 1987; Kumar et al., 2015; Kundu et al., 2010). Its gen-
eral presence in the supermicrometer range, especially dur-
ing the NEM season, can be explained by possible adsorp-
tion onto larger particles such as dust and sea salt (i.e., Wang
et al., 2012, 2017). Others have observed an enhancement in
phthalate in the supermicrometer mode, specifically in Xi’an,
China, due to suspected adsorption of its vapor form (Wang
et al., 2012) derived from photo-oxidation of naphthalene
(Ho et al., 2006; Wang et al., 2011, 2012, 2017).

CWT results for phthalate (Fig. S3) showed high concen-
trations across all seasons coming from the southwest, most
notably in the SWM18 and SWM19 seasons. The significant
reduction in phthalate levels from SWM18 (17±25 ng m−3)
to SWM19 (5.7± 7.4 ng m−3) is coincident with a stronger

influence from biomass burning from the southwest in 2018.
Figure 3 showed that the highest concentration of phthalate
occurred in the transitional period, assumed to be largely due
to local emissions (e.g., vehicular traffic) based on the CWT
results, with a significant influence in the immediate vicinity
of Luzon unlike the other seasons. The peculiar size distribu-
tion results for the NEM season can be explained by the CWT
map showing a strong influence from the northeast, which
likely includes supermicrometer aerosol influences from sea
salt and dust from East Asia. The reduced influence of up-
wind anthropogenic and biomass burning emissions during
the NEM season can explain the lower seasonal concentra-
tions, especially in the submicrometer size range (Hsu et al.,
2009).

5.2 Adipate

Adipate was shown in Sect. 4 to have the following features:

i. influenced most by crustal sources (35.9 %), followed
by combustion (32.9 %), biomass burning (26.4 %), and
finally sea salt (4.7 %);

ii. only correlated with maleate and phthalate;
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Figure 8. Same as Fig. 6 but for succinate.

iii. comparable concentrations in the sub- and supermi-
crometer size ranges, with a mode between 5.6 and
10 µm;

iv. highest mass concentration in the SWM seasons but es-
pecially the SWM19 season;

v. concentrations dominated by sources from the south-
west as well as from the northwest.

Mass size distributions for adipate were the most variable in
structure compared to the other five species, with multiple
peaks present at different sizes (Fig. S2). In general, its dis-
tributions appeared uniquely and consistently trimodal, with
the exception of the SWM18 season when the distribution
was bimodal (Fig. 7). Modes appeared between 0.10–0.18
and 0.32–0.56 µm for the submicrometer range and between
1.0–1.8 and 3.2–5.6 µm for the supermicrometer range. The
SWM19 season was unique for adipate as the highest peak
was in the supermicrometer range, and it was higher than
any other peak across the other seasons. Submicrometer adi-
pate is likely derived from photo-oxidation of higher chain
organic acids (i.e., van Drooge and Grimalt, 2015), ozonol-
ysis of vehicular emissions (i.e., Grosjean et al., 1978), and

the primary emissions of biomass burning (i.e., Graham et
al., 2002). The appearance in the supermicrometer range is
likely due to adsorption onto larger particles such as dust and
sea salt (e.g., Wang et al., 2012, 2017). As the PMF results
suggest crustal sources were more influential for adipate in
contrast to sea salt, dust was more likely the supermicrome-
ter particle type that adipate preferentially partitioned to. The
source of the dust was likely a combination of long-range
transport from (i) the southwest, especially during biomass
burning periods, (ii) East Asia, and (iii) locally generated
dust via anthropogenic activities (Fig. S4).

Past work in the study region showed that broad mass size
distributions with comparable concentrations in the sub- and
supermicrometer ranges were coincident with wet scaveng-
ing (Braun et al., 2020) and appreciable primary emissions
of sea salt and dust (AzadiAghdam et al., 2019; Cruz et
al., 2019). Scavenging was suggested to remove transported
pollution while allowing for more pronounced contributions
from more localized emissions, which could include vehic-
ular traffic, sea salt, and anthropogenic forms of dust (e.g.,
road dust, construction), all of which are consistent with adi-
pate’s mass size distribution data and CWT maps (Fig. S4)
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Figure 9. Same as Fig. 6 but for maleate.

showing high concentrations predominately around Luzon
for all seasons.

