Articles | Volume 20, issue 21
https://doi.org/10.5194/acp-20-12741-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-12741-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Emission of biogenic volatile organic compounds from warm and oligotrophic seawater in the Eastern Mediterranean
Chen Dayan
Department of Soil and Water Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment,
The Hebrew University of Jerusalem, Rehovot 7610001, Israel
Department of Computer Science, Jerusalem College of Technology, Jerusalem 91160, Israel
Pawel K. Misztal
Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, TX 78712, USA
Maor Gabay
Department of Soil and Water Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment,
The Hebrew University of Jerusalem, Rehovot 7610001, Israel
Alex B. Guenther
Department of Earth System Science, University of California Irvine, Irvine, California 92697, USA
Department of Soil and Water Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment,
The Hebrew University of Jerusalem, Rehovot 7610001, Israel
Related authors
Qian Li, Maor Gabay, Chen Dayan, Pawel Misztal, Alex Guenther, Erick Fredj, and Eran Tas
EGUsphere, https://doi.org/10.5194/egusphere-2024-717, https://doi.org/10.5194/egusphere-2024-717, 2024
Preprint archived
Short summary
Short summary
Biogenic volatile organic compounds (BVOCs) affect the climate and air quality, while their emission from terrestrial vegetation is affected by drought in a way that is not well characterized. Our study reveals that the instantaneous intraday changes in meteorological conditions serve as a better proxy for drought-related variations in BVOCs emission rate than the absolute values of the meteorological parameters, advancing our understanding of BVOCs emission effects under climate change.
Anam M. Khan, Olivia E. Clifton, Jesse O. Bash, Sam Bland, Nathan Booth, Philip Cheung, Lisa Emberson, Johannes Flemming, Erick Fredj, Stefano Galmarini, Laurens Ganzeveld, Orestis Gazetas, Ignacio Goded, Christian Hogrefe, Christopher D. Holmes, László Horváth, Vincent Huijnen, Qian Li, Paul A. Makar, Ivan Mammarella, Giovanni Manca, J. William Munger, Juan L. Pérez-Camanyo, Jonathan Pleim, Limei Ran, Roberto San Jose, Donna Schwede, Sam J. Silva, Ralf Staebler, Shihan Sun, Amos P. K. Tai, Eran Tas, Timo Vesala, Tamás Weidinger, Zhiyong Wu, Leiming Zhang, and Paul C. Stoy
Atmos. Chem. Phys., 25, 8613–8635, https://doi.org/10.5194/acp-25-8613-2025, https://doi.org/10.5194/acp-25-8613-2025, 2025
Short summary
Short summary
Vegetation removes tropospheric ozone through stomatal uptake, and accurately modeling the stomatal uptake of ozone is important for modeling dry deposition and air quality. We evaluated the stomatal component of ozone dry deposition modeled by atmospheric chemistry models at six sites. We find that models and observation-based estimates agree at times during the growing season at all sites, but some models overestimated the stomatal component during the dry summers at a seasonally dry site.
Erin F. Katz, Caleb M. Arata, Eva Y. Pfannerstill, Robert J. Weber, Darian Ng, Michael J. Milazzo, Haley Byrne, Hui Wang, Alex B. Guenther, Camilo Rey-Sanchez, Joshua Apte, Dennis D. Baldocchi, and Allen H. Goldstein
EGUsphere, https://doi.org/10.5194/egusphere-2025-2682, https://doi.org/10.5194/egusphere-2025-2682, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Terpenoids are organic gases that can originate from natural and human-caused sources, and their fast reactions in the atmosphere can cause air pollution. Emissions of organic gases in an urban environment were measured. For some terpenoids, human-caused sources were responsible for about a quarter of the emissions, while others were likely to be entirely from vegetation. The terpenoids contributed substantially to the potential to form secondary pollutants.
Beata Opacka, Trissevgeni Stavrakou, Jean-François Müller, Isabelle De Smedt, Jos van Geffen, Eloise A. Marais, Rebekah P. Horner, Dylan B. Millet, Kelly C. Wells, and Alex B. Guenther
Atmos. Chem. Phys., 25, 2863–2894, https://doi.org/10.5194/acp-25-2863-2025, https://doi.org/10.5194/acp-25-2863-2025, 2025
Short summary
Short summary
Vegetation releases biogenic volatile organic compounds, while soils and lightning contribute to the natural emissions of nitrogen oxides into the atmosphere. These gases interact in complex ways. Using satellite data and models, we developed a new method to simultaneously optimize these natural emissions over Africa in 2019. Our approach resulted in an increase in natural emissions, supported by independent data indicating that current estimates are underestimated.
Min Huang, Gregory R. Carmichael, Kevin W. Bowman, Isabelle De Smedt, Andreas Colliander, Michael H. Cosh, Sujay V. Kumar, Alex B. Guenther, Scott J. Janz, Ryan M. Stauffer, Anne M. Thompson, Niko M. Fedkin, Robert J. Swap, John D. Bolten, and Alicia T. Joseph
Atmos. Chem. Phys., 25, 1449–1476, https://doi.org/10.5194/acp-25-1449-2025, https://doi.org/10.5194/acp-25-1449-2025, 2025
Short summary
Short summary
We use model simulations along with multiplatform, multidisciplinary observations and a range of analysis methods to estimate and understand the distributions, temporal changes, and impacts of reactive nitrogen and ozone over the most populous US region that has undergone significant environmental changes. Deposition, biogenic emissions, and extra-regional sources have been playing increasingly important roles in controlling pollutant budgets in this area as local anthropogenic emissions drop.
Adam E. Thomas, Hayley S. Glicker, Alex B. Guenther, Roger Seco, Oscar Vega Bustillos, Julio Tota, Rodrigo A. F. Souza, and James N. Smith
Atmos. Chem. Phys., 25, 959–977, https://doi.org/10.5194/acp-25-959-2025, https://doi.org/10.5194/acp-25-959-2025, 2025
Short summary
Short summary
We present measurements of the organic composition of ultrafine particles collected from the eastern Amazon, an understudied region that is subjected to increasing human influence. We find that while isoprene chemistry is likely significant for ultrafine-particle growth throughout the year, compounds related to other sources, such as biological-spore emissions and biomass burning, exhibit striking seasonal differences, implying extensive variation in regional ultrafine-particle sources.
Qian Li, Gil Lerner, Einat Bar, Efraim Lewinsohn, and Eran Tas
Biogeosciences, 21, 4133–4147, https://doi.org/10.5194/bg-21-4133-2024, https://doi.org/10.5194/bg-21-4133-2024, 2024
Short summary
Short summary
Our research indicates that instantaneous changes in meteorological parameters better reflect drought-induced changes in the emission rates of biogenic volatile organic compounds (BVOCs) from natural vegetation than their absolute values. However, following a small amount of irrigation, this trend became more moderate or reversed, accompanied by a dramatic increase in BVOC emission rates. These findings advance our understanding of BVOC emissions under climate change.
Qian Li, Maor Gabay, Chen Dayan, Pawel Misztal, Alex Guenther, Erick Fredj, and Eran Tas
EGUsphere, https://doi.org/10.5194/egusphere-2024-717, https://doi.org/10.5194/egusphere-2024-717, 2024
Preprint archived
Short summary
Short summary
Biogenic volatile organic compounds (BVOCs) affect the climate and air quality, while their emission from terrestrial vegetation is affected by drought in a way that is not well characterized. Our study reveals that the instantaneous intraday changes in meteorological conditions serve as a better proxy for drought-related variations in BVOCs emission rate than the absolute values of the meteorological parameters, advancing our understanding of BVOCs emission effects under climate change.
