Articles | Volume 20, issue 21
https://doi.org/10.5194/acp-20-13267-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-13267-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The response of stratospheric water vapor to climate change driven by different forcing agents
Department of Atmospheric Sciences, Texas A&M University, College
Station, TX, USA
Department of Atmospheric Sciences, Texas A&M University, College
Station, TX, USA
Related authors
Xun Wang, Andrew E. Dessler, Mark R. Schoeberl, Wandi Yu, and Tao Wang
Atmos. Chem. Phys., 19, 14621–14636, https://doi.org/10.5194/acp-19-14621-2019, https://doi.org/10.5194/acp-19-14621-2019, 2019
Short summary
Short summary
We use a trajectory model to diagnose mechanisms that produce the observed and modeled tropical lower stratospheric water vapor seasonal cycle. We confirm that the seasonal cycle of water vapor is primarily determined by the seasonal cycle of tropical tropopause layer (TTL) temperatures. However, between 10° N and 40° N, we find that evaporation of convective ice in the TTL plays a key role contributing to the water vapor seasonal cycle there. The Asian monsoon region is the most important region.
Jangho Lee, Jeffrey C. Mast, and Andrew E. Dessler
Atmos. Chem. Phys., 21, 11889–11904, https://doi.org/10.5194/acp-21-11889-2021, https://doi.org/10.5194/acp-21-11889-2021, 2021
Short summary
Short summary
This paper investigates the impact of global warming on heat and humidity extremes. There are three major findings in this study. We quantify how unforced variability in the climate impacts can lead to large variations where heat waves occur, we find that all heat extremes increase as the climate warms, especially between 1.5 and 2.0 °C of the average global warming, and we show that the economic inequity of facing extreme heat will worsen in a warmer world.
Wandi Yu, Andrew E. Dessler, Mijeong Park, and Eric J. Jensen
Atmos. Chem. Phys., 20, 12153–12161, https://doi.org/10.5194/acp-20-12153-2020, https://doi.org/10.5194/acp-20-12153-2020, 2020
Short summary
Short summary
The stratospheric water vapor mixing ratio over North America (NA) region is up to ~ 1 ppmv higher when deep convection occurs. We find substantial consistency in the interannual variations of NA water vapor anomaly and deep convection and explain both the summer seasonal cycle and interannual variability of the convective moistening efficiency. We show that the NA anticyclone and tropical upper tropospheric temperature determine how much deep convection moistens the lower stratosphere.
Xun Wang, Andrew E. Dessler, Mark R. Schoeberl, Wandi Yu, and Tao Wang
Atmos. Chem. Phys., 19, 14621–14636, https://doi.org/10.5194/acp-19-14621-2019, https://doi.org/10.5194/acp-19-14621-2019, 2019
Short summary
Short summary
We use a trajectory model to diagnose mechanisms that produce the observed and modeled tropical lower stratospheric water vapor seasonal cycle. We confirm that the seasonal cycle of water vapor is primarily determined by the seasonal cycle of tropical tropopause layer (TTL) temperatures. However, between 10° N and 40° N, we find that evaporation of convective ice in the TTL plays a key role contributing to the water vapor seasonal cycle there. The Asian monsoon region is the most important region.
Andrew E. Dessler, Thorsten Mauritsen, and Bjorn Stevens
Atmos. Chem. Phys., 18, 5147–5155, https://doi.org/10.5194/acp-18-5147-2018, https://doi.org/10.5194/acp-18-5147-2018, 2018
Short summary
Short summary
One of the most important parameters in climate science is the equilibrium climate sensitivity (ECS). Estimates of this quantity based on 20th-century observations suggest low values of ECS (below 2 °C). We show that these calculations may be significantly in error. Together with other recent work on this problem, it seems probable that the ECS is larger than suggested by the 20th-century observations.
Hao Ye, Andrew E. Dessler, and Wandi Yu
Atmos. Chem. Phys., 18, 4425–4437, https://doi.org/10.5194/acp-18-4425-2018, https://doi.org/10.5194/acp-18-4425-2018, 2018
Short summary
Short summary
The deep convection in tropics can inject cloud ice into tropical tropopause layer (TTL), which moistens and increases water vapor there. We primarily study the spatial distribution of impacts from several physical processes on TTL water vapor from observations and trajectory model simulations. The analysis shows the potential moistening impact from evaporation of cloud ice on TTL water vapor. A chemistry–climate model is used to confirm the impact from evaporation of convective ice.
Kevin M. Smalley, Andrew E. Dessler, Slimane Bekki, Makoto Deushi, Marion Marchand, Olaf Morgenstern, David A. Plummer, Kiyotaka Shibata, Yousuke Yamashita, and Guang Zeng
Atmos. Chem. Phys., 17, 8031–8044, https://doi.org/10.5194/acp-17-8031-2017, https://doi.org/10.5194/acp-17-8031-2017, 2017
Short summary
Short summary
This paper explains a new way to evaluate simulated lower-stratospheric water vapor. We use a multivariate linear regression to predict 21st century lower stratospheric water vapor within 12 chemistry climate models using tropospheric warming, the Brewer–Dobson circulation, and the quasi-biennial oscillation as predictors. This methodology produce strong fits to simulated water vapor, and potentially represents a superior method to evaluate model trends in lower-stratospheric water vapor.
T. Wang, A. E. Dessler, M. R. Schoeberl, W. J. Randel, and J.-E. Kim
Atmos. Chem. Phys., 15, 3517–3526, https://doi.org/10.5194/acp-15-3517-2015, https://doi.org/10.5194/acp-15-3517-2015, 2015
Short summary
Short summary
We investigated the impacts of vertical temperature structures on trajectory simulations of stratospheric dehydration and water vapor by using 1) MERRA temperatures on model levels; 2) GPS temperatures at finer vertical resolutions; and 3) adjusted MERRA temperatures with finer vertical structures induced by waves. We show that despite the fact that temperatures at finer vertical structures tend to dry air by 0.1-0.3ppmv, the interannual variability in different runs is essentially the same.
T. Wang, W. J. Randel, A. E. Dessler, M. R. Schoeberl, and D. E. Kinnison
Atmos. Chem. Phys., 14, 7135–7147, https://doi.org/10.5194/acp-14-7135-2014, https://doi.org/10.5194/acp-14-7135-2014, 2014
M. R. Schoeberl, A. E. Dessler, and T. Wang
Atmos. Chem. Phys., 13, 7783–7793, https://doi.org/10.5194/acp-13-7783-2013, https://doi.org/10.5194/acp-13-7783-2013, 2013
Related subject area
Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
Analytical approximation of the definite Chapman integral for arbitrary zenith angles
Moist bias in the Pacific upper troposphere and lower stratosphere (UTLS) in climate models affects regional circulation patterns
Evaluation of vertical transport in ERA5 and ERA-Interim reanalysis using high-altitude aircraft measurements in the Asian summer monsoon 2017
Injection strategy – a driver of atmospheric circulation and ozone response to stratospheric aerosol geoengineering
Quantifying stratospheric ozone trends over 1984–2020: a comparison of ordinary and regularized multivariate regression models
Surface ozone over the Tibetan Plateau controlled by stratospheric intrusion
The role of tropical upwelling in explaining discrepancies between recent modeled and observed lower-stratospheric ozone trends
The roles of the Quasi-Biennial Oscillation and El Niño for entry stratospheric water vapor in observations and coupled chemistry–ocean CCMI and CMIP6 models
Improved estimation of volcanic SO2 injections from satellite retrievals and Lagrangian transport simulations: the 2019 Raikoke eruption
Hemispheric asymmetries in recent changes in the stratospheric circulation
A stratospheric prognostic ozone for seamless Earth system models: performance, impacts and future
The 2019 Raikoke volcanic eruption – Part 1: Dispersion model simulations and satellite retrievals of volcanic sulfur dioxide
The stratospheric Brewer–Dobson circulation inferred from age of air in the ERA5 reanalysis
Simulations of anthropogenic bromoform indicate high emissions at the coast of East Asia
Sensitivity of stratospheric water vapour to variability in tropical tropopause temperatures and large-scale transport
Technical note: Lowermost-stratosphere moist bias in ECMWF IFS model diagnosed from airborne GLORIA observations during winter–spring 2016
Influence of convection on stratospheric water vapor in the North American monsoon region
Electricity savings and greenhouse gas emission reductions from global phase-down of hydrofluorocarbons
Impact of convectively lofted ice on the seasonal cycle of water vapor in the tropical tropopause layer
Simulating the atmospheric response to the 11-year solar cycle forcing with the UM-UKCA model: the role of detection method and natural variability
Transport of trace gases via eddy shedding from the Asian summer monsoon anticyclone and associated impacts on ozone heating rates
Detectability of the impacts of ozone-depleting substances and greenhouse gases upon stratospheric ozone accounting for nonlinearities in historical forcings
Multi-decadal records of stratospheric composition and their relationship to stratospheric circulation change
Brominated VSLS and their influence on ozone under a changing climate
Contribution of different processes to changes in tropical lower-stratospheric water vapor in chemistry–climate models
Quantifying pollution transport from the Asian monsoon anticyclone into the lower stratosphere
A new time-independent formulation of fractional release
The millennium water vapour drop in chemistry–climate model simulations
Impact of major volcanic eruptions on stratospheric water vapour
Variability of water vapour in the Arctic stratosphere
On the hiatus in the acceleration of tropical upwelling since the beginning of the 21st century
Trends in peroxyacetyl nitrate (PAN) in the upper troposphere and lower stratosphere over southern Asia during the summer monsoon season: regional impacts
Spatial regression analysis on 32 years of total column ozone data
Ozone seasonality above the tropical tropopause: reconciling the Eulerian and Lagrangian perspectives of transport processes
Modeling upper tropospheric and lower stratospheric water vapor anomalies
Evolution of Antarctic ozone in September–December predicted by CCMVal-2 model simulations for the 21st century
Assessment of the interannual variability and influence of the QBO and upwelling on tracer–tracer distributions of N2O and O3 in the tropical lower stratosphere
OCS photolytic isotope effects from first principles: sulfur and carbon isotopes, temperature dependence and implications for the stratosphere
On the relationship between total ozone and atmospheric dynamics and chemistry at mid-latitudes – Part 2: The effects of the El Niño/Southern Oscillation, volcanic eruptions and contributions of atmospheric dynamics and chemistry to long-term total ozone changes
Relationships between Brewer-Dobson circulation, double tropopauses, ozone and stratospheric water vapour
Simulation of stratospheric water vapor and trends using three reanalyses
Climatological perspectives of air transport from atmospheric boundary layer to tropopause layer over Asian monsoon regions during boreal summer inferred from Lagrangian approach
Solar response in tropical stratospheric ozone: a 3-D chemical transport model study using ERA reanalyses
Geomagnetic activity related NOx enhancements and polar surface air temperature variability in a chemistry climate model: modulation of the NAM index
Forecasts and assimilation experiments of the Antarctic ozone hole 2008
Extreme events in total ozone over Arosa – Part 2: Fingerprints of atmospheric dynamics and chemistry and effects on mean values and long-term changes
Technical Note: Trend estimation from irregularly sampled, correlated data
Modeling the transport of very short-lived substances into the tropical upper troposphere and lower stratosphere
Dongxiao Yue
Atmos. Chem. Phys., 24, 5093–5097, https://doi.org/10.5194/acp-24-5093-2024, https://doi.org/10.5194/acp-24-5093-2024, 2024
Short summary
Short summary
The stunning colors of the sky and clouds result from light scattering in the atmosphere, whose density changes with height. Previously, calculating these colors involves costly, sometimes inaccurate methods. This paper presents a silver bullet: a single elegant formula that simplifies these complex calculations. What is the result? We have faster, more precise predictions of atmospheric colors, from Earth's blue skies and red sunsets to Venus's golden hues.
