Articles | Volume 20, issue 21
https://doi.org/10.5194/acp-20-13267-2020
https://doi.org/10.5194/acp-20-13267-2020
Research article
 | 
10 Nov 2020
Research article |  | 10 Nov 2020

The response of stratospheric water vapor to climate change driven by different forcing agents

Xun Wang and Andrew E. Dessler

Related authors

Impact of convectively lofted ice on the seasonal cycle of water vapor in the tropical tropopause layer
Xun Wang, Andrew E. Dessler, Mark R. Schoeberl, Wandi Yu, and Tao Wang
Atmos. Chem. Phys., 19, 14621–14636, https://doi.org/10.5194/acp-19-14621-2019,https://doi.org/10.5194/acp-19-14621-2019, 2019
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
Surface ozone over the Tibetan Plateau controlled by stratospheric intrusion
Xiufeng Yin, Dipesh Rupakheti, Guoshuai Zhang, Jiali Luo, Shichang Kang, Benjamin de Foy, Junhua Yang, Zhenming Ji, Zhiyuan Cong, Maheswar Rupakheti, Ping Li, Yuling Hu, and Qianggong Zhang
Atmos. Chem. Phys., 23, 10137–10143, https://doi.org/10.5194/acp-23-10137-2023,https://doi.org/10.5194/acp-23-10137-2023, 2023
Short summary
Stratospheric ozone trends and attribution over 1984–2020 using ordinary and regularised multivariate regression models
Yajuan Li, Sandip S. Dhomse, Martyn P. Chipperfield, Wuhu Feng, Jianchun Bian, Yuan Xia, and Dong Guo
EGUsphere, https://doi.org/10.5194/egusphere-2023-591,https://doi.org/10.5194/egusphere-2023-591, 2023
Short summary
Injection strategy – a driver of atmospheric circulation and ozone response to stratospheric aerosol geoengineering
Ewa M. Bednarz, Amy H. Butler, Daniele Visioni, Yan Zhang, Ben Kravitz, and Douglas G. MacMartin
EGUsphere, https://doi.org/10.5194/egusphere-2023-495,https://doi.org/10.5194/egusphere-2023-495, 2023
Short summary
The role of tropical upwelling in explaining discrepancies between recent modeled and observed lower-stratospheric ozone trends
Sean M. Davis, Nicholas Davis, Robert W. Portmann, Eric Ray, and Karen Rosenlof
Atmos. Chem. Phys., 23, 3347–3361, https://doi.org/10.5194/acp-23-3347-2023,https://doi.org/10.5194/acp-23-3347-2023, 2023
Short summary
The roles of the Quasi-Biennial Oscillation and El Niño for entry stratospheric water vapor in observations and coupled chemistry–ocean CCMI and CMIP6 models
Shlomi Ziskin Ziv, Chaim I. Garfinkel, Sean Davis, and Antara Banerjee
Atmos. Chem. Phys., 22, 7523–7538, https://doi.org/10.5194/acp-22-7523-2022,https://doi.org/10.5194/acp-22-7523-2022, 2022
Short summary

Cited articles

Adams, B. K. and Dessler, A. E.: Estimating Transient Climate Response in a Large-Ensemble Global Climate Model Simulation, Geophys. Res. Lett., 46, 311–317, https://doi.org/10.1029/2018GL080714, 2019. 
Allen, R. J., Amiri-Farahani, A., Lamarque, J.-F., Smith, C., Shindell, D., Hassan, T., and Chung, C. E.: Observationally constrained aerosol–cloud semi-direct effects, npj Clim. Atmos. Sci., 2, 16, https://doi.org/10.1038/s41612-019-0073-9, 2019. 
Arora, V. K., Scinocca, J. F., Boer, G. J., Christian, J. R., Denman, K. L., Flato, G. M., Kharin, V. V., Lee, W. G., and Merryfield, W. J.: Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases, Geophys. Res. Lett., 38, L05805, https://doi.org/10.1029/2010GL046270, 2011. 
Banerjee, A., Chiodo, G., Previdi, M., Ponater, M., Conley, A. J., and Polvani, L. M.: Stratospheric water vapor: an important climate feedback, Clim. Dynam., 53, 1697–1710, https://doi.org/10.1007/s00382-019-04721-4, 2019. 
Bellouin, N., Rae, J., Jones, A., Johnson, C., Haywood, J., and Boucher, O.: Aerosol forcing in the Climate Model Intercomparison Project (CMIP5) simulations by HadGEM2-ES and the role of ammonium nitrate, J. Geophys. Res., 116, D20206, https://doi.org/10.1029/2011JD016074, 2011. 
Download
Short summary
We investigate the response of stratospheric water vapor (SWV) to different forcing agents, including greenhouse gases and aerosols. For most forcing agents, the SWV response is dominated by a slow response, which is coupled to surface temperature changes and exhibits a similar sensitivity to the surface temperature across all forcing agents. The fast SWV adjustment due to forcing is important when the forcing agent directly heats the cold-point region, e.g., black carbon.
Altmetrics
Final-revised paper
Preprint