Yang Liu, Raluca Ciuraru, Letizia Abis, Crist Amelynck, Pauline Buysse, Alex Guenther, Bernard Heinesch, Florence Lafouge, Florent Levavasseur, Benjamin Loubet, Auriane Voyard, and Raia-Silvia Massad
EGUsphere, https://doi.org/10.5194/egusphere-2024-530, https://doi.org/10.5194/egusphere-2024-530, 2024
Preprint archived
Short summary
Short summary
This paper reviews the emission and emission processes of biogenic volatile organic compounds (BVOCs) from various crops and soil under different management practices, highlighting challenges in modeling the emissions and proposing a conceptual model for estimation. The aim of this paper is to present agricultural BVOC data and related mechanistic processes to enhance model accuracy and reduce uncertainties in estimating BVOC emissions from agriculture.
Jean-François Müller, Trissevgeni Stavrakou, Glenn-Michael Oomen, Beata Opacka, Isabelle De Smedt, Alex Guenther, Corinne Vigouroux, Bavo Langerock, Carlos Augusto Bauer Aquino, Michel Grutter, James Hannigan, Frank Hase, Rigel Kivi, Erik Lutsch, Emmanuel Mahieu, Maria Makarova, Jean-Marc Metzger, Isamu Morino, Isao Murata, Tomoo Nagahama, Justus Notholt, Ivan Ortega, Mathias Palm, Amelie Röhling, Wolfgang Stremme, Kimberly Strong, Ralf Sussmann, Yao Té, and Alan Fried
Atmos. Chem. Phys., 24, 2207–2237, https://doi.org/10.5194/acp-24-2207-2024, https://doi.org/10.5194/acp-24-2207-2024, 2024
Short summary
Short summary
Formaldehyde observations from satellites can be used to constrain the emissions of volatile organic compounds, but those observations have biases. Using an atmospheric model, aircraft and ground-based remote sensing data, we quantify these biases, propose a correction to the data, and assess the consequence of this correction for the evaluation of emissions.
Susanna Strada, Andrea Pozzer, Graziano Giuliani, Erika Coppola, Fabien Solmon, Xiaoyan Jiang, Alex Guenther, Efstratios Bourtsoukidis, Dominique Serça, Jonathan Williams, and Filippo Giorgi
Atmos. Chem. Phys., 23, 13301–13327, https://doi.org/10.5194/acp-23-13301-2023, https://doi.org/10.5194/acp-23-13301-2023, 2023
Short summary
Short summary
Water deficit modifies emissions of isoprene, an aromatic compound released by plants that influences the production of an air pollutant such as ozone. Numerical modelling shows that, during the warmest and driest summers, isoprene decreases between −20 and −60 % over the Euro-Mediterranean region, while near-surface ozone only diminishes by a few percent. Decreases in isoprene emissions not only happen under dry conditions, but also could occur after prolonged or repeated water deficits.
Olivia E. Clifton, Donna Schwede, Christian Hogrefe, Jesse O. Bash, Sam Bland, Philip Cheung, Mhairi Coyle, Lisa Emberson, Johannes Flemming, Erick Fredj, Stefano Galmarini, Laurens Ganzeveld, Orestis Gazetas, Ignacio Goded, Christopher D. Holmes, László Horváth, Vincent Huijnen, Qian Li, Paul A. Makar, Ivan Mammarella, Giovanni Manca, J. William Munger, Juan L. Pérez-Camanyo, Jonathan Pleim, Limei Ran, Roberto San Jose, Sam J. Silva, Ralf Staebler, Shihan Sun, Amos P. K. Tai, Eran Tas, Timo Vesala, Tamás Weidinger, Zhiyong Wu, and Leiming Zhang
Atmos. Chem. Phys., 23, 9911–9961, https://doi.org/10.5194/acp-23-9911-2023, https://doi.org/10.5194/acp-23-9911-2023, 2023
Short summary
Short summary
A primary sink of air pollutants is dry deposition. Dry deposition estimates differ across the models used to simulate atmospheric chemistry. Here, we introduce an effort to examine dry deposition schemes from atmospheric chemistry models. We provide our approach’s rationale, document the schemes, and describe datasets used to drive and evaluate the schemes. We also launch the analysis of results by evaluating against observations and identifying the processes leading to model–model differences.
Eliane Gomes Alves, Raoni Aquino Santana, Cléo Quaresma Dias-Júnior, Santiago Botía, Tyeen Taylor, Ana Maria Yáñez-Serrano, Jürgen Kesselmeier, Efstratios Bourtsoukidis, Jonathan Williams, Pedro Ivo Lembo Silveira de Assis, Giordane Martins, Rodrigo de Souza, Sérgio Duvoisin Júnior, Alex Guenther, Dasa Gu, Anywhere Tsokankunku, Matthias Sörgel, Bruce Nelson, Davieliton Pinto, Shujiro Komiya, Diogo Martins Rosa, Bettina Weber, Cybelli Barbosa, Michelle Robin, Kenneth J. Feeley, Alvaro Duque, Viviana Londoño Lemos, Maria Paula Contreras, Alvaro Idarraga, Norberto López, Chad Husby, Brett Jestrow, and Iván Mauricio Cely Toro
Atmos. Chem. Phys., 23, 8149–8168, https://doi.org/10.5194/acp-23-8149-2023, https://doi.org/10.5194/acp-23-8149-2023, 2023
Short summary
Short summary
Isoprene is emitted mainly by plants and can influence atmospheric chemistry and air quality. But, there are uncertainties in model emission estimates and follow-up atmospheric processes. In our study, with long-term observational datasets of isoprene and biological and environmental factors from central Amazonia, we show that isoprene emission estimates could be improved when biological processes were mechanistically incorporated into the model.
Lejish Vettikkat, Pasi Miettinen, Angela Buchholz, Pekka Rantala, Hao Yu, Simon Schallhart, Tuukka Petäjä, Roger Seco, Elisa Männistö, Markku Kulmala, Eeva-Stiina Tuittila, Alex B. Guenther, and Siegfried Schobesberger
Atmos. Chem. Phys., 23, 2683–2698, https://doi.org/10.5194/acp-23-2683-2023, https://doi.org/10.5194/acp-23-2683-2023, 2023
Short summary
Short summary
Wetlands cover a substantial fraction of the land mass in the northern latitudes, from northern Europe to Siberia and Canada. Yet, their isoprene and terpene emissions remain understudied. Here, we used a state-of-the-art measurement technique to quantify ecosystem-scale emissions from a boreal wetland during an unusually warm spring/summer. We found that the emissions from this wetland were (a) higher and (b) even more strongly dependent on temperature than commonly thought.
Yuxuan Wang, Nan Lin, Wei Li, Alex Guenther, Joey C. Y. Lam, Amos P. K. Tai, Mark J. Potosnak, and Roger Seco
Atmos. Chem. Phys., 22, 14189–14208, https://doi.org/10.5194/acp-22-14189-2022, https://doi.org/10.5194/acp-22-14189-2022, 2022
Short summary
Short summary
Drought can cause large changes in biogenic isoprene emissions. In situ field observations of isoprene emissions during droughts are confined by spatial coverage and, thus, provide limited constraints. We derived a drought stress factor based on satellite HCHO data for MEGAN2.1 in the GEOS-Chem model using water stress and temperature. This factor reduces the overestimation of isoprene emissions during severe droughts and improves the simulated O3 and organic aerosol responses to droughts.
Elizabeth Klovenski, Yuxuan Wang, Susanne E. Bauer, Kostas Tsigaridis, Greg Faluvegi, Igor Aleinov, Nancy Y. Kiang, Alex Guenther, Xiaoyan Jiang, Wei Li, and Nan Lin
Atmos. Chem. Phys., 22, 13303–13323, https://doi.org/10.5194/acp-22-13303-2022, https://doi.org/10.5194/acp-22-13303-2022, 2022
Short summary
Short summary
Severe drought stresses vegetation and causes reduced emission of isoprene. We study the impact of including a new isoprene drought stress (yd) parameterization in NASA GISS ModelE called DroughtStress_ModelE, which is specifically tuned for ModelE. Inclusion of yd leads to better simulated isoprene emissions at the MOFLUX site during the severe drought of 2012, reduced overestimation of OMI satellite ΩHCHO (formaldehyde column), and improved simulated O3 (ozone) during drought.