Felix Ploeger, Thomas Birner, Edward Charlesworth, Paul Konopka, and Rolf Müller
Atmos. Chem. Phys., 24, 2033–2043, https://doi.org/10.5194/acp-24-2033-2024, https://doi.org/10.5194/acp-24-2033-2024, 2024
Short summary
Short summary
We present a novel mechanism of how regional anomalies in water vapour concentrations in the upper troposphere and lower stratosphere impact regional atmospheric circulation systems. These impacts include a displaced upper-level Asian monsoon circulation and strengthened prevailing westerlies in the Pacific region. Current climate models have biases in simulating these regional water vapour anomalies and circulation impacts, but the biases can be avoided by improving the model transport.
Bärbel Vogel, C. Michael Volk, Johannes Wintel, Valentin Lauther, Jan Clemens, Jens-Uwe Grooß, Gebhard Günther, Lars Hoffmann, Johannes C. Laube, Rolf Müller, Felix Ploeger, and Fred Stroh
Atmos. Chem. Phys., 24, 317–343, https://doi.org/10.5194/acp-24-317-2024, https://doi.org/10.5194/acp-24-317-2024, 2024
Short summary
Short summary
Over the Indian subcontinent, polluted air is rapidly uplifted to higher altitudes during the Asian monsoon season. We present an assessment of vertical transport in this region using different wind data provided by the European Centre for Medium-Range Weather Forecasts (ECMWF), as well as high-resolution aircraft measurements. In general, our findings confirm that the newest ECMWF reanalysis product, ERA5, yields a better representation of transport compared to the predecessor, ERA-Interim.
Ewa M. Bednarz, Amy H. Butler, Daniele Visioni, Yan Zhang, Ben Kravitz, and Douglas G. MacMartin
Atmos. Chem. Phys., 23, 13665–13684, https://doi.org/10.5194/acp-23-13665-2023, https://doi.org/10.5194/acp-23-13665-2023, 2023
Short summary
Short summary
We use a state-of-the-art Earth system model and a set of stratospheric aerosol injection (SAI) strategies to achieve the same level of global mean surface cooling through different combinations of location and/or timing of the injection. We demonstrate that the choice of SAI strategy can lead to contrasting impacts on stratospheric and tropospheric temperatures, circulation, and chemistry (including stratospheric ozone), thereby leading to different impacts on regional surface climate.
Yajuan Li, Sandip S. Dhomse, Martyn P. Chipperfield, Wuhu Feng, Jianchun Bian, Yuan Xia, and Dong Guo
Atmos. Chem. Phys., 23, 13029–13047, https://doi.org/10.5194/acp-23-13029-2023, https://doi.org/10.5194/acp-23-13029-2023, 2023
Short summary
Short summary
For the first time a regularized multivariate regression model is used to estimate stratospheric ozone trends. Regularized regression avoids the over-fitting issue due to correlation among explanatory variables. We demonstrate that there are considerable differences in satellite-based and chemical-model-based ozone trends, highlighting large uncertainties in our understanding about ozone variability. We argue that caution is needed when interpreting results with different methods and datasets.
Xiufeng Yin, Dipesh Rupakheti, Guoshuai Zhang, Jiali Luo, Shichang Kang, Benjamin de Foy, Junhua Yang, Zhenming Ji, Zhiyuan Cong, Maheswar Rupakheti, Ping Li, Yuling Hu, and Qianggong Zhang
Atmos. Chem. Phys., 23, 10137–10143, https://doi.org/10.5194/acp-23-10137-2023, https://doi.org/10.5194/acp-23-10137-2023, 2023
Short summary
Short summary
The monthly mean surface ozone concentrations peaked earlier in the south in April and May and later in the north in June and July over the Tibetan Plateau. The migration of monthly surface ozone peaks was coupled with the synchronous movement of tropopause folds and the westerly jet that created conditions conducive to stratospheric ozone intrusion. Stratospheric ozone intrusion significantly contributed to surface ozone across the Tibetan Plateau.
Sean M. Davis, Nicholas Davis, Robert W. Portmann, Eric Ray, and Karen Rosenlof
Atmos. Chem. Phys., 23, 3347–3361, https://doi.org/10.5194/acp-23-3347-2023, https://doi.org/10.5194/acp-23-3347-2023, 2023
Short summary
Short summary
Ozone in the lower part of the stratosphere has not increased and has perhaps even continued to decline in recent decades. This study demonstrates that the amount of ozone in this region is highly sensitive to the amount of air upwelling into the stratosphere in the tropics and that simulations from a climate model nudged to historical meteorological fields often fail to accurately capture the variations in tropical upwelling that control short-term trends in lower-stratospheric ozone.
Shlomi Ziskin Ziv, Chaim I. Garfinkel, Sean Davis, and Antara Banerjee
Atmos. Chem. Phys., 22, 7523–7538, https://doi.org/10.5194/acp-22-7523-2022, https://doi.org/10.5194/acp-22-7523-2022, 2022
Short summary
Short summary
Stratospheric water vapor is important for Earth's overall greenhouse effect and for ozone chemistry; however the factors governing its variability on interannual timescales are not fully known, and previous modeling studies have indicated that models struggle to capture this interannual variability. We demonstrate that nonlinear interactions are important for determining overall water vapor concentrations and also that models have improved in their ability to capture these connections.
Zhongyin Cai, Sabine Griessbach, and Lars Hoffmann
Atmos. Chem. Phys., 22, 6787–6809, https://doi.org/10.5194/acp-22-6787-2022, https://doi.org/10.5194/acp-22-6787-2022, 2022
Short summary
Short summary
Using AIRS and TROPOMI sulfur dioxide retrievals and the Lagrangian transport model MPTRAC, we present an improved reconstruction of injection parameters of the 2019 Raikoke eruption. Reconstructions agree well between using AIRS nighttime and TROPOMI daytime retrievals, showing the potential of our approach to create a long-term volcanic sulfur dioxide inventory from nearly 20 years of AIRS retrievals.
Felix Ploeger and Hella Garny
Atmos. Chem. Phys., 22, 5559–5576, https://doi.org/10.5194/acp-22-5559-2022, https://doi.org/10.5194/acp-22-5559-2022, 2022
Short summary
Short summary
We investigate hemispheric asymmetries in stratospheric circulation changes in the last 2 decades in model simulations and atmospheric observations. We find that observed trace gas changes can be explained by a structural circulation change related to a deepening circulation in the Northern Hemisphere relative to the Southern Hemisphere. As this asymmetric signal is small compared to internal variability observed circulation trends over the recent past are not in contradiction to climate models.
Beatriz M. Monge-Sanz, Alessio Bozzo, Nicholas Byrne, Martyn P. Chipperfield, Michail Diamantakis, Johannes Flemming, Lesley J. Gray, Robin J. Hogan, Luke Jones, Linus Magnusson, Inna Polichtchouk, Theodore G. Shepherd, Nils Wedi, and Antje Weisheimer
Atmos. Chem. Phys., 22, 4277–4302, https://doi.org/10.5194/acp-22-4277-2022, https://doi.org/10.5194/acp-22-4277-2022, 2022
Short summary
Short summary
The stratosphere is emerging as one of the keys to improve tropospheric weather and climate predictions. This study provides evidence of the role the stratospheric ozone layer plays in improving weather predictions at different timescales. Using a new ozone modelling approach suitable for high-resolution global models that provide operational forecasts from days to seasons, we find significant improvements in stratospheric meteorological fields and stratosphere–troposphere coupling.