5.3 Succinate

Succinate exhibited the following characteristics:

i. influenced primarily by biomass burning (90.3 %), fol-
lowed by crustal sources (9.7 %);

ii. high correlation coefficients (0.67–0.76) with oxalate,
phthalate, and MSA (Table S6);

iii. mass focused in the submicrometer range;

iv. highest mass concentrations in the SWM18 season,
and, similar to phthalate, a significant reduction in the
SWM19 season;

v. concentrations dominated by sources from the south-
west.

The average size distributions for succinate varied in the
number of peaks present (2–4) but on average were bi-
modal with a submicrometer mode usually between 0.32–
0.56 or 0.56–1.0 µm and a smaller supermicrometer mode

between either 1.8–3.2 or 3.2–5.6 µm (Fig. 8). The chief
source of succinate, which is concentrated in the submi-
crometer peak, is biomass burning (Pratt et al., 2011; Vas-
concellos et al., 2010), which is reinforced by the PMF re-
sults (Table 2), its high correlation with the biomass burn-
ing tracer Rb (r = 0.67; Table S6) (Braun et al., 2020),
and CWT maps showing its most pronounced influence
from biomass burning hotspots to the southwest during
the SWM18 season (Fig. S5). There likely was also lo-
cal biomass burning during the NEM season contributing
to succinate concentrations. Hilario et al. (2020a) showed
based on satellite data that local fire activity peaks between
March and May. There was less influence from biomass
burning in the SWM19 season, which is why succinate’s lev-
els were lower (4.7± 7.4 ng m−3) than in the SWM18 sea-
son (22± 43 ng m−3). Similar to phthalate and adipate, there
were more local hotspots of concentration in seasonal CWT
maps, pointing to local anthropogenic sources such as vehic-
ular traffic and the presence of supermicrometer particles like
dust and sea salt that succinate can partition to (e.g., Wang et
al., 2012, 2017).
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Figure 10. Same as Fig. 6 but for oxalate.

5.4 Maleate

The results of Sect. 4 showed that maleate had the following
attributes:

i. influenced most by combustion (69.7 %), followed by
waste processing (30.1 %), and then barely by crustal
sources (0.2 %);

ii. only correlated with adipate of all species shown in Ta-
ble S6;

iii. a unimodal mass size distribution, with negligible con-
tribution in the supermicrometer range;

iv. highest mass concentration in the SWM19 season but
comparable to the SWM18 season;

v. the most localized sources as compared to the other
species examined, as shown by CWT maps (Fig. 11).

The average seasonal size distributions for maleate appeared
to be unimodal, with peaks between 0.32–0.56 and 0.56–
1.0 µm (Fig. 9). The absence of a supermicrometer peak, in
contrast to most other species, suggests that it had less di-
verse sources and was derived from combustion emissions

without being adsorbed onto supermicrometer particles like
the other species investigated. The association of maleate
with the waste processing source factor in Table 2 can be
explained partly by the burning and recycling of electronic
waste (Cruz et al., 2019; Gullett et al., 2007; Iijima et al.,
2007). The Pabroa et al. (2011) study reported that there are
few licensed operators for battery recycling, but there are
numerous unregulated melters frequently melting metal and
discarding the waste.