Detlev Helmig, Alex Guenther, Jacques Hueber, Ryan Daly, Wei Wang, Jeong-Hoo Park, Anssi Liikanen, and Arnaud P. Praplan
Atmos. Meas. Tech., 15, 5439–5454, https://doi.org/10.5194/amt-15-5439-2022, https://doi.org/10.5194/amt-15-5439-2022, 2022
Short summary
Short summary
This research demonstrates a new method for determination of the chemical reactivity of volatile organic compounds that are emitted from the leaves and needles of trees. These measurements allow elucidating if and how much of these emissions and their associated reactivity are captured and quantified by currently applicable chemical analysis methods.
Deanna C. Myers, Saewung Kim, Steven Sjostedt, Alex B. Guenther, Roger Seco, Oscar Vega Bustillos, Julio Tota, Rodrigo A. F. Souza, and James N. Smith
Atmos. Chem. Phys., 22, 10061–10076, https://doi.org/10.5194/acp-22-10061-2022, https://doi.org/10.5194/acp-22-10061-2022, 2022
Short summary
Short summary
We present the first measurements of gas-phase sulfuric acid from the Amazon basin and evaluate the efficacy of existing sulfuric acid parameterizations in this understudied region. Sulfuric acid is produced during the daytime and nighttime, though current proxies underestimate nighttime production. These results illustrate the need for better parameterizations of sulfuric acid and its precursors that are informed by measurements across a broad range of locations.
Chinmoy Sarkar, Gracie Wong, Anne Mielnik, Sanjeevi Nagalingam, Nicole Jenna Gross, Alex B. Guenther, Taehyoung Lee, Taehyun Park, Jihee Ban, Seokwon Kang, Jin-Soo Park, Joonyoung Ahn, Danbi Kim, Hyunjae Kim, Jinsoo Choi, Beom-Keun Seo, Jong-Ho Kim, Jeong-Ho Kim, Soo Bog Park, and Saewung Kim
Atmos. Chem. Phys., 21, 11505–11518, https://doi.org/10.5194/acp-21-11505-2021, https://doi.org/10.5194/acp-21-11505-2021, 2021
Short summary
Short summary
We present experimental proofs illustrating the emission of an unexplored volatile organic compound, tentatively assigned as ketene, in an industrial facility in South Korea. The emission of such a compound has rarely been reported, but our experimental data show that the emission rate is substantial. It potentially has tremendous implications for regional air quality and public health, as it is highly reactive and toxic at the same time.
James M. Cash, Ben Langford, Chiara Di Marco, Neil J. Mullinger, James Allan, Ernesto Reyes-Villegas, Ruthambara Joshi, Mathew R. Heal, W. Joe F. Acton, C. Nicholas Hewitt, Pawel K. Misztal, Will Drysdale, Tuhin K. Mandal, Shivani, Ranu Gadi, Bhola Ram Gurjar, and Eiko Nemitz
Atmos. Chem. Phys., 21, 10133–10158, https://doi.org/10.5194/acp-21-10133-2021, https://doi.org/10.5194/acp-21-10133-2021, 2021
Short summary
Short summary
We present the first real-time composition of submicron particulate matter (PM1) in Old Delhi using high-resolution aerosol mass spectrometry. Seasonal analysis shows peak concentrations occur during the post-monsoon, and novel-tracers reveal the largest sources are a combination of local open and regional crop residue burning. Strong links between increased chloride aerosol concentrations and burning sources of PM1 suggest burning sources are responsible for the post-monsoon chloride peak.
Beata Opacka, Jean-François Müller, Trissevgeni Stavrakou, Maite Bauwens, Katerina Sindelarova, Jana Markova, and Alex B. Guenther
Atmos. Chem. Phys., 21, 8413–8436, https://doi.org/10.5194/acp-21-8413-2021, https://doi.org/10.5194/acp-21-8413-2021, 2021
Short summary
Short summary
Isoprene is mainly emitted from plants, and about 80 % of its global emissions occur in the tropics. Current isoprene inventories are usually based on modelled vegetation maps, but high pressure on land use over the last decades has led to severe losses, especially in tropical forests, that are not considered by models. We provide a study on the present-day impact of spaceborne land cover changes on isoprene emissions and the first inventory based on high-resolution Landsat tree cover dataset.
Dianne Sanchez, Roger Seco, Dasa Gu, Alex Guenther, John Mak, Youngjae Lee, Danbi Kim, Joonyoung Ahn, Don Blake, Scott Herndon, Daun Jeong, John T. Sullivan, Thomas Mcgee, Rokjin Park, and Saewung Kim
Atmos. Chem. Phys., 21, 6331–6345, https://doi.org/10.5194/acp-21-6331-2021, https://doi.org/10.5194/acp-21-6331-2021, 2021
Short summary
Short summary
We present observations of total reactive gases in a suburban forest observatory in the Seoul metropolitan area. The quantitative comparison with speciated trace gas observations illustrated significant underestimation in atmospheric reactivity from the speciated trace gas observational dataset. We present scientific discussion about potential causes.
Yutong Liang, Coty N. Jen, Robert J. Weber, Pawel K. Misztal, and Allen H. Goldstein
Atmos. Chem. Phys., 21, 5719–5737, https://doi.org/10.5194/acp-21-5719-2021, https://doi.org/10.5194/acp-21-5719-2021, 2021
Short summary
Short summary
This article reports the molecular composition of smoke particles people in SF Bay Area were exposed to during northern California wildfires in Oct. 2017. Major components are sugars, acids, aromatics, and terpenoids. These observations can be used to better understand health impacts of smoke exposure. Tracer compounds indicate which fuels burned, including diterpenoids for softwood and syringyls for hardwood. A statistical analysis reveals a group of secondary compounds formed in daytime aging.
Hui Wang, Qizhong Wu, Alex B. Guenther, Xiaochun Yang, Lanning Wang, Tang Xiao, Jie Li, Jinming Feng, Qi Xu, and Huaqiong Cheng
Atmos. Chem. Phys., 21, 4825–4848, https://doi.org/10.5194/acp-21-4825-2021, https://doi.org/10.5194/acp-21-4825-2021, 2021
Short summary
Short summary
We assessed the influence of the greening trend on BVOC emission in China. The comparison among different scenarios showed that vegetation changes resulting from land cover management are the main driver of BVOC emission change in China. Climate variability contributed significantly to interannual variations but not much to the long-term trend during the study period.
Archit Mehra, Jordan E. Krechmer, Andrew Lambe, Chinmoy Sarkar, Leah Williams, Farzaneh Khalaj, Alex Guenther, John Jayne, Hugh Coe, Douglas Worsnop, Celia Faiola, and Manjula Canagaratna
Atmos. Chem. Phys., 20, 10953–10965, https://doi.org/10.5194/acp-20-10953-2020, https://doi.org/10.5194/acp-20-10953-2020, 2020
Short summary
Short summary
Emissions of volatile organic compounds (VOCs) from plants are important for tropospheric ozone and secondary organic aerosol (SOA) formation. Real plant emissions are much more diverse than the few proxies widely used for studies of plant SOA. Here we present the first study of SOA from Californian sage plants and the oxygenated monoterpenes representing their major emissions. We identify SOA products and show the importance of the formation of highly oxygenated organic molecules and oligomers.
Cited articles
Alvarez, L. A., Exton, D. A., Timmis, K. N., Suggett, D. J., and McGenity, T.