Johannes de Leeuw, Anja Schmidt, Claire S. Witham, Nicolas Theys, Isabelle A. Taylor, Roy G. Grainger, Richard J. Pope, Jim Haywood, Martin Osborne, and Nina I. Kristiansen
Atmos. Chem. Phys., 21, 10851–10879, https://doi.org/10.5194/acp-21-10851-2021, https://doi.org/10.5194/acp-21-10851-2021, 2021
Short summary
Short summary
Using the NAME dispersion model in combination with high-resolution SO2 satellite data from TROPOMI, we investigate the dispersion of volcanic SO2 from the 2019 Raikoke eruption. NAME accurately simulates the dispersion of SO2 during the first 2–3 weeks after the eruption and illustrates the potential of using high-resolution satellite data to identify potential limitations in dispersion models, which will ultimately help to improve efforts to forecast the dispersion of volcanic clouds.
Felix Ploeger, Mohamadou Diallo, Edward Charlesworth, Paul Konopka, Bernard Legras, Johannes C. Laube, Jens-Uwe Grooß, Gebhard Günther, Andreas Engel, and Martin Riese
Atmos. Chem. Phys., 21, 8393–8412, https://doi.org/10.5194/acp-21-8393-2021, https://doi.org/10.5194/acp-21-8393-2021, 2021
Short summary
Short summary
We investigate the global stratospheric circulation (Brewer–Dobson circulation) in the new ECMWF ERA5 reanalysis based on age of air simulations, and we compare it to results from the preceding ERA-Interim reanalysis. Our results show a slower stratospheric circulation and higher age for ERA5. The age of air trend in ERA5 over the 1989–2018 period is negative throughout the stratosphere, related to multi-annual variability and a potential contribution from changes in the reanalysis system.
Josefine Maas, Susann Tegtmeier, Yue Jia, Birgit Quack, Jonathan V. Durgadoo, and Arne Biastoch
Atmos. Chem. Phys., 21, 4103–4121, https://doi.org/10.5194/acp-21-4103-2021, https://doi.org/10.5194/acp-21-4103-2021, 2021
Short summary
Short summary
Cooling-water disinfection at coastal power plants is a known source of atmospheric bromoform. A large source of anthropogenic bromoform is the industrial regions in East Asia. In current bottom-up flux estimates, these anthropogenic emissions are missing, underestimating the global air–sea flux of bromoform. With transport simulations, we show that by including anthropogenic bromoform from cooling-water treatment, the bottom-up flux estimates significantly improve in East and Southeast Asia.
Jacob W. Smith, Peter H. Haynes, Amanda C. Maycock, Neal Butchart, and Andrew C. Bushell
Atmos. Chem. Phys., 21, 2469–2489, https://doi.org/10.5194/acp-21-2469-2021, https://doi.org/10.5194/acp-21-2469-2021, 2021
Short summary
Short summary
This paper informs realistic simulation of stratospheric water vapour by clearly attributing each of the two key influences on water vapour entry to the stratosphere. Presenting modified trajectory models, the results of this paper show temperatures dominate on annual and inter-annual variations; however, transport has a significant effect in reducing the annual cycle maximum. Furthermore, sub-seasonal variations in temperature have an important overall influence.
Wolfgang Woiwode, Andreas Dörnbrack, Inna Polichtchouk, Sören Johansson, Ben Harvey, Michael Höpfner, Jörn Ungermann, and Felix Friedl-Vallon
Atmos. Chem. Phys., 20, 15379–15387, https://doi.org/10.5194/acp-20-15379-2020, https://doi.org/10.5194/acp-20-15379-2020, 2020
Short summary
Short summary
The lowermost-stratosphere moist bias in ECMWF analyses and 12 h forecasts is diagnosed for the Arctic winter-spring 2016 period by using two-dimensional GLORIA water vapor observations. The bias is already present in the initial conditions (i.e., the analyses), and sensitivity forecasts on time scales of < 12 h show hardly any sensitivity to modified spatial resolution and output frequency.
Wandi Yu, Andrew E. Dessler, Mijeong Park, and Eric J. Jensen
Atmos. Chem. Phys., 20, 12153–12161, https://doi.org/10.5194/acp-20-12153-2020, https://doi.org/10.5194/acp-20-12153-2020, 2020
Short summary
Short summary
The stratospheric water vapor mixing ratio over North America (NA) region is up to ~ 1 ppmv higher when deep convection occurs. We find substantial consistency in the interannual variations of NA water vapor anomaly and deep convection and explain both the summer seasonal cycle and interannual variability of the convective moistening efficiency. We show that the NA anticyclone and tropical upper tropospheric temperature determine how much deep convection moistens the lower stratosphere.
Pallav Purohit, Lena Höglund-Isaksson, John Dulac, Nihar Shah, Max Wei, Peter Rafaj, and Wolfgang Schöpp
Atmos. Chem. Phys., 20, 11305–11327, https://doi.org/10.5194/acp-20-11305-2020, https://doi.org/10.5194/acp-20-11305-2020, 2020
Short summary
Short summary
This study shows that if energy efficiency improvements in cooling technologies are addressed simultaneously with a phase-down of hydrofluorocarbons (HFCs), not only will global warming be mitigated through the elimination of HFCs but also by saving about a fifth of future global electricity consumption. This means preventing between 411 and 631 Pg CO2 equivalent of greenhouse gases between today and 2100, thereby offering a significant contribution towards staying well below 2 °C warming.
Xun Wang, Andrew E. Dessler, Mark R. Schoeberl, Wandi Yu, and Tao Wang
Atmos. Chem. Phys., 19, 14621–14636, https://doi.org/10.5194/acp-19-14621-2019, https://doi.org/10.5194/acp-19-14621-2019, 2019
Short summary
Short summary
We use a trajectory model to diagnose mechanisms that produce the observed and modeled tropical lower stratospheric water vapor seasonal cycle. We confirm that the seasonal cycle of water vapor is primarily determined by the seasonal cycle of tropical tropopause layer (TTL) temperatures. However, between 10° N and 40° N, we find that evaporation of convective ice in the TTL plays a key role contributing to the water vapor seasonal cycle there. The Asian monsoon region is the most important region.
Ewa M. Bednarz, Amanda C. Maycock, Paul J. Telford, Peter Braesicke, N. Luke Abraham, and John A. Pyle
Atmos. Chem. Phys., 19, 5209–5233, https://doi.org/10.5194/acp-19-5209-2019, https://doi.org/10.5194/acp-19-5209-2019, 2019
Short summary
Short summary
Following model improvements, the atmospheric response to the 11-year solar cycle forcing simulated in the UM-UKCA chemistry–climate model is discussed for the first time. In contrast to most previous studies in the literature, we compare the results diagnosed using both a composite and a MLR methodology, and we show that apparently different signals can be diagnosed in the troposphere. In addition, we look at the role of internal atmospheric variability for the detection of the solar response.
Suvarna Fadnavis, Chaitri Roy, Rajib Chattopadhyay, Christopher E. Sioris, Alexandru Rap, Rolf Müller, K. Ravi Kumar, and Raghavan Krishnan
Atmos. Chem. Phys., 18, 11493–11506, https://doi.org/10.5194/acp-18-11493-2018, https://doi.org/10.5194/acp-18-11493-2018, 2018
Short summary
Short summary
Rapid industrialization, traffic growth and urbanization resulted in a significant increase in the tropospheric trace gases over Asia. There is global concern about rising levels of these trace gases. The monsoon convection transports these gases to the upper-level-anticyclone. In this study, we show transport of these gases to the extratropics via eddy-shedding from the anticyclone. We also deliberate on changes in ozone heating rates due to the transport of Asian trace gases.
Justin Bandoro, Susan Solomon, Benjamin D. Santer, Douglas E. Kinnison, and Michael J. Mills
Atmos. Chem. Phys., 18, 143–166, https://doi.org/10.5194/acp-18-143-2018, https://doi.org/10.5194/acp-18-143-2018, 2018
Short summary
Short summary
We studied the attribution of stratospheric ozone changes and identified similarities between observations and human fingerprints from both emissions of ozone-depleting substances (ODSs) and greenhouse gases (GHGs). We developed an improvement on the traditional pattern correlation method that accounts for nonlinearities in the climate forcing time evolution. Use of the latter resulted in increased S / N ratios for the ODS fingerprint. The GHG fingerprint was not identifiable.
Anne R. Douglass, Susan E. Strahan, Luke D. Oman, and Richard S. Stolarski
Atmos. Chem. Phys., 17, 12081–12096, https://doi.org/10.5194/acp-17-12081-2017, https://doi.org/10.5194/acp-17-12081-2017, 2017
Short summary
Short summary
Data records from instruments on satellites and on the ground are compared with a simulation for 1980–2016 that is made using winds and temperatures that are derived from measurements. The simulation tracks the observations faithfully after about 2000, but there are systematic errors for earlier years. Scientists must take this into account when trying to detect and quantify changes in the stratospheric circulation that are caused by climate change.