Seasonal CWT maps for maleate (Fig. S6) consistently
showed hotspots around Luzon, indicative of local emissions.
Maleate concentrations for the SWM18 (19± 15 ng m−3)
and SWM19 (19± 34 ng m−3) were significantly higher
than the other seasons (transitional: 3.8± 4.2 ng m−3; NEM:
1.7± 3.7 ng m−3), and this could likely be due to increased
traffic emissions because of gridlock due to intense rainfall.
It should be noted that the Ateneo de Manila campus has
student break periods in March, April, May, and December
(Hilario et al., 2020a); those months pertain to the NEM sea-
son, which could lead to lower combustion emissions from
vehicles (e.g., maleate and phthalate). Although the SWM
season is associated with enhanced precipitation over Metro
Manila, lower boundary layer height and appreciable RH val-
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Figure 11. Same as Fig. 6 but for MSA.

ues could counteract wet scavenging to some degree by pro-
moting aqueous processing of aerosol (Hilario et al., 2020a).
Furthermore, maleate’s largely submicrometer size distribu-
tion (Fig. 9) may reduce the efficiency of wet scavenging
(Greenfield, 1957).

5.5 Oxalate

Oxalate was shown to have the following traits:

i. influenced somewhat uniformly by combustion
(32.9 %) and crustal (31.2 %) sources, followed by
biomass burning (25.4 %), and waste processing
(10.5 %);

ii. only organic acid to correlate with combustion tracers
(V, Ni);

iii. pronounced presence in both the sub- and supermicrom-
eter size ranges;

iv. highest mass concentrations in the transitional period;

v. contributions from the southwest, east/northeast, and lo-
cal sources.

Oxalate concentrations in this study (37.67–472.82 ng m−3)
were surprisingly low for such a polluted megacity with
strong regional sources. For context, concentrations in a few
other regions are as follows: 270–1350 ng m−3 in Tokyo,
Japan (Kawamura and Ikushima, 2002; Sempére and Kawa-
mura, 1994); 195–669 ng m−3 in Beijing, China (Du et al.,
2014); and 149–735 ng m−3 in Thumba, India (Hegde et al.,
2016).

The average size distributions for oxalate appeared bi-
modal for each individual season with modes between 0.32–
0.56 and 0.56–1.0 µm for the submicrometer range and a
separate mode between 1.8–3.2 µm for the supermicrometer
range (Fig. 10). A unique aspect for oxalate was its consis-
tency in having a bimodal profile each season, with the su-
permicrometer mode always between 1.8–3.2 µm. Note that
the modes discussed here represent the most pronounced
ones, but others could have been present too, reflecting other
sources. Submicrometer oxalate likely originated from sec-
ondary production from both biogenic and anthropogenic
precursor emissions and potentially from primary emis-
sions (i.e., combustion/biomass burning) (i.e., Decesari et al.,
2006; Falkovich et al., 2005; Golly et al., 2019; Kundu et al.,
2010; Wang et al., 2010). Of all the six species studied, ox-
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Figure 12. CWT maps of (a–e) individual organic acids and (f) MSA over the entire sampling period. These results are based on all MOUDI
sizes (0.056–18 µm). Maps showing the seasonal results for each organic acid and MSA are shown in the Supplement (Figs. S3–S8).

alate was best correlated with SO2−
4 (r = 0.69; Table S6),

especially in the submicrometer range (r = 0.72; Table 3),
which is consistent with their common production mecha-
nism via aqueous processing (Sorooshian et al., 2006; Yu et
al., 2005). Additionally, high concentrations of oxalate in the
transitional period suggest that photo-oxidation was an im-
portant process for oxalate formation since the transitional
period had low rain and high solar radiation. The prominent
supermicrometer presence was likely due to adsorption onto

supermicrometer particles. Past work by Sullivan and Prather
(2007) reported the following with regard to oxalate’s behav-
ior in coarse particles of relevance to this study: (i) oxalic
acid was predominately associated with mineral dust and to
a lesser degree with aged sea salt; (ii) even though most of the
total mass was sea salt, there was more oxalate per mass of
mineral dust than sea salt; (iii) Asian dust particles are more
alkaline as opposed to sea salt and therefore act as better
sinks for dicarboxylic acids than sea salt; and (iv) it is feasi-
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ble that a large fraction of supermicrometer dicarboxylic acid
mass in remote marine air is associated with mineral dust and
not sea salt. The PMF results from the present study suggest
that oxalate was much more influenced by crustal sources
(31.2 %) versus sea salt (0 %), similar to phthalate, adipate,
and succinate (Table 2). Reinforcing the relationship between
oxalate and dust is the significant correlation between oxalate
and both Al (r = 0.59) and Ti (0.29) in the supermicrometer
range.