J.: Characterization of marine isoprene-degrading communities, Environ.
Microbiol., 11, 3280–3291, https://doi.org/10.1111/j.1462-2920.2009.02069.x, 2009.
Andreae, M. O.: Ocean-atmosphere interactions in the global biogeochemical
sulfur cycle, Mar. Chem., 30, 1–29, https://doi.org/10.1016/0304-4203(90)90059-L,
1990.
Arneth, A., Monson, R. K., Schurgers, G., Niinemets, Ü., and Palmer, P. I.: Why are estimates of global terrestrial isoprene emissions so similar (and why is this not so for monoterpenes)?, Atmos. Chem. Phys., 8, 4605–4620, https://doi.org/10.5194/acp-8-4605-2008, 2008.
Arnold, S. R., Spracklen, D. V., Williams, J., Yassaa, N., Sciare, J., Bonsang, B., Gros, V., Peeken, I., Lewis, A. C., Alvain, S., and Moulin, C.: Evaluation of the global oceanic isoprene source and its impacts on marine organic carbon aerosol, Atmos. Chem. Phys., 9, 1253–1262, https://doi.org/10.5194/acp-9-1253-2009, 2009.
Ayers, G. P., Cainey, J. M., Gillett, R. W., and Ivey, J. P.: Atmospheric
sulphur and cloud condensation nuclei in marine air in the Southern
Hemisphere, Philos. Trans. R. Soc. B Biol. Sci., 352, 203–211,
https://doi.org/10.1098/rstb.1997.0015, 1997.
Azov, Y.: Seasonal patterns of phytoplankton productivity and abundance in
nearshore oligotrophic waters of the Levant Basin (Mediterranean), J.
Plankton Res., 8, 41–53, https://doi.org/10.1093/plankt/8.1.41, 1986.
Beaugrand, G., Edwards, M., Brander, K., Luczak, C., and Ibanez, F.: Causes
and projections of abrupt climate-driven ecosystem shifts in the North
Atlantic, Ecol. Lett., 11, 1157–1168,
https://doi.org/10.1111/j.1461-0248.2008.01218.x, 2008.
Beaugrand, G., Edwards, M., and Legendre, L.: Marine biodiversity, ecosystem
functioning, and carbon cycles, P. Natl. Acad. Sci., 107,
10120–10124, https://doi.org/10.1073/pnas.0913855107, 2010.
Berresheim, H., Plass-Dülmer, C., Elste, T., Mihalopoulos, N., and Rohrer, F.: OH in the coastal boundary layer of Crete during MINOS: Measurements and relationship with ozone photolysis, Atmos. Chem. Phys., 3, 639–649, https://doi.org/10.5194/acp-3-639-2003, 2003.
Bijma, J., Pörtner, H. O., Yesson, C., and Rogers, A. D.: Climate change
and the oceans – What does the future hold?, Mar. Pollut. Bull., 74,
495–505, https://doi.org/10.1016/j.marpolbul.2013.07.022, 2013.
Blando, J. D. and Turpin, B. J.: Secondary organic aerosol formation in
cloud and fog droplets: A literature evaluation of plausibility, Atmos.
Environ., 34, 1623–1632, https://doi.org/10.1016/S1352-2310(99)00392-1, 2000.
Bonsang, B., Polle, C., and Lambert, G.: Evidence for marine production of
isoprene, Geophys. Res. Lett., 19, 1129–1132, https://doi.org/10.1029/92GL00083,
1992.
Bonsang, B., Gros, V., Peeken, I., Yassaa, N., Bluhm, K., Zoellner, E.,
Sarda-Esteve, R., and Williams, J.: Isoprene emission from phytoplankton
monocultures: the relationship with chlorophyll-a, cell volume and carbon
content, Environ. Chem., 7, 554, https://doi.org/10.1071/en09156, 2010.
Bopp, L., Resplandy, L., Orr, J. C., Doney, S. C., Dunne, J. P., Gehlen, M., Halloran, P., Heinze, C., Ilyina, T., Séférian, R., Tjiputra, J., and Vichi, M.: Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models, Biogeosciences, 10, 6225–6245, https://doi.org/10.5194/bg-10-6225-2013, 2013.
Boucher, O., Moulin, C., Belviso, S., Aumont, O., Bopp, L., Cosme, E., von Kuhlmann, R., Lawrence, M. G., Pham, M., Reddy, M. S., Sciare, J., and Venkataraman, C.: DMS atmospheric concentrations and sulphate aerosol indirect radiative forcing: a sensitivity study to the DMS source representation and oxidation, Atmos. Chem. Phys., 3, 49–65, https://doi.org/10.5194/acp-3-49-2003, 2003.
Bourne, D. G., Dennis, P. G., Uthicke, S., Soo, R. M., Tyson, G. W., and Webster, N.: Coral reef invertebrate microbiomes correlate with the presence of photosymbionts, ISME J., 7, 1452–1458, https://doi.org/10.1038/ismej.2012.172, 2013.
Bouvier-Brown, N. C., Goldstein, A. H., Gilman, J. B., Kuster, W. C., and de Gouw, J. A.: In-situ ambient quantification of monoterpenes, sesquiterpenes, and related oxygenated compounds during BEARPEX 2007: implications for gas- and particle-phase chemistry, Atmos. Chem. Phys., 9, 5505–5518, https://doi.org/10.5194/acp-9-5505-2009, 2009.
Boyce, D. G., Lewis, M. R., and Worm, B.: Global phytoplankton decline over
the past century., Nature, 466, 591–6, https://doi.org/10.1038/nature09268, 2010.
Brilli, F., Ruuskanen, T. M., Schnitzhofer, R., Müller, M.,
Breitenlechner, M., Bittner, V., Wohlfahrt, G., Loreto, F., and Hansel, A.:
Detection of plant volatiles after leaf wounding and darkening by proton
transfer reaction “time-of-flight” mass spectrometry (ptr-tof), PLoS One,
6, 1–2, https://doi.org/10.1371/journal.pone.0020419, 2011.
Brilli, F., Hörtnagl, L., Bamberger, I., Schnitzhofer, R., Ruuskanen, T.
M., Hansel, A., Loreto, F., and Wohlfahrt, G.: Qualitative and quantitative
characterization of volatile organic compound emissions from cut grass,
Environ. Sci. Technol., 46, 3859–3865, https://doi.org/10.1021/es204025y, 2012.
Broadgate, W. J., Malin, G., Küpper, F. C., Thompson, A., and Liss, P.
S.: Isoprene and other non-methane hydrocarbons from seaweeds: A source of
reactive hydrocarbons to the atmosphere, Mar. Chem., 88, 61–73,
https://doi.org/10.1016/j.marchem.2004.03.002, 2004.
Calfapietra, C., Fares, S., Manes, F., Morani, A., Sgrigna, G., and Loreto,
F.: Role of Biogenic Volatile Organic Compounds (BVOC) emitted by urban
trees on ozone concentration in cities: A review, Environ. Pollut., 183,
71–80, https://doi.org/10.1016/j.envpol.2013.03.012, 2013.
Cappellin, L., Karl, T., Probst, M., Ismailova, O., Winkler, P. M.,
Soukoulis, C., Aprea, E., Märk, T. D., Gasperi, F., and Biasioli, F.: On
quantitative determination of volatile organic compound concentrations using
proton transfer reaction time-of-flight mass spectrometry, Environ. Sci.
Technol., 46, 2283–2290, https://doi.org/10.1021/es203985t, 2012.
Carlton, A. G., Wiedinmyer, C., and Kroll, J. H.: A review of Secondary Organic Aerosol (SOA) formation from isoprene, Atmos. Chem. Phys., 9, 4987–5005, https://doi.org/10.5194/acp-9-4987-2009, 2009.
Carslaw, N., Jacobs, P. J., and Pilling, M. J.: Understanding radical
chemistry in the marine boundary layer, Phys. Chem. Earth Pt. C, 25, 235–243, https://doi.org/10.1016/S1464-1917(00)00011-8,
2000.
Chiemchaisri, W., Visvanathan, C., and Jy, S. W.: Effects of trace volatile
organic compounds on methane oxidation, Brazilian Arch. Biol. Technol.,
44, 135–140, https://doi.org/10.1590/S1516-89132001000200005, 2001.
Curci, G., Beekmann, M., Vautard, R., Smiatek, G., Steinbrecher, R., and
Theloke, J.: Modelling study of the impact of isoprene and terpene biogenic
emissions on European ozone levels, Atmos. Environ., 43, 1444–1455,
https://doi.org/10.1016/J.ATMOSENV.2008.02.070, 2009.
Dani, K. G. G. S. and Loreto, F.: Trade-Off Between Dimethyl Sulfide and
Isoprene Emissions from Marine Phytoplankton, Trends Plant Sci., 22,
361–372, https://doi.org/10.1016/j.tplants.2017.01.006, 2017.
Debevec, C., Sauvage, S., Gros, V., Sciare, J., Pikridas, M., Stavroulas, I., Salameh, T., Leonardis, T., Gaudion, V., Depelchin, L., Fronval, I., Sarda-Esteve, R., Baisnée, D., Bonsang, B., Savvides, C., Vrekoussis, M., and Locoge, N.: Origin and variability in volatile organic compounds observed at an Eastern Mediterranean background site (Cyprus), Atmos. Chem. Phys., 17, 11355–11388, https://doi.org/10.5194/acp-17-11355-2017, 2017.
Derstroff, B., Hüser, I., Bourtsoukidis, E., Crowley, J. N., Fischer, H., Gromov, S., Harder, H., Janssen, R. H. H., Kesselmeier, J., Lelieveld, J., Mallik, C., Martinez, M., Novelli, A., Parchatka, U., Phillips, G. J., Sander, R., Sauvage, C., Schuladen, J., Stönner, C., Tomsche, L., and Williams, J.: Volatile organic compounds (VOCs) in photochemically aged air from the eastern and western Mediterranean, Atmos. Chem. Phys., 17, 9547–9566, https://doi.org/10.5194/acp-17-9547-2017, 2017.
Efrati, S., Lehahn, Y., Rahav, E., Kress, N., Herut, B., Gertman, I., Goldman, R., Ozer, T., Lazar, M., and Heifetz, E.: Intrusion of coastal waters into the pelagic eastern Mediterranean: in situ and satellite-based characterization, Biogeosciences, 10, 3349–3357, https://doi.org/10.5194/bg-10-3349-2013, 2013.
Exton, D. A., Suggett, D. J., McGenity, T. J., and Steinke, M.:
Chlorophyll-normalized isoprene production in laboratory cultures of marine
microalgae and implications for global models, Limnol. Oceanogr., 58,
1301–1311, https://doi.org/10.4319/lo.2013.58.4.1301, 2013.
Fares, S., Mereu, S., Scarascia Mugnozza, G., Vitale, M., Manes, F., Frattoni, M., Ciccioli, P., Gerosa, G., and Loreto, F.: The ACCENT-VOCBAS field campaign on biosphere-atmosphere interactions in a Mediterranean ecosystem of Castelporziano (Rome): site characteristics, climatic and meteorological conditions, and eco-physiology of vegetation, Biogeosciences, 6, 1043–1058, https://doi.org/10.5194/bg-6-1043-2009, 2009.
Fares, S., McKay, M., Holzinger, R., and Goldstein, A. H.: Ozone fluxes in a
Pinus ponderosa ecosystem are dominated by non-stomatal processes: Evidence
from long-term continuous measurements, Agric. For. Meteorol., 150,
420–431, https://doi.org/10.1016/j.agrformet.2010.01.007, 2010.
Fares, S., Weber, R., Park, J. H., Gentner, D., Karlik, J., and Goldstein, A.
H.: Ozone deposition to an orange orchard: Partitioning between stomatal and
non-stomatal sinks, Environ. Pollut., 169, 258–266,
https://doi.org/10.1016/j.envpol.2012.01.030, 2012.
Fares, S., Paoletti, E., Loreto, F., and Brilli, F.: Bidirectional Flux of
Methyl Vinyl Ketone and Methacrolein in Trees with Different Isoprenoid
Emission under Realistic Ambient Concentrations, Environ. Sci. Technol., 49, 7735–7742, https://doi.org/10.1021/acs.est.5b00673, 2015.
Fogg, G. E.: Review Lecture – Picoplankton, Proc. R. Soc. London. Ser. B.
Biol. Sci., 228, 1–30, https://doi.org/10.1098/rspb.1986.0037, 1986.
Gage, D. A., Rhodes, D., Nolte, K. D., Hicks, W. A., Leustek, T., Cooper, A.
J. L., and Hanson, A. D.: A new route for synthesis of
dimethylsulphoniopropionate in marine algae, Nature, 387, 891–894,
https://doi.org/10.1038/43160, 1997.
Ganor, E., Foner, H. A., Bingemer, H. G., Udisti, R., and Setter, I.:
Biogenic sulphate generation in the Mediterranean Sea and its contribution
to the sulphate anomaly in the aerosol over Israel and the Eastern
Mediterranean, Atmos. Environ., 34, 3453–3462,
https://doi.org/10.1016/S1352-2310(00)00077-7, 2000.
Gantt, B., Meskhidze, N., Zhang, Y., and Xu, J.: The effect of marine
isoprene emissions on secondary organic aerosol and ozone formation in the
coastal United States, Atmos. Environ., 44, 115–121,
https://doi.org/10.1016/J.ATMOSENV.2009.08.027, 2010.
Giorgi, F.: Climate change hot-spots, Geophys. Res. Lett, 33, 8707,
https://doi.org/10.1029/2006GL025734, 2006.
Goldstein, A. H. and Galbally, I. E.: Known and Unexplored Organic
Constituents in the Earth's Atmosphere, Environ. Sci. Technol., 41,
1514–1521, https://doi.org/10.1021/es072476p, 2007.
Goldstein, A. H., Mckay, M., Kurpius, M. R., Schade, G. W., Lee, A.,
Holzinger, R., and Rasmussen, R. A.: Forest thinning experiment confirms
ozone deposition to forest canopy is dominated by reaction with biogenic
VOCs, 31, 1–4, https://doi.org/10.1029/2004GL021259, 2004.
Graus, M., Müller, M., and Hansel, A.: High resolution PTR-TOF:
Quantification and Formula Confirmation of VOC in Real Time, J. Am. Soc.
Mass Spectrom., 21, 1037–1044, https://doi.org/10.1016/j.jasms.2010.02.006, 2010.
Gray, D. W., Lerdau, M. T., and Goldstein, A. H.: Influences of temperature
history, water stress, and needle age on methylbutenol emissions, available at: https://pdfs.semanticscholar.org/3240/cf36bb34db04129310281aad9aae48ecc40f.pdf (last access: 28 January 2019), 2003.
Griffin, R. J., Cocker, D. R., Flagan, R. C., and Seinfeld, J. H.: Organic
aerosol formation from the oxidation of biogenic hydrocarbons, J. Geophys.
Res.-Atmos., 104, 3555–3567, https://doi.org/10.1029/1998JD100049, 1999.
Guenther, A.: The contribution of reactive carbon emissions from vegetation
to the carbon balance of terrestrial ecosystems, Chemosphere, 49,
837–844, https://doi.org/10.1016/S0045-6535(02)00384-3, 2002.
Guenther, A., Hewitt, C. N., Erickson, D., Fall, R., Geron, C., Graedel, T.,
Harley, P., Klinger, L., Lerdau, M., Mckay, W. A., Pierce, T., Scholes, B.,
Steinbrecher, R., Tallamraju, R., Taylor, J., and Zimmerman, P.: A global
model of natural volatile organic compound emissions, J. Geophys. Res.,
100, 8873, https://doi.org/10.1029/94JD02950, 1995.
Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys., 6, 3181–3210, https://doi.org/10.5194/acp-6-3181-2006, 2006.
Guenther, A. B., Zimmerman, P. R., Harley, P. C., Monson, R. K., and Fall,
R.: Isoprene and monoterpene emission rate variability: Model evaluations
and sensitivity analyses, J. Geophys. Res., 98, 12609,
https://doi.org/10.1029/93JD00527, 1993.
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geosci. Model Dev., 5, 1471–1492, https://doi.org/10.5194/gmd-5-1471-2012, 2012.
Hackenberg, S. C., Andrews, S. J., Airs, R., Arnold, S. R., Bouman, H. A.,
Brewin, R. J. W., Chance, R. J., Cummings, D., Dall'Olmo, G., Lewis, A. C.,
Minaeian, J. K., Reifel, K. M., Small, A., Tarran, G. A., Tilstone, G. H.
and Carpenter, L. J.: Potential controls of isoprene in the surface ocean,
Global Biogeochem. Cy., 31, 644–662, https://doi.org/10.1002/2016GB005531, 2017.
Halsey, K. H., Giovannoni, S. J., Graus, M., Zhao, Y., Landry, Z., Thrash,
J. C., Vergin, K. L., and de Gouw, J.: Biological cycling of volatile organic
carbon by phytoplankton and bacterioplankton, Limnol. Oceanogr., 62,
2650–2661, https://doi.org/10.1002/lno.10596, 2017.
Herut B. and all scientific group of IOLR, and National Institute of Oceanography: The National Monitoring Program of Israel's Mediterranean waters – Scientific Report for 2013/14, IOLR Report H21/2015 IOLR, Israel, 2015.
Hoegh-Guldberg, O., Cai, R., Poloczanska, E. S., Brewer, P. G., Sundby, S.,
Hilmi, K., Fabry, V. J., Jung, S., Perry, I., Richardson, A. J., Brown, C.
J., Schoeman, D., Signorini, S., Sydeman, W., Zhang, R., van Hooidonk, R.,
McKinnell, S. M., Turley, C., Omar, L., Cai, R., Poloczanska, E., Brewer,
P., Sundby, S., Hilmi, K., Fabry, V., Jung, S., Field, C., Dokken, D., Mach,
K., Bilir, T., Chatterjee, M., Ebi, K., Estrada, Y., Genova, R., Girma, B., and Kissel, E.: The Ocean, in: Climate Change 2014: Impacts, Adaptation, and
Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to
the Fifth Assessment Report of the Intergovernmental Panel on Climate
Change, Intergov. Panel Clim. Chang., 2, 1655–1731,
https://doi.org/10.1017/CBO9781107415386.010, 2014.
Holopainen, J. K. and Gershenzon, J.: Multiple stress factors and the
emission of plant VOCs, Trends Plant Sci., 15, 176–184,
https://doi.org/10.1016/j.tplants.2010.01.006, 2010.
Holzinger, R.: PTRwid: A new widget tool for processing PTR-TOF-MS data, Atmos. Meas. Tech., 8, 3903–3922, https://doi.org/10.5194/amt-8-3903-2015, 2015.
Howard, E. C., Sun, S., Biers, E. J., and Moran, M. A.: Abundant and diverse bacteria involved in DMSP degradation in marine surface waters, Environ. Microbiol., 10, 2397–2410, https://doi.org/10.1111/j.1462-2920.2008.01665.x, 2008.
Hu, Q. H., Xie, Z. Q., Wang, X. M., Kang, H., He, Q. F., and Zhang, P.:
Secondary organic aerosols over oceans via oxidation of isoprene and
monoterpenes from Arctic to Antarctic, Sci. Rep., 3, 1–7,
https://doi.org/10.1038/srep02280, 2013.
IOLR: Israel Oceanographic & Limnological Research (IOLR) Mediterranean
GLOSS #80 station, Israel Oceanographic and Limnological Research Institute, Israel, 2015.
IPCC: Climate change 2007 – impacts, adaptation and vulnerability: Working group II contribution to the fourth assessment report of the IPCC, World Meteorological Organisation, Geneva,
2007.
Janson, R. and de Serves, C.: Acetone and monoterpene emissions from the
boreal forest in northern Europe, Atmos. Environ., 35, 4629–4637,
https://doi.org/10.1016/S1352-2310(01)00160-1, 2001.
Jardine, K. J., Meyers, K., Abrell, L., Alves, E. G., Yanez Serrano, A. M., Kesselmeier, J., Karl, T., Guenther, A., Chambers, J. Q., and Vickers, C.: Emissions of putative isoprene oxidation products from mango branches under abiotic stress, J. Exp. Bot., 64, 3697–708, https://doi.org/10.1093/jxb/ert202, 2013.
Jardine, K., Yañez-Serrano, A. M., Williams, J., Kunert, N., Jardine,
A., Taylor, T., Abrell, L., Artaxo, P., Guenther, A., Hewitt, C. N., House,
E., Florentino, A. P., Manzi, A., Higuchi, N., Kesselmeier, J., Behrendt,
T., Veres, P. R., Derstroff, B., Fuentes, J. D., Martin, S. T., and Andreae,
M. O.: Dimethyl sulfide in the Amazon rain forest, Global Biogeochem.
Cy., 29, 19–32, https://doi.org/10.1002/2014GB004969, 2015.
Jardine, K. J., Meyers, K., Abrell, L., Alves, E. G., Yanez Serrano, A. M.,
Kesselmeier, J., Karl, T., Guenther, A., Chambers, J. Q., and Vickers, C.:
Emissions of putative isoprene oxidation products from mango branches under
abiotic stress, J. Exp. Bot., 64, 3697–708, https://doi.org/10.1093/jxb/ert202,
2013.
Jordan, A., Haidacher, S., Hanel, G., Hartungen, E., Herbig, J., Märk,
L., Schottkowsky, R., Seehauser, H., Sulzer, P., and Märk, T. D.: An
online ultra-high sensitivity Proton-transfer-reaction mass-spectrometer
combined with switchable reagent ion capability (PTR+SRI-MS), Int. J. Mass
Spectrom., 286, 32–38, https://doi.org/10.1016/j.ijms.2009.06.006, 2009.
Kameyama, S., Yoshida, S., Tanimoto, H., Inomata, S., Suzuki, K., and
Yoshikawa-Inoue, H.: High-resolution observations of dissolved isoprene in
surface seawater in the Southern Ocean during austral summer 2010–2011, J.
Oceanogr., 70, 225–239, https://doi.org/10.1007/s10872-014-0226-8, 2014.
Kanagendran, A., Pazouki, L., Bichele, R., Külheim, C., and Niinemets, Ü.: Temporal regulation of terpene synthase gene expression in Eucalyptus globulus leaves upon ozone and wounding stresses: relationships with stomatal ozone uptake and emission responses, Environ. Exp. Bot., 155, 552–565, https://doi.org/10.1016/j.envexpbot.2018.08.002, 2018.
Kanda, K. I., Tsuruta, H., and Tsuruta, H.: Emissions of sulfur gases from
various types of terrestrial higher plants, Soil Sci. Plant Nutr., 41,
321–328, https://doi.org/10.1080/00380768.1995.10419589, 1995.
Karl, T., Guenther, A., Spirig, C., Hansel, A., and Fall, R.: Seasonal
variation of biogenic VOC emissions above a mixed hardwood forest in
northern Michigan, Geophys. Res. Lett., 30, 2–5, https://doi.org/10.1029/2003GL018432, 2003.
Kaser, L., Karl, T., Schnitzhofer, R., Graus, M., Herdlinger-Blatt, I. S., DiGangi, J. P., Sive, B., Turnipseed, A., Hornbrook, R. S., Zheng, W., Flocke, F. M., Guenther, A., Keutsch, F. N., Apel, E., and Hansel, A.: Comparison of different real time VOC measurement techniques in a ponderosa pine forest, Atmos. Chem. Phys., 13, 2893–2906, https://doi.org/10.5194/acp-13-2893-2013, 2013.
Kettle, A. J. and Andreae, M. O.: Flux of dimethylsulfide from the oceans: A
comparison of updated data sets and flux models, J. Geophys. Res.-Atmos.,
105, 26793–26808, https://doi.org/10.1029/2000JD900252, 2000.
Knighton, W. B., Fortner, E. C., Herndon, S. C., Wood, E. C., and Miake-Lye, R. C.: Adaptation of a proton transfer reaction mass spectrometer instrument to employ NO+ as reagent ion for the detection of 1,3-butadiene in the ambient atmosphere, Rapid Commun. Mass Spectrom., 23, 3301–3308, https://doi.org/10.1002/rcm.4249, 2009.
Koçak, M., Kubilay, N., Tuğrul, S., and Mihalopoulos, N.: Atmospheric nutrient inputs to the northern levantine basin from a long-term observation: sources and comparison with riverine inputs, Biogeosciences, 7, 4037–4050, https://doi.org/10.5194/bg-7-4037-2010, 2010.
Koga, S., Nomura, D., and Wada, M.: Variation of dimethylsulfide mixing ratio
over the Southern Ocean from 36∘ S to 70∘ S, Polar Sci.,
8, 306–313, https://doi.org/10.1016/j.polar.2014.04.002, 2014.
Kouvarakis, G. and Mihalopoulos, N.: Seasonal variation of dimethylsulfide
in the gas phase and of methanesulfonate and non-sea-salt sulfate in the
aerosols phase in the Eastern Mediterranean atmosphere, Atmos. Environ.,
36, 929–938, https://doi.org/10.1016/S1352-2310(01)00511-8, 2002.
Krom, M. D., Emeis, K. C., and Van Cappellen, P.: Why is the Eastern
Mediterranean phosphorus limited?, Prog. Oceanogr., 85, 236–244,
https://doi.org/10.1016/j.pocean.2010.03.003, 2010.
Kurpius, M. R. and Goldstein, A. H.: Gas-phase chemistry dominates O3 loss
to a forest, implying a source of aerosols and hydroxyl radicals to the
atmosphere, Geophys. Res. Lett., 30, 1371–1374,
https://doi.org/10.1029/2002GL016785, 2003.
Kuzma, J., Nemecek-Marshall, M., Pollock, W. H., and Fall, R.: Bacteria
produce the volatile hydrocarbon isoprene, Curr. Microbiol., 30, 97–103,
https://doi.org/10.1007/BF00294190, 1995.
Lana, A., Bell, T. G., Simó, R., Vallina, S. M., Ballabrera-Poy, J.,
Kettle, A. J., Dachs, J., Bopp, L., Saltzman, E. S., Stefels, J., Johnson,
J. E., and Liss, P. S.: An updated climatology of surface dimethlysulfide
concentrations and emission fluxes in the global ocean, Global Biogeochem.
Cy., 25, GB1004, https://doi.org/10.1029/2010GB003850, 2011.
Lang-Yona, N., Rudich, Y., Mentel, Th. F., Bohne, A., Buchholz, A., Kiendler-Scharr, A., Kleist, E., Spindler, C., Tillmann, R., and Wildt, J.: The chemical and microphysical properties of secondary organic aerosols from Holm Oak emissions, Atmos. Chem. Phys., 10, 7253–7265, https://doi.org/10.5194/acp-10-7253-2010, 2010.
Laothawornkitkul, J., Taylor, J. E., Paul, N. D., and Hewitt, C. N.: Biogenic
volatile organic compounds in the Earth system: Tansley review, New Phytol.,
183, 27–51, https://doi.org/10.1111/j.1469-8137.2009.02859.x, 2009.
Lary, D. J. and Shallcross, D. E.: Central role of carbonyl compounds in
atmospheric chemistry, J. Geophys. Res.-Atmos., 105, 19771–19778,
https://doi.org/10.1029/1999JD901184, 2000.
Lelieveld, J., Hadjinicolaou, P., Kostopoulou, E., Chenoweth, J., El Maayar,
M., Giannakopoulos, C., Hannides, C., Lange, M. A., Tanarhte, M., Tyrlis, E., and Xoplaki, E.: Climate change and impacts in the Eastern Mediterranean and
the Middle East, Clim. Change, 114, 667–687,
https://doi.org/10.1007/s10584-012-0418-4, 2012.
Levasseur, M., Gosselin, M., and Michaud, S.: A new source of dimethylsulfide
(DMS) for the arctic atmosphere: ice diatoms, Mar. Biol., 121, 381–387,
https://doi.org/10.1007/BF00346748, 1994.
Li, Q., Gabay, M., Rubin, Y., Fredj, E., and Tas, E.: Measurement-based
investigation of ozone deposition to vegetation under the effects of coastal
and photochemical air pollution in the Eastern Mediterranean, Sci. Total
Environ., 645, 1579–1597, https://doi.org/10.1016/j.scitotenv.2018.07.037, 2018.
Li, R., Warneke, C., Graus, M., Field, R., Geiger, F., Veres, P. R., Soltis, J., Li, S.-M., Murphy, S. M., Sweeney, C., Pétron, G., Roberts, J. M., and de Gouw, J.: Measurements of hydrogen sulfide (H2S) using PTR-MS: calibration, humidity dependence, inter-comparison and results from field studies in an oil and gas production region, Atmos. Meas. Tech., 7, 3597–3610, https://doi.org/10.5194/amt-7-3597-2014, 2014.
Liakakou, E., Vrekoussis, M., Bonsang, B., Donousis, C., Kanakidou, M., and
Mihalopoulos, N.: Isoprene above the Eastern Mediterranean: Seasonal
variation and contribution to the oxidation capacity of the atmosphere,
Atmos. Environ., 41, 1002–1010, https://doi.org/10.1016/J.ATMOSENV.2006.09.034,
2007.
Llusia, J., Roahtyn, S., Yakir, D., Rotenberg, E., Seco, R., Guenther, A., and Peñuelas, J.: Photosynthesis, stomatal conductance and terpene
emission response to water availability in dry and mesic Mediterranean
forests, Trees-Struct. Funct., 30, 749–759,
https://doi.org/10.1007/s00468-015-1317-x, 2015.
Massada, A. B., Kent, R., Blank, L., Perevolotsky, A., Hadar, L., and Carmel,
Y.: Automated segmentation of vegetation structure units in a Mediterranean
landscape, Int. J. Remote Sens., 33, 346–364,
https://doi.org/10.1080/01431161.2010.532173, 2012.
Matsunaga, S., Mochida, M., Saito, T., and Kawamura, K.: In situ measurement
of isoprene in the marine air and surface seawater from the western North
Pacific, Atmos. Environ., 36, 6051–6057,
https://doi.org/10.1016/S1352-2310(02)00657-X, 2002.
Mazard, S. L., Fuller, N. J., Orcutt, K. M., Bridle, O., and Scanlan, D. J.: PCR analysis of the distribution of unicellular cyanobacterial diazotrophs in the Arabian Sea, Appl. Environ. Microbiol., 70, 7355–7364, https://doi.org/10.1128/AEM.70.12.7355-7364.2004, 2004.
Meskhidze, N. and Nenes, A.: Phytoplankton and cloudiness in the southern
ocean, Science, 80, 1419–1423, https://doi.org/10.1126/science.1131779,
2007.
Misztal, P. K., Lymperopoulou, D. S., Adams, R. I., Scott, R. A., Lindow, S.
E., Bruns, T., Taylor, J. W., Uehling, J., Bonito, G., Vilgalys, R., and
Goldstein, A. H.: Emission Factors of Microbial Volatile Organic Compounds
from Environmental Bacteria and Fungi, Environ. Sci. Technol., 52, 8272–8282, https://doi.org/10.1021/acs.est.8b00806, 2018.
Monks, P. S., Archibald, A. T., Colette, A., Cooper, O., Coyle, M., Derwent, R., Fowler, D., Granier, C., Law, K. S., Mills, G. E., Stevenson, D. S., Tarasova, O., Thouret, V., von Schneidemesser, E., Sommariva, R., Wild, O., and Williams, M. L.: Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer, Atmos. Chem. Phys., 15, 8889–8973, https://doi.org/10.5194/acp-15-8889-2015, 2015.
Monson, R. K., Jaeger, C. H., Adams III, W. W., Driggers, E. M., Silver, G. M.
and Fall, R.: Relationships among Isoprene Emission Rate, Photosynthesis,
and Isoprene Synthase Activity as Influenced by Temperature, available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1080324/pdf/plntphys00702-0385.pdf (last ccess: 21 October 2018), 1992.
Müller, J. F. and Brasseur, G.: Sources of upper tropospheric HOx: A
three-dimensional study, J. Geophys. Res.-Atmos., 104, 1705–1715, https://doi.org/10.1029/1998JD100005, 1999.
Niinemets, Ü., Loreto, F., and Reichstein, M.: Physiological and
physicochemical controls on foliar volatile organic compound emissions,
Trends Plant Sci., 9, 180–186, https://doi.org/10.1016/j.tplants.2004.02.006, 2004.
Ormeño, E., Goldstein, A. and Niinemets, Ü.: Extracting and trapping
biogenic volatile organic compounds stored in plant species, TrAC – Trends, Anal. Chem., 30, 978–989, https://doi.org/10.1016/j.trac.2011.04.006, 2011.
Ozer, T., Gertman, I., Kress, N., Silverman, J., and Herut, B.: Interannual
thermohaline (1979–2014) and nutrient (2002–2014) dynamics in the
Levantine surface and intermediate water masses, SE Mediterranean Sea, Glob.
Planet. Change, 151, 60–67, https://doi.org/10.1016/j.gloplacha.2016.04.001, 2016.
Paerl, H. W. and Otten, T. G.: Harmful Cyanobacterial Blooms: Causes,
Consequences, and Controls, Microb. Ecol., 65, 995–1010,
https://doi.org/10.1007/s00248-012-0159-y, 2013.
Palmer, P. I. and Shaw, S. L.: Quantifying global marine isoprene fluxes
using MODIS chlorophyll observations, Geophys. Res. Lett, 32, 9805,
https://doi.org/10.1029/2005GL022592, 2005.
Park, J.-H., Goldstein, A. H., Timkovsky, J., Fares, S., Weber, R., Karlik, J., and Holzinger, R.: Eddy covariance emission and deposition flux measurements using proton transfer reaction – time of flight – mass spectrometry (PTR-TOF-MS): comparison with PTR-MS measured vertical gradients and fluxes, Atmos. Chem. Phys., 13, 1439–1456, https://doi.org/10.5194/acp-13-1439-2013, 2013a.
Park, J. H., Goldstein, A. H., Timkovsky, J., Fares, S., Weber, R., Karlik,
J., and Holzinger, R.: Active atmosphere-ecosystem exchange of the vast
majority of detected volatile organic compounds, Science,
341, 643–647, https://doi.org/10.1126/science.1235053, 2013b.
Park, J.-H., Fares, S., Weber, R., and Goldstein, A. H.: Biogenic volatile organic compound emissions during BEARPEX 2009 measured by eddy covariance and flux–gradient similarity methods, Atmos. Chem. Phys., 14, 231–244, https://doi.org/10.5194/acp-14-231-2014, 2014.
Pedrotti, M. L., Mousseau, L., Marro, S., Passafiume, O., Gossaert, M., and
Labat, J.-P.: Variability of ultraplankton composition and distribution in
an oligotrophic coastal ecosystem of the NW Mediterranean Sea derived from a
two-year survey at the single cell level, edited by Duperron, S., PLoS One,
12, e0190121, https://doi.org/10.1371/journal.pone.0190121, 2017.
Peñuelas, J. and Staudt, M.: BVOCs and global change, Trends Plant Sci.,
15, 133–144, https://doi.org/10.1016/j.tplants.2009.12.005, 2010.
Penuelas, J., Rutishauser, T., and Filella, I.: Phenology feedbacks on
climate change, Science, 80, 887–888, 2010.
Portillo-Estrada, M., Kazantsev, T., Talts, E., Tosens, T., and Niinemets,
Ü.: Emission Timetable and Quantitative Patterns of Wound-Induced
Volatiles Across Different Leaf Damage Treatments in Aspen (Populus
Tremula), J. Chem. Ecol., 41, 1105–1117, https://doi.org/10.1007/s10886-015-0646-y,
2015.
Psarra, S., Tselepides, A., and Ignatiades, L.: Primary productivity in the
oligotrophic Cretan Sea (NE Mediterranean): Seasonal and interannual
variability, Prog. Oceanogr., 46, 187–204,
https://doi.org/10.1016/S0079-6611(00)00018-5, 2000.
Rasconi, S., Gall, A., Winter, K., and Kainz, M. J.: Increasing Water
Temperature Triggers Dominance of Small Freshwater Plankton, PLoS One,
10, e0140449, https://doi.org/10.1371/journal.pone.0140449, 2015.
Ren, Y., Qu, Z., Du, Y., Xu, R., Ma, D., Yang, G., Shi, Y., Fan, X., Tani,
A., Guo, P., Ge, Y., and Chang, J.: Air quality and health effects of
biogenic volatile organic compounds emissions from urban green spaces and
the mitigation strategies, Environ. Pollut., 230, 849–861,
https://doi.org/10.1016/j.envpol.2017.06.049, 2017.
Richards, N. A. D., Arnold, S. R., Chipperfield, M. P., Miles, G., Rap, A., Siddans, R., Monks, S. A., and Hollaway, M. J.: The Mediterranean summertime ozone maximum: global emission sensitivities and radiative impacts, Atmos. Chem. Phys., 13, 2331–2345, https://doi.org/10.5194/acp-13-2331-2013, 2013.
Sarma, T. A.: Handbook of cyanobacteria, CRC Press, available at: https://books.google.co.il/books?id=BlHSBQAAQBAJ&dq=cyanobacteria+mediterranean+oligotrophi1011
(last access: 18 March 2019), 2013.
Schade, G. W., Goldstein, A. H., and Lamanna, M. S.: Are Monoterpene
Emissions influenced by Humidity?, Geophys. Res. Lett., 26, 2187–2190,
https://doi.org/10.1029/1999GL900444, 1999.
Seco, R., Karl, T., Turnipseed, A., Greenberg, J., Guenther, A., Llusia, J.,
Peñuelas, J., Dicken, U., Rotenberg, E., Kim, S., and Yakir, D.:
Springtime ecosystem-scale monoterpene fluxes from Mediterranean pine
forests across a precipitation gradient, Agric. For. Meteorol., 237–238,
150–159, https://doi.org/10.1016/j.agrformet.2017.02.007, 2017.
Shaltout, M. and Omstedt, A.: Recent sea surface temperature trends and
future scenarios for the Mediterranean Sea, Oceanologia, 56, 411–443,
https://doi.org/10.5697/OC.56-3.411, 2014.
Shaw, S. L., Chisholm, S. W., and Prinn