Stefanie Falk, Björn-Martin Sinnhuber, Gisèle Krysztofiak, Patrick Jöckel, Phoebe Graf, and Sinikka T. Lennartz
Atmos. Chem. Phys., 17, 11313–11329, https://doi.org/10.5194/acp-17-11313-2017, https://doi.org/10.5194/acp-17-11313-2017, 2017
Short summary
Short summary
Brominated very short-lived source gases (VSLS) contribute significantly to the tropospheric and stratospheric bromine loading. We find an increase of future ocean–atmosphere flux of brominated VSLS of 8–10 % compared to present day. A decrease in the tropospheric mixing ratios of VSLS and an increase in the lower stratosphere are attributed to changes in atmospheric chemistry and transport. Bromine impact on stratospheric ozone at the end of the 21st century is reduced compared to present day.
Kevin M. Smalley, Andrew E. Dessler, Slimane Bekki, Makoto Deushi, Marion Marchand, Olaf Morgenstern, David A. Plummer, Kiyotaka Shibata, Yousuke Yamashita, and Guang Zeng
Atmos. Chem. Phys., 17, 8031–8044, https://doi.org/10.5194/acp-17-8031-2017, https://doi.org/10.5194/acp-17-8031-2017, 2017
Short summary
Short summary
This paper explains a new way to evaluate simulated lower-stratospheric water vapor. We use a multivariate linear regression to predict 21st century lower stratospheric water vapor within 12 chemistry climate models using tropospheric warming, the Brewer–Dobson circulation, and the quasi-biennial oscillation as predictors. This methodology produce strong fits to simulated water vapor, and potentially represents a superior method to evaluate model trends in lower-stratospheric water vapor.
Felix Ploeger, Paul Konopka, Kaley Walker, and Martin Riese
Atmos. Chem. Phys., 17, 7055–7066, https://doi.org/10.5194/acp-17-7055-2017, https://doi.org/10.5194/acp-17-7055-2017, 2017
Short summary
Short summary
Pollution transport from the surface to the stratosphere within the Asian summer monsoon circulation may cause harmful effects on stratospheric chemistry and climate. We investigate air mass transport from the monsoon anticyclone into the stratosphere, combining model simulations with satellite trace gas measurements. We show evidence for two transport pathways from the monsoon: (i) into the tropical stratosphere and (ii) into the Northern Hemisphere extratropical lower stratosphere.
Jennifer Ostermöller, Harald Bönisch, Patrick Jöckel, and Andreas Engel
Atmos. Chem. Phys., 17, 3785–3797, https://doi.org/10.5194/acp-17-3785-2017, https://doi.org/10.5194/acp-17-3785-2017, 2017
Short summary
Short summary
We analysed the temporal evolution of fractional release factors (FRFs) from EMAC model simulations for several halocarbons and nitrous oxide. The current formulation of FRFs yields values that depend on the tropospheric trend of the species. This is a problematic issue for the application of FRF in the calculation of steady-state quantities (e.g. ODP). Including a loss term in the calculation, we develop a new formulation of FRF and find that the time dependence can almost be compensated.
Sabine Brinkop, Martin Dameris, Patrick Jöckel, Hella Garny, Stefan Lossow, and Gabriele Stiller
Atmos. Chem. Phys., 16, 8125–8140, https://doi.org/10.5194/acp-16-8125-2016, https://doi.org/10.5194/acp-16-8125-2016, 2016
Short summary
Short summary
This study investigates the water vapour decline in the stratosphere beginning in the year 2000 and other similarly strong stratospheric water vapour reductions. The driving forces are tropical sea surface temperature (SST) changes due to coincidence with a preceding ENSO event and supported by the west to east change of the QBO.
There are indications that both SSTs and the specific dynamical state of the atmosphere contribute to the long period of low water vapour values from 2001 to 2006.
Michael Löffler, Sabine Brinkop, and Patrick Jöckel
Atmos. Chem. Phys., 16, 6547–6562, https://doi.org/10.5194/acp-16-6547-2016, https://doi.org/10.5194/acp-16-6547-2016, 2016
Short summary
Short summary
After the two major volcanic eruptions of El Chichón in Mexico in 1982 and Mount Pinatubo on the Philippines in 1991, stratospheric water vapour is significantly increased. This results from increased stratospheric heating rates due to volcanic aerosol and the subsequent changes in stratospheric and tropopause temperatures in the tropics. The tropical vertical advection and the South Asian summer monsoon are identified as important sources for the additional water vapour in the stratosphere.
Laura Thölix, Leif Backman, Rigel Kivi, and Alexey Yu. Karpechko
Atmos. Chem. Phys., 16, 4307–4321, https://doi.org/10.5194/acp-16-4307-2016, https://doi.org/10.5194/acp-16-4307-2016, 2016
J. Aschmann, J. P. Burrows, C. Gebhardt, A. Rozanov, R. Hommel, M. Weber, and A. M. Thompson
Atmos. Chem. Phys., 14, 12803–12814, https://doi.org/10.5194/acp-14-12803-2014, https://doi.org/10.5194/acp-14-12803-2014, 2014
Short summary
Short summary
This study compares observations and simulation results of ozone in the lower tropical stratosphere. It shows that ozone in this region decreased from 1985 up to about 2002, which is consistent with an increase in tropical upwelling predicted by climate models. However, the decrease effectively stops after 2002, indicating that significant changes in tropical upwelling have occurred. The most important factor appears to be that the vertical ascent in the tropics is no longer accelerating.
S. Fadnavis, M. G. Schultz, K. Semeniuk, A. S. Mahajan, L. Pozzoli, S. Sonbawne, S. D. Ghude, M. Kiefer, and E. Eckert
Atmos. Chem. Phys., 14, 12725–12743, https://doi.org/10.5194/acp-14-12725-2014, https://doi.org/10.5194/acp-14-12725-2014, 2014
Short summary
Short summary
The Asian summer monsoon transports pollutants from local emission sources to the upper troposphere and lower stratosphere (UTLS). The increasing trend of these pollutants may have climatic impact. This study addresses the impact of convectively lifted Indian and Chinese emissions on the ULTS. Sensitivity experiments with emission changes in particular regions show that Chinese emissions have a greater impact on the concentrations of NOY species than Indian emissions.
J. S. Knibbe, R. J. van der A, and A. T. J. de Laat
Atmos. Chem. Phys., 14, 8461–8482, https://doi.org/10.5194/acp-14-8461-2014, https://doi.org/10.5194/acp-14-8461-2014, 2014
M. Abalos, F. Ploeger, P. Konopka, W. J. Randel, and E. Serrano
Atmos. Chem. Phys., 13, 10787–10794, https://doi.org/10.5194/acp-13-10787-2013, https://doi.org/10.5194/acp-13-10787-2013, 2013
M. R. Schoeberl, A. E. Dessler, and T. Wang
Atmos. Chem. Phys., 13, 7783–7793, https://doi.org/10.5194/acp-13-7783-2013, https://doi.org/10.5194/acp-13-7783-2013, 2013
J. M. Siddaway, S. V. Petelina, D. J. Karoly, A. R. Klekociuk, and R. J. Dargaville
Atmos. Chem. Phys., 13, 4413–4427, https://doi.org/10.5194/acp-13-4413-2013, https://doi.org/10.5194/acp-13-4413-2013, 2013
F. Khosrawi, R. Müller, J. Urban, M. H. Proffitt, G. Stiller, M. Kiefer, S. Lossow, D. Kinnison, F. Olschewski, M. Riese, and D. Murtagh
Atmos. Chem. Phys., 13, 3619–3641, https://doi.org/10.5194/acp-13-3619-2013, https://doi.org/10.5194/acp-13-3619-2013, 2013
J. A. Schmidt, M. S. Johnson, S. Hattori, N. Yoshida, S. Nanbu, and R. Schinke
Atmos. Chem. Phys., 13, 1511–1520, https://doi.org/10.5194/acp-13-1511-2013, https://doi.org/10.5194/acp-13-1511-2013, 2013
H. E. Rieder, L. Frossard, M. Ribatet, J. Staehelin, J. A. Maeder, S. Di Rocco, A. C. Davison, T. Peter, P. Weihs, and F. Holawe
Atmos. Chem. Phys., 13, 165–179, https://doi.org/10.5194/acp-13-165-2013, https://doi.org/10.5194/acp-13-165-2013, 2013
J. M. Castanheira, T. R. Peevey, C. A. F. Marques, and M. A. Olsen
Atmos. Chem. Phys., 12, 10195–10208, https://doi.org/10.5194/acp-12-10195-2012, https://doi.org/10.5194/acp-12-10195-2012, 2012
M. R. Schoeberl, A. E. Dessler, and T. Wang
Atmos. Chem. Phys., 12, 6475–6487, https://doi.org/10.5194/acp-12-6475-2012, https://doi.org/10.5194/acp-12-6475-2012, 2012
B. Chen, X. D. Xu, S. Yang, and T. L. Zhao
Atmos. Chem. Phys., 12, 5827–5839, https://doi.org/10.5194/acp-12-5827-2012, https://doi.org/10.5194/acp-12-5827-2012, 2012
S. Dhomse, M. P. Chipperfield, W. Feng, and J. D. Haigh
Atmos. Chem. Phys., 11, 12773–12786, https://doi.org/10.5194/acp-11-12773-2011, https://doi.org/10.5194/acp-11-12773-2011, 2011
A. J. G. Baumgaertner, A. Seppälä, P. Jöckel, and M. A. Clilverd
Atmos. Chem. Phys., 11, 4521–4531, https://doi.org/10.5194/acp-11-4521-2011, https://doi.org/10.5194/acp-11-4521-2011, 2011
J. Flemming, A. Inness, L. Jones, H. J. Eskes, V. Huijnen, M. G. Schultz, O. Stein, D. Cariolle, D. Kinnison, and G. Brasseur
Atmos. Chem. Phys., 11, 1961–1977, https://doi.org/10.5194/acp-11-1961-2011, https://doi.org/10.5194/acp-11-1961-2011, 2011
H. E. Rieder, J. Staehelin, J. A. Maeder, T. Peter, M. Ribatet, A. C. Davison, R. Stübi, P. Weihs, and F. Holawe
Atmos. Chem. Phys., 10, 10033–10045, https://doi.org/10.5194/acp-10-10033-2010, https://doi.org/10.5194/acp-10-10033-2010, 2010
T. von Clarmann, G. Stiller, U. Grabowski, E. Eckert, and J. Orphal
Atmos. Chem. Phys., 10, 6737–6747, https://doi.org/10.5194/acp-10-6737-2010, https://doi.org/10.5194/acp-10-6737-2010, 2010
J. Aschmann, B.-M. Sinnhuber, E. L. Atlas, and S. M. Schauffler
Atmos. Chem. Phys., 9, 9237–9247, https://doi.org/10.5194/acp-9-9237-2009, https://doi.org/10.5194/acp-9-9237-2009, 2009
Cited articles
Adams, B. K. and Dessler, A. E.: Estimating Transient Climate Response in a
Large-Ensemble Global Climate Model Simulation, Geophys. Res. Lett., 46,
311–317, https://doi.org/10.1029/2018GL080714, 2019.