CWT results for oxalate (Fig. S7) showed high con-
centrations around Luzon for all seasons, with the caveat
that the SWM18 exhibited high concentrations coming
from the southwest, which has already been linked to
biomass burning emissions. The difference in oxalate lev-
els between the SWM18 (178± 139 ng m−3) and SWM19
(110± 62 ng m−3) seasons is largely due to the enhanced
contribution of biomass burning in the former season since
oxalate is abundant in fire emissions (Falkovich et al., 2005;
Mardi et al., 2018; Narukawa et al., 1999).

5.6 MSA

Previous sections revealed the following characteristics for
MSA:

i. influenced most by combustion (57.4 %), followed by
biomass burning (41.2 %), waste processing (1.4 %),
and then crustal sources (0.1 %);

ii. significantly correlated with succinate, oxalate, phtha-
late, and SO2−

4 ;

iii. similar to maleate, primarily consisted of a submicrom-
eter mass size distribution peak with only minor contri-
butions from the supermicrometer mode;

iv. concentration highest during the SWM18 season;

v. concentrations dominated by sources from the south-
west.

Concentrations of MSA in this study were surprisingly low
for a site so close to marine and anthropogenic sources (0.10–
23.23 ng m−3). For context, MSA concentrations in nearby
regions are as follows: 30–60 ng m−3 in Nanjing, China
(Yang et al., 2005), and 29–66 ng m−3 over the China Sea
(Gao et al., 1996).

The average size distributions for MSA appeared uni-
modal, with the peak size being between 0.32–0.56 µm
(Fig. 11). The consistent mass size distribution for MSA in
all seasons, similar to maleate, could be due to some combi-
nation of limited sources and production pathways. Surpris-
ingly, MSA showed no association with the sea salt source
factor (Table 2), even though it would be expected given that
DMS is co-emitted from the ocean with sea salt. Due to the
proximity of the sampling site to the ocean, it is possible

that the local sea salt was relatively fresh with short trans-
port time, which could potentially explain the lack of an as-
sociation with MSA as it requires time to be produced from
its marine precursor DMS. Instead, combustion and biomass
burning sources were more significantly related to MSA,
which is consistent with some past studies linking MSA
to anthropogenic sources (Yuan et al., 2004) and biomass
burning (Sorooshian et al., 2015). Consequently, concentra-
tions of MSA from these other non-marine sources could be
much higher, causing the PMF model to associate MSA with
non-sea-salt-related sources. CWT results for MSA (Fig. S8)
showed high concentrations coming from the southwest dur-
ing the SWM18 and SWM19 seasons and from the east–
northeast during the NEM and transitional period.

Both MSA and oxalate had significantly lower concentra-
tions than other regions, and there are a few possible ex-
planations for this. First, it is worth noting that degradation
of these species is unlikely due to storage or sonication as
careful procedures were followed, as noted in Sect. 2.2. The
Philippines has relatively high temperatures, humidity, and
solar radiation year round, providing optimal conditions for
processing and degradation to occur, yielding low concen-
trations of MSA and oxalate. Furthermore, there are mech-
anisms by which species such as oxalate can be degraded
via complexation effects with metal cations (Paris and Des-
boeufs, 2013; Siffert and Sulzberger, 1991; Sorooshian et al.,
2013; Zuo, 1995), which are abundant in the study region.

6 Conclusions

This work used a 16-month long dataset of size-resolved
aerosol composition to investigate the nature of five organic
acids (oxalate, succinate, adipate, maleate, and phthalate)
and MSA in the polluted Metro Manila region in the Philip-
pines. Selected results are as follows in order of the three
major questions posed at the end of Sect. 1.