Allen, R. J., Amiri-Farahani, A., Lamarque, J.-F., Smith, C., Shindell, D.,
Hassan, T., and Chung, C. E.: Observationally constrained aerosol–cloud
semi-direct effects, npj Clim. Atmos. Sci., 2, 16,
https://doi.org/10.1038/s41612-019-0073-9, 2019.
Arora, V. K., Scinocca, J. F., Boer, G. J., Christian, J. R., Denman, K. L.,
Flato, G. M., Kharin, V. V., Lee, W. G., and Merryfield, W. J.: Carbon
emission limits required to satisfy future representative concentration
pathways of greenhouse gases, Geophys. Res. Lett., 38, L05805,
https://doi.org/10.1029/2010GL046270, 2011.
Banerjee, A., Chiodo, G., Previdi, M., Ponater, M., Conley, A. J., and
Polvani, L. M.: Stratospheric water vapor: an important climate feedback,
Clim. Dynam., 53, 1697–1710, https://doi.org/10.1007/s00382-019-04721-4, 2019.
Bellouin, N., Rae, J., Jones, A., Johnson, C., Haywood, J., and Boucher, O.:
Aerosol forcing in the Climate Model Intercomparison Project (CMIP5)
simulations by HadGEM2-ES and the role of ammonium nitrate, J. Geophys.
Res., 116, D20206, https://doi.org/10.1029/2011JD016074, 2011.
Berntsen, T. K., Isaksen, I. S. A., Myhre, G., Fuglestvedt, J. S., Stordal,
F., Larsen, T. A., Freckleton, R. S., and Shine, K. P.: Effects of
anthropogenic emissions on tropospheric ozone and its radiative forcing, J.
Geophys. Res.-Atmos., 102, 28101–28126, https://doi.org/10.1029/97JD02226, 1997.
Brasseur, G. P. and Solomon, S.: Aeronomy of the Middle Atmosphere,
Springer, Dordrecht, the Netherlands, 2005.
CICERO: PDRMIP data, available at: http://cicero.uio.no/en/PDRMIP, last access: 29 August 2019.
Collins, W. J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Halloran, P., Hinton, T., Hughes, J., Jones, C. D., Joshi, M., Liddicoat, S., Martin, G., O'Connor, F., Rae, J., Senior, C., Sitch, S., Totterdell, I., Wiltshire, A., and Woodward, S.: Development and evaluation of an Earth-System model – HadGEM2, Geosci. Model Dev., 4, 1051–1075, https://doi.org/10.5194/gmd-4-1051-2011, 2011.
Dessler, A. E.: Potential Problems Measuring Climate Sensitivity from the
Historical Record, J. Climate, 33, 2237–2248,
https://doi.org/10.1175/JCLI-D-19-0476.1, 2020.
Dessler, A. E. and Sherwood, S. C.: Effect of convection on the summertime
extratropical lower stratosphere, J. Geophys. Res.-Atmos., 109, D23301,
https://doi.org/10.1029/2004JD005209, 2004.
Dessler, A. E. and Zelinka, M. D.: Climate Feedbacks, in: Encyclopedia of
Atmospheric Sciences, Edn. 2, edited by: North, G. R., Pyle, J. A., and Zhang, F.,
Academic Press, Oxford, United Kingdom, Vol. 2, 18–25, 2015.
Dessler, A. E., Hintsa, E. J., Weinstock, E. M., Anderson, J. G., and Chan,
K. R.: Mechanisms controlling water vapor in the lower stratosphere: “A
tale of two stratospheres”, J. Geophys. Res., 100, 23167,
https://doi.org/10.1029/95JD02455, 1995.
Dessler, A. E., Schoeberl, M. R., Wang, T., Davis, S. M., and Rosenlof, K.
H.: Stratospheric water vapor feedback, P. Natl. Acad. Sci. USA, 110,
18087–18091, https://doi.org/10.1073/pnas.1310344110, 2013.
Dessler, A. E., Schoeberl, M. R., Wang, T., Davis, S. M., Rosenlof, K. H.,
and Vernier, J.-P.: Variations of stratospheric water vapor over the past
three decades, J. Geophys. Res.-Atmos., 119, 12588–12598,
https://doi.org/10.1002/2014JD021712, 2014.
Dessler, A. E., Ye, H., Wang, T., Schoeberl, M. R., Oman, L. D., Douglass,
A. R., Butler, A. H., Rosenlof, K. H., Davis, S. M., and Portmann, R. W.:
Transport of ice into the stratosphere and the humidification of the
stratosphere over the 21st century, Geophys. Res. Lett., 43, 2323–2329,
https://doi.org/10.1002/2016GL067991, 2016.
Dethof, A., O'Neill, A., Slingo, J. M., and Smit, H. G. J.: A mechanism for
moistening the lower stratosphere involving the Asian summer monsoon, Q. J.
R. Meteor. Soc., 125, 1079–1106, https://doi.org/10.1002/qj.1999.49712555602,
1999.
Dethof, A., O'Neill, A., and Slingo, J.: Quantification of the isentropic
mass transport across the dynamical tropopause, J. Geophys. Res.-Atmos.,
105, 12279–12293, https://doi.org/10.1029/2000JD900127, 2000.
Dlugokencky, E. J., Mund, J. W., Crotwell, A. M., Crotwell, M. J., and Thoning,
K. W.: Atmospheric Carbon Dioxide Dry Air Mole Fractions from the NOAA GML
Carbon Cycle Cooperative Global Air Sampling Network, 1968–2019, Version:
2020-07, NOAA ESRL Global Monitoring Laboratory,
https://doi.org/10.15138/wkgj-f215, 2020a.
Dlugokencky, E. J., Crotwell, A. M., Mund, J. W., Crotwell, M. J., and Thoning,
K. W.: Atmospheric Methane Dry Air Mole Fractions from the NOAA GML Carbon
Cycle Cooperative Global Air Sampling Network, 1983–2019, Version: 2020-07,
NOAA ESRL Global Monitoring Laboratory, https://doi.org/10.15138/VNCZ-M766,
2020b.
Dufresne, J.-L., Foujols, M.-A., Denvil, S., Caubel, A., Marti, O., Aumont,
O., Balkanski, Y., Bekki, S., Bellenger, H., Benshila, R., Bony, S., Bopp,
L., Braconnot, P., Brockmann, P., Cadule, P., Cheruy, F., Codron, F., Cozic,
A., Cugnet, D., de Noblet, N., Duvel, J.-P., Ethé, C., Fairhead, L.,
Fichefet, T., Flavoni, S., Friedlingstein, P., Grandpeix, J.-Y., Guez, L.,
Guilyardi, E., Hauglustaine, D., Hourdin, F., Idelkadi, A., Ghattas, J.,
Joussaume, S., Kageyama, M., Krinner, G., Labetoulle, S., Lahellec, A.,
Lefebvre, M.-P., Lefevre, F., Levy, C., Li, Z. X., Lloyd, J., Lott, F.,
Madec, G., Mancip, M., Marchand, M., Masson, S., Meurdesoif, Y., Mignot, J.,
Musat, I., Parouty, S., Polcher, J., Rio, C., Schulz, M., Swingedouw, D.,
Szopa, S., Talandier, C., Terray, P., Viovy, N., and Vuichard, N.: Climate
change projections using the IPSL-CM5 Earth System Model: from CMIP3 to
CMIP5, Clim. Dynam., 40, 2123–2165, https://doi.org/10.1007/s00382-012-1636-1,
2013.
Dvortsov, V. L. and Solomon, S.: Response of the stratospheric temperatures
and ozone to past and future increases in stratospheric humidity, J.
Geophys. Res.-Atmos., 106, 7505–7514, https://doi.org/10.1029/2000JD900637, 2001.
Forster, P. M. D. F. and Joshi, M.: The Role Of Halocarbons In The Climate
Change Of The Troposphere And Stratosphere, Climatic Change, 71,
249–266, https://doi.org/10.1007/s10584-005-5955-7, 2005.
Forster, P. M. de F. and Shine, K. P.: Assessing the climate impact of
trends in stratospheric water vapor, Geophys. Res. Lett., 29, 10-1–10-4,
https://doi.org/10.1029/2001GL013909, 2002.
Forster, P. M. F., Freckleton, R. S., and Shine, K. P.: On aspects of the
concept of radiative forcing, Clim. Dynam., 13, 547–560,
https://doi.org/10.1007/s003820050182, 1997.
Fueglistaler, S., Dessler, A. E., Dunkerton, T. J., Folkins, I., Fu, Q., and
Mote, P. W.: Tropical tropopause layer, Rev. Geophys., 47, 1–31,
https://doi.org/10.1029/2008RG000267, 2009.
Gent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke, E. C.,
Jayne, S. R., Lawrence, D. M., Neale, R. B., Rasch, P. J., Vertenstein, M.,
Worley, P. H., Yang, Z.-L., and Zhang, M.: The Community Climate System Model
Version 4, J. Climate, 24, 4973–4991, https://doi.org/10.1175/2011JCLI4083.1, 2011.
Geoffroy, O., Saint-Martin, D., Olivié, D. J. L., Voldoire, A., Bellon,
G., and Tytéca, S.: Transient Climate Response in a Two-Layer
Energy-Balance Model. Part I: Analytical Solution and Parameter Calibration
Using CMIP5 AOGCM Experiments, J. Climate, 26, 1841–1857,
https://doi.org/10.1175/JCLI-D-12-00195.1, 2013.
Gettelman, A., Hegglin, M. I., Son, S.-W., Kim, J., Fujiwara, M., Birner,
T., Kremser, S., Rex, M., Añel, J. A., Akiyoshi, H., Austin, J., Bekki,
S., Braesike, P., Brühl, C., Butchart, N., Chipperfield, M., Dameris,
M., Dhomse, S., Garny, H., Hardiman, S. C., Jöckel, P., Kinnison, D. E.,
Lamarque, J. F., Mancini, E., Marchand, M., Michou, M., Morgenstern, O.,
Pawson, S., Pitari, G., Plummer, D., Pyle, J. A., Rozanov, E., Scinocca, J.,
Shepherd, T. G., Shibata, K., Smale, D., Teyssèdre, H., and Tian, W.:
Multimodel assessment of the upper troposphere and lower stratosphere:
Tropics and global trends, J. Geophys. Res., 115, D00M08,
https://doi.org/10.1029/2009JD013638, 2010.
Gettelman, A., Hoor, P., Pan, L. L., Randel, W. J., Hegglin, M. I., and
Birner, T.: THE EXTRATROPICAL UPPER TROPOSPHERE AND LOWER STRATOSPHERE, Rev.
Geophys., 49, RG3003, https://doi.org/10.1029/2011RG000355, 2011.
Giorgetta, M. A., Jungclaus, J., Reick, C. H., Legutke, S., Bader, J.,
Böttinger, M., Brovkin, V., Crueger, T., Esch, M., Fieg, K., Glushak,
K., Gayler, V., Haak, H., Hollweg, H.-D., Ilyina, T., Kinne, S., Kornblueh,
L., Matei, D., Mauritsen, T., Mikolajewicz, U., Mueller, W., Notz, D.,
Pithan, F., Raddatz, T., Rast, S., Redler, R., Roeckner, E., Schmidt, H.,
Schnur, R., Segschneider, J., Six, K. D., Stockhause, M., Timmreck, C.,
Wegner, J., Widmann, H., Wieners, K.-H., Claussen, M., Marotzke, J., and
Stevens, B.: Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM
simulations for the Coupled Model Intercomparison Project phase 5, J. Adv.
Model. Earth Syst., 5, 572–597, https://doi.org/10.1002/jame.20038, 2013.
Gregory, J. M., Ingram, W. J., Palmer, M. A., Jones, G. S., Stott, P. A., Thorpe, R. B., Lowe, J. A., Johns, T. C., and Williams, K. D.: A new method for diagnosing radiative forcing and climate sensitivity, Geophys. Res. Lett., 31, L03205, https://doi.org/10.1029/2003GL018747, 2004.
Hegglin, M. I., Plummer, D. A., Shepherd, T. G., Scinocca, J. F., Anderson,
J., Froidevaux, L., Funke, B., Hurst, D., Rozanov, A., Urban, J., von
Clarmann, T., Walker, K. A., Wang, H. J., Tegtmeier, S., and Weigel, K.:
Vertical structure of stratospheric water vapour trends derived from merged
satellite data, Nat. Geosci., 7, 768–776, https://doi.org/10.1038/ngeo2236, 2014.
Hodnebrog, Ø., Myhre, G., Samset, B. H., Alterskjær, K., Andrews, T., Boucher, O., Faluvegi, G., Fläschner, D., Forster, P. M., Kasoar, M., Kirkevåg, A., Lamarque, J.-F., Olivié, D., Richardson, T. B., Shawki, D., Shindell, D., Shine, K. P., Stier, P., Takemura, T., Voulgarakis, A., and Watson-Parris, D.: Water vapour adjustments and responses differ between climate drivers, Atmos. Chem. Phys., 19, 12887–12899, https://doi.org/10.5194/acp-19-12887-2019, 2019.
Holton, J. R., Haynes, P. H., McIntyre, M. E., Douglass, A. R., Rood, R. B.,
and Pfister, L.: Stratosphere-troposphere exchange, Rev. Geophys., 33,
403, https://doi.org/10.1029/95RG02097, 1995.
Hoskins, B. J.: Towards a PV-θ view of the general circulation,
Tellus A, 43, 27–36,
https://doi.org/10.3402/tellusa.v43i4.11936, 1991.
Huang, Y., Zhang, M., Xia, Y., Hu, Y., and Son, S.-W.: Is there a
stratospheric radiative feedback in global warming simulations?, Clim. Dynam.,
46, 177–186, https://doi.org/10.1007/s00382-015-2577-2, 2016.
Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner,
P. J., Lamarque, J.-F., Large, W. G., Lawrence, D., Lindsay, K., Lipscomb,
W. H., Long, M. C., Mahowald, N., Marsh, D. R., Neale, R. B., Rasch, P.,
Vavrus, S., Vertenstein, M., Bader, D., Collins, W. D., Hack, J. J., Kiehl,
J., and Marshall, S.: The Community Earth System Model: A Framework for
Collaborative Research, B. Am. Meteorol. Soc., 94, 1339–1360,
https://doi.org/10.1175/BAMS-D-12-00121.1, 2013.
Hurst, D. F., Oltmans, S. J., Vömel, H., Rosenlof, K. H., Davis, S. M.,
Ray, E. A., Hall, E. G., and Jordan, A. F.: Stratospheric water vapor trends
over Boulder, Colorado: Analysis of the 30 year Boulder record, J. Geophys.
Res., 116, D02306, https://doi.org/10.1029/2010JD015065, 2011.
Jain, A. K., Briegleb, B. P., Minschwaner, K., and Wuebbles, D. J.: Radiative
forcings and global warming potentials of 39 greenhouse gases, J. Geophys.
Res.-Atmos., 105, 20773–20790, https://doi.org/10.1029/2000JD900241, 2000.
Kay, J. E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G.,
Arblaster, J. M., Bates, S. C., Danabasoglu, G., Edwards, J., Holland, M.,
Kushner, P., Lamarque, J.-F., Lawrence, D., Lindsay, K., Middleton, A.,
Munoz, E., Neale, R., Oleson, K., Polvani, L., and Vertenstein, M.: The
Community Earth System Model (CESM) Large Ensemble Project: A Community
Resource for Studying Climate Change in the Presence of Internal Climate
Variability, B. Am. Meteorol. Soc., 96, 1333–1349,
https://doi.org/10.1175/BAMS-D-13-00255.1, 2015.
Lin, P., Paynter, D., Ming, Y., and Ramaswamy, V.: Changes of the Tropical
Tropopause Layer under Global Warming, J. Climate, 30, 1245–1258,
https://doi.org/10.1175/JCLI-D-16-0457.1, 2017.
MacIntosh, C. R., Allan, R. P., Baker, L. H., Bellouin, N., Collins, W.,
Mousavi, Z., and Shine, K. P.: Contrasting fast precipitation responses to
tropospheric and stratospheric ozone forcing, Geophys. Res. Lett., 43,
1263–1271, https://doi.org/10.1002/2015GL067231, 2016.
Maher, N., Milinski, S., Suarez-Gutierrez, L., Botzet, M., Dobrynin, M.,
Kornblueh, L., Kröger, J., Takano, Y., Ghosh, R., Hedemann, C., Li, C.,
Li, H., Manzini, E., Notz, D., Putrasahan, D., Boysen, L., Claussen, M.,
Ilyina, T., Olonscheck, D., Raddatz, T., Stevens, B., and Marotzke, J.: The
Max Planck Institute Grand Ensemble: Enabling the Exploration of Climate
System Variability, J. Adv. Model. Earth Syst., 11, 2050–2069,
https://doi.org/10.1029/2019MS001639, 2019.
Mote, P. W., Rosenlof, K. H., McIntyre, M. E., Carr, E. S., Gille, J. C.,
Holton, J. R., Kinnersley, J. S., Pumphrey, H. C., Russell III, J. M., and
Waters, J. W.: An atmospheric tape recorder: The imprint of tropical
tropopause temperatures on stratospheric water vapor, J. Geophys. Res.,
101, 3989–4006, https://doi.org/10.1029/95JD03422, 1996.
Myhre, G., Highwood, E. J., Shine, K. P., and Stordal, F.: New estimates of
radiative forcing due to well mixed greenhouse gases, Geophys. Res. Lett.,
25, 2715–2718, https://doi.org/10.1029/98GL01908, 1998.
Myhre, G., Samset, B. H., Schulz, M., Balkanski, Y., Bauer, S., Berntsen, T. K., Bian, H., Bellouin, N., Chin, M., Diehl, T., Easter, R. C., Feichter, J., Ghan, S. J., Hauglustaine, D., Iversen, T., Kinne, S., Kirkevåg, A., Lamarque, J.-F., Lin, G., Liu, X., Lund, M. T., Luo, G., Ma, X., van Noije, T., Penner, J. E., Rasch, P. J., Ruiz, A., Seland, Ø., Skeie, R. B., Stier, P., Takemura, T., Tsigaridis, K., Wang, P., Wang, Z., Xu, L., Yu, H., Yu, F., Yoon, J.-H., Zhang, K., Zhang, H., and Zhou, C.: Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations, Atmos. Chem. Phys., 13, 1853–1877, https://doi.org/10.5194/acp-13-1853-2013, 2013a.
Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J.,
Huang, J., Koch, D., Lamarque, J.-F., Lee, D., B., Mendoza, Nakajima, T.,
Robock, A., Stephens, G., Takemura, T., and Zhang, H.: Anthropogenic and
Natural Radiative Forcing, in: Climate Change 2013: The Physical Science
Basis, Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin,
D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia,
Y., Bex, V., and Midgley, P. M., 659–740, Cambridge University Press,
Cambridge, United Kingdom and New York, NY, USA,
https://doi.org/10.1017/CBO9781107415324.018, 2013b.
Myhre, G., Forster, P. M., Samset, B. H., Hodnebrog, Ø., Sillmann, J.,
Aalbergsjø, S. G., Andrews, T., Boucher, O., Faluvegi, G., Fläschner,
D., Iversen, T., Kasoar, M., Kharin, V., Kirkevåg, A., Lamarque, J.-F.,
Olivié, D., Richardson, T. B., Shindell, D., Shine, K. P., Stjern, C.
W., Takemura, T., Voulgarakis, A., and Zwiers, F.: PDRMIP: A Precipitation
Driver and Response Model Intercomparison Project – Protocol and Preliminary
Results, B. Am. Meteorol. Soc., 98, 1185–1198,
https://doi.org/10.1175/BAMS-D-16-0019.1, 2017.
Neale, R. B., Richter, J. H., Conley, A. J., Park, S., Lauritzen, P. H.,
Gettelman, A., Williamson, D. L., Rasch, P. J., Vavrus, S. J., Taylor, M.
A., Collins, W. D., Zhang, M., and Lin, S.: Description of the NCAR
Community Atmosphere Model (CAM 4.0), NCAR Technical Note,
NCAR/TN-485+STR, Climate And Global Dynamics Division National Center For
Atmospheric Research Boulder, Colorado, USA, 224 pp., 2010.
Otto-Bliesner, B. L., Brady, E. C., Fasullo, J., Jahn, A., Landrum, L.,
Stevenson, S., Rosenbloom, N., Mai, A., and Strand, G.: Climate Variability
and Change since 850 CE: An Ensemble Approach with the Community Earth
System Model, B. Am. Meteorol. Soc., 97, 735–754,
https://doi.org/10.1175/BAMS-D-14-00233.1, 2016.
Pan, L., Solomon, S., Randel, W., Lamarque, J.-F., Hess, P., Gille, J.,
Chiou, E.-W., and McCormick, M. P.: Hemispheric asymmetries and seasonal
variations of the lowermost stratospheric water vapor and ozone derived from
SAGE II data, J. Geophys. Res.-Atmos., 102, 28177–28184,
https://doi.org/10.1029/97JD02778, 1997.
Pan, L. L., Hintsa, E. J., Stone, E. M., Weinstock, E. M., and Randel, W. J.:
The seasonal cycle of water vapor and saturation vapor mixing ratio in the
extratropical lowermost stratosphere, J. Geophys. Res.-Atmos., 105,
26519–26530, https://doi.org/10.1029/2000JD900401, 2000.
Ploeger, F., Günther, G., Konopka, P., Fueglistaler, S., Müller, R.,
Hoppe, C., Kunz, A., Spang, R., Grooß, J.-U., and Riese, M.: Horizontal
water vapor transport in the lower stratosphere from subtropics to high
latitudes during boreal summer, J. Geophys. Res.-Atmos., 118,
8111–8127, https://doi.org/10.1002/jgrd.50636, 2013.
Plumb, R. A.: Stratospheric Transport, J. Meteorol. Soc. Jpn. Ser. II,
80, 793–809, https://doi.org/10.2151/jmsj.80.793, 2002.
Ramanathan, V. and Carmichael, G.: Global and regional climate changes due
to black carbon, Nat. Geosci., 1, 221–227, https://doi.org/10.1038/ngeo156, 2008.
Ramaswamy, V. and Bowen, M. M.: Effect of changes in radiatively active
species upon the lower stratospheric temperatures, J. Geophys. Res., 99,
18909, https://doi.org/10.1029/94JD01310, 1994.
Randel, W. and Park, M.: Diagnosing Observed Stratospheric Water Vapor
Relationships to the Cold Point Tropical Tropopause, J. Geophys. Res.-Atmos., 124, 7018–7033, https://doi.org/10.1029/2019JD030648, 2019.
Revell, L. E., Stenke, A., Rozanov, E., Ball, W., Lossow, S., and Peter, T.: The role of methane in projections of 21st century stratospheric water vapour, Atmos. Chem. Phys., 16, 13067–13080, https://doi.org/10.5194/acp-16-13067-2016, 2016.
Richardson, T. B., Forster, P. M., Smith, C. J., Maycock, A. C., Wood, T.,
Andrews, T., Boucher, O., Faluvegi, G., Fläschner, D., Hodnebrog, Ø.,
Kasoar, M., Kirkevåg, A., Lamarque, J.-F., Mülmenstädt, J.,
Myhre, G., Olivié, D., Portmann, R. W., Samset, B. H., Shawki, D.,
Shindell, D., Stier, P., Takemura, T., Voulgarakis, A., and Watson-Parris,
D.: Efficacy of Climate Forcings in PDRMIP Models, J. Geophys. Res.-Atmos.,
124, 12824–12844, https://doi.org/10.1029/2019JD030581, 2019.
Samset, B. H., Myhre, G., Forster, P. M., Hodnebrog, Ø., Andrews, T.,
Faluvegi, G., Fläschner, D., Kasoar, M., Kharin, V., Kirkevåg, A.,
Lamarque, J.-F., Olivié, D., Richardson, T., Shindell, D., Shine, K.
P., Takemura, T., and Voulgarakis, A.: Fast and slow precipitation responses
to individual climate forcers: A PDRMIP multimodel study, Geophys. Res.
Lett., 43, 2782–2791, https://doi.org/10.1002/2016GL068064, 2016.
Schmidt, G. A., Kelley, M., Nazarenko, L., Ruedy, R., Russell, G. L.,
Aleinov, I., Bauer, M., Bauer, S. E., Bhat, M. K., Bleck, R., Canuto, V.,
Chen, Y.-H., Cheng, Y., Clune, T. L., Del Genio, A., de Fainchtein, R.,
Faluvegi, G., Hansen, J. E., Healy, R. J., Kiang, N. Y., Koch, D., Lacis, A.
A., LeGrande, A. N., Lerner, J., Lo, K. K., Matthews, E. E., Menon, S.,
Miller, R. L., Oinas, V., Oloso, A. O., Perlwitz, J. P., Puma, M. J.,
Putman, W. M., Rind, D., Romanou, A., Sato, M., Shindell, D. T., Sun, S.,
Syed, R. A., Tausnev, N., Tsigaridis, K., Unger, N., Voulgarakis, A., Yao,
M.-S., and Zhang, J.: Configuration and assessment of the GISS ModelE2
contributions to the CMIP5 archive, J. Adv. Model. Earth Syst., 6,
141–184, https://doi.org/10.1002/2013MS000265, 2014.
Sherwood, S. C., Bony, S., Boucher, O., Bretherton, C., Forster, P. M.,
Gregory, J. M., and Stevens, B.: Adjustments in the Forcing-Feedback
Framework for Understanding Climate Change, B. Am. Meteorol. Soc., 96,
217–228, https://doi.org/10.1175/BAMS-D-13-00167.1, 2015.
Shu, J., Tian, W., Austin, J., Chipperfield, M. P., Xie, F., and Wang, W.:
Effects of sea surface temperature and greenhouse gas changes on the
transport between the stratosphere and troposphere, J. Geophys. Res.,
116, D02124, https://doi.org/10.1029/2010JD014520, 2011.
Smalley, K. M., Dessler, A. E., Bekki, S., Deushi, M., Marchand, M., Morgenstern, O., Plummer, D. A., Shibata, K., Yamashita, Y., and Zeng, G.: Contribution of different processes to changes in tropical lower-stratospheric water vapor in chemistry–climate models, Atmos. Chem. Phys., 17, 8031–8044, https://doi.org/10.5194/acp-17-8031-2017, 2017.
Smith, C. J., Kramer, R. J., Myhre, G., Forster, P. M., Soden, B. J.,
Andrews, T., Boucher, O., Faluvegi, G., Fläschner, D., Hodnebrog, Ø.,
Kasoar, M., Kharin, V., Kirkevåg, A., Lamarque, J.-F.,
Mülmenstädt, J., Olivié, D., Richardson, T., Samset, B. H.,
Shindell, D., Stier, P., Takemura, T., Voulgarakis, A., and Watson-Parris,
D.: Understanding Rapid Adjustments to Diverse Forcing Agents, Geophys. Res.
Lett., 45, 12023–12031, https://doi.org/10.1029/2018GL079826, 2018.
Smith, J. B., Wilmouth, D. M., Bedka, K. M., Bowman, K. P., Homeyer, C. R.,
Dykema, J. A., Sargent, M. R., Clapp, C. E., Leroy, S. S., Sayres, D. S.,
Dean-Day, J. M., Paul Bui, T., and Anderson, J. G.: A case study of
convectively sourced water vapor observed in the overworld stratosphere over
the United States, J. Geophys. Res.-Atmos., 122, 9529–9554,
https://doi.org/10.1002/2017JD026831, 2017.
Solomon, S., Garcia, R. R., Rowland, F. S., and Wuebbles, D. J.: On the
depletion of Antarctic ozone, Nature, 321, 755–758,
https://doi.org/10.1038/321755a0, 1986.
Solomon, S., Rosenlof, K. H., Portmann, R. W., Daniel, J. S., Davis, S. M.,
Sanford, T. J., and Plattner, G.-K.: Contributions of Stratospheric Water
Vapor to Decadal Changes in the Rate of Global Warming, Science,
327, 1219–1223, https://doi.org/10.1126/science.1182488, 2010.
Stjern, C. W., Samset, B. H., Myhre, G., Forster, P. M., Hodnebrog, Ø.,
Andrews, T., Boucher, O., Faluvegi, G., Iversen, T., Kasoar, M., Kharin, V.,
Kirkevåg, A., Lamarque, J.-F., Olivié, D., Richardson, T., Shawki,
D., Shindell, D., Smith, C. J., Takemura, T., and Voulgarakis, A.: Rapid
Adjustments Cause Weak Surface Temperature Response to Increased Black
Carbon Concentrations, J. Geophys. Res.-Atmos., 122, 11462–11481,
https://doi.org/10.1002/2017JD027326, 2017.
Takemura, T., Nozawa, T., Emori, S., Nakajima, T. Y., and Nakajima, T.:
Simulation of climate response to aerosol direct and indirect effects with
aerosol transport-radiation model, J. Geophys. Res., 110, D02202,
https://doi.org/10.1029/2004JD005029, 2005.
Takemura, T., Egashira, M., Matsuzawa, K., Ichijo, H., O'ishi, R., and Abe-Ouchi, A.: A simulation of the global distribution and radiative forcing of soil dust aerosols at the Last Glacial Maximum, Atmos. Chem. Phys., 9, 3061–3073, https://doi.org/10.5194/acp-9-3061-2009, 2009.
Tang, T., Shindell, D., Samset, B. H., Boucher, O., Forster, P. M., Hodnebrog, Ø., Myhre, G., Sillmann, J., Voulgarakis, A., Andrews, T., Faluvegi, G., Fläschner, D., Iversen, T., Kasoar, M., Kharin, V., Kirkevåg, A., Lamarque, J.-F., Olivié, D., Richardson, T., Stjern, C. W., and Takemura, T.: Dynamical response of Mediterranean precipitation to greenhouse gases and aerosols, Atmos. Chem. Phys., 18, 8439–8452, https://doi.org/10.5194/acp-18-8439-2018, 2018.
Tang, T., Shindell, D., Faluvegi, G., Myhre, G., Olivié, D.,
Voulgarakis, A., Kasoar, M., Andrews, T., Boucher, O., Forster, P. M.,
Hodnebrog, Ø., Iversen, T., Kirkevåg, A., Lamarque, J.-F.,
Richardson, T., Samset, B. H., Stjern, C. W., Takemura, T., and Smith, C.:
Comparison of Effective Radiative Forcing Calculations Using Multiple
Methods, Drivers, and Models, J. Geophys. Res.-Atmos., 124, 4382–4394,
https://doi.org/10.1029/2018JD030188, 2019.
The HadGEM2 Development Team: G. M. Martin, Bellouin, N., Collins, W. J., Culverwell, I. D., Halloran, P. R., Hardiman, S. C., Hinton, T. J., Jones, C. D., McDonald, R. E., McLaren, A. J., O'Connor, F. M., Roberts, M. J., Rodriguez, J. M., Woodward, S., Best, M. J., Brooks, M. E., Brown, A. R., Butchart, N., Dearden, C., Derbyshire, S. H., Dharssi, I., Doutriaux-Boucher, M., Edwards, J. M., Falloon, P. D., Gedney, N., Gray, L. J., Hewitt, H. T., Hobson, M., Huddleston, M. R., Hughes, J., Ineson, S., Ingram, W. J., James, P. M., Johns, T. C., Johnson, C. E., Jones, A., Jones, C. P., Joshi, M. M., Keen, A. B., Liddicoat, S., Lock, A. P., Maidens, A. V., Manners, J. C., Milton, S. F., Rae, J. G. L., Ridley, J. K., Sellar, A., Senior, C. A., Totterdell, I. J., Verhoef, A., Vidale, P. L., and Wiltshire, A.: The HadGEM2 family of Met Office Unified Model climate configurations, Geosci. Model Dev., 4, 723–757, https://doi.org/10.5194/gmd-4-723-2011, 2011.
Thuburn, J. and Craig, G. C.: On the temperature structure of the tropical
substratosphere, J. Geophys. Res., 107, 4017, https://doi.org/10.1029/2001JD000448,
2002.
Ueyama, R., Jensen, E. J., and Pfister, L.: Convective Influence on the
Humidity and Clouds in the Tropical Tropopause Layer During Boreal Summer,
J. Geophys. Res.-Atmos., 123, 7576–7593, https://doi.org/10.1029/2018JD028674, 2018.
Walters, D. N., Williams, K. D., Boutle, I. A., Bushell, A. C., Edwards, J. M., Field, P. R., Lock, A. P., Morcrette, C. J., Stratton, R. A., Wilkinson, J. M., Willett, M. R., Bellouin, N., Bodas-Salcedo, A., Brooks, M. E., Copsey, D., Earnshaw, P. D., Hardiman, S. C., Harris, C. M., Levine, R. C., MacLachlan, C., Manners, J. C., Martin, G. M., Milton, S. F., Palmer, M. D., Roberts, M. J., Rodríguez, J. M., Tennant, W. J., and Vidale, P. L.: The Met Office Unified Model Global Atmosphere 4.0 and JULES Global Land 4.0 configurations, Geosci. Model Dev., 7, 361–386, https://doi.org/10.5194/gmd-7-361-2014, 2014.
Wang, X., Dessler, A. E., Schoeberl, M. R., Yu, W., and Wang, T.: Impact of convectively lofted ice on the seasonal cycle of water vapor in the tropical tropopause layer, Atmos. Chem. Phys., 19, 14621–14636, https://doi.org/10.5194/acp-19-14621-2019, 2019.
Watanabe, M., Suzuki, T., O'ishi, R., Komuro, Y., Watanabe, S., Emori, S.,
Takemura, T., Chikira, M., Ogura, T., Sekiguchi, M., Takata, K., Yamazaki,
D., Yokohata, T., Nozawa, T., Hasumi, H., Tatebe, H., and Kimoto, M.:
Improved Climate Simulation by MIROC5: Mean States, Variability, and Climate
Sensitivity, J. Climate, 23, 6312–6335, https://doi.org/10.1175/2010JCLI3679.1, 2010.
Xia, Y., Huang, Y., Hu, Y., and Yang, J.: Impacts of tropical tropopause
warming on the stratospheric water vapor, Clim. Dynam., 53, 3409–3418,
https://doi.org/10.1007/s00382-019-04714-3, 2019.
Zelinka, M. D., Myers, T. A., McCoy, D. T., Po-Chedley, S., Caldwell, P. M.,
Ceppi, P., Klein, S. A., and Taylor, K. E.: Causes of higher climate
sensitivity in CMIP6 models, Geophys. Res. Lett., 47, e2019GL085782,
https://doi.org/10.1029/2019GL085782, 2020.
Zhang, H.-M., Huang, B., Lawrimore, J., Menne, M., and Smith, T. M.: NOAA Global
Surface Temperature Dataset (NOAAGlobalTemp), Version 5.0, NOAA National
Centers for Environmental Information, https://doi.org/10.7289/V5FN144H, 2019.
Short summary
We investigate the response of stratospheric water vapor (SWV) to different forcing agents, including greenhouse gases and aerosols. For most forcing agents, the SWV response is dominated by a slow response, which is coupled to surface temperature changes and exhibits a similar sensitivity to the surface temperature across all forcing agents. The fast SWV adjustment due to forcing is important when the forcing agent directly heats the cold-point region, e.g., black carbon.
We investigate the response of stratospheric water vapor (SWV) to different forcing agents,...
Altmetrics
Final-revised paper
Preprint