– Organic acids and MSA contribute only a small fraction
to the total gravimetric aerosol mass in Metro Manila
(0.80± 0.66 %). The combined contribution of these
six species was similar between the sub- and supermi-
crometer range (0.78 % and 0.84 %, respectively). Af-
ter accounting for water-soluble ions and elements, and
black carbon, there still was an unresolved mass fraction
amounting to 33.74 % across all sizes and 17.78 % and
69.10 % for sub- and supermicrometer sizes, respec-
tively. Therefore, future work is still warranted to iden-
tify what the missing fraction is comprised of, which is
speculated to be water-insoluble organics and elements.

– Oxalate was the most abundant of the six species, ac-
counting for 69.1 %–87.3 % of the total combined mass
of the six species depending on the season. However,
the bulk concentrations of oxalate were unusually low
(149± 94 ng m−3) for such a polluted area in contrast to
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other populated regions. Concentrations of the other five
species were much lower than oxalate, with mean levels
for the entire study period being less than 10 ng m−3.
In particular, MSA exhibited the lowest mean concen-
tration (5.4± 5.2 ng m−3). It is unclear exactly as to
the reason for the low concentrations of the examined
species in light of the diverse marine and anthropogenic
sources in the region. The role of wet scavenging, espe-
cially in the SWM seasons, will be the subject of future
research.

– The six species exhibited different behavior seasonally,
both in terms of relative concentration and mass size
distribution. The SWM18 season was uniquely differ-
ent than the SWM19 season, owing to more biomass
burning emissions transported from the southwest that
yielded enhanced levels for most species in the submi-
crometer range, especially succinate, MSA, oxalate, and
phthalate. Enhanced precipitation in the SWM seasons
also was coincident with more influence from localized
emissions, leading to enhanced levels in the sub- and
supermicrometer ranges depending on the species. The
NEM season was characterized by generally lower con-
centrations of most species as air was predominantly
transported from the northeast, with reduced influence
of anthropogenic and biomass burning emissions. Ph-
thalate was enhanced in the supermicrometer range dur-
ing the NEM season due to presumed adsorption to
Asian dust and to a lesser extent sea salt. The tran-
sitional season was characterized as having a strong
influence from localized emissions for all six species,
which promoted especially high concentrations of ph-
thalate and oxalate in both the sub- and supermicrome-
ter ranges.

– All species exhibited a prominent submicrometer peak
that likely stemmed largely from secondary formation
from both anthropogenic and biogenic precursor emis-
sions and was especially prominent during the SWM18
season due to extensive biomass burning influence.
Biomass burning was an especially important source
for succinate, phthalate, MSA, oxalate, and adipate. All
six species exhibited relatively low association with sea
salt particles; this was particularly interesting for MSA,
which was instead better related to combustion and
biomass burning emissions. In contrast to sea salt, most
species were linked to crustal emissions, as evident from
peaks in the coarse mode during periods of dust influ-
ence. Oxalate, adipate, phthalate, and succinate in par-
ticular preferentially partitioned to dust rather than sea
salt, potentially due to their affinity for alkaline parti-
cle types. Oxalate was best correlated with sulfate, es-
pecially in the submicrometer mode, explained by their
common production via aqueous processing, which is
common in the study region, owing to high humidity
levels year round.

The results of this study point to the importance of size-
resolved measurements of organic and sulfonic acids as this
extensive dataset revealed important changes in mass size
distributions between species and for different seasons. The
data point to the partitioning of these species to coarse
aerosol types and the potentially significant impact of pre-
cipitation on either the removal or enhancement of species’
mass size distribution modes; these topics warrant additional
research to establish more clearly the sensitivity of these
species to source regions, transport pathways, and wet scav-
enging effects. More research is warranted to investigate the
remaining fraction of the unresolved mass (approximately
one-third of the gravimetric mass) that is not accounted for
by black carbon and the water-soluble constituents speciated
in this work. This is especially important for the supermi-
crometer range. Lastly, the current results point to the ques-
tion as to what drives the affinity of individual species to-
wards the coarse mode for different aerosol types (e.g., dust,
sea salt) and how common this is for other regions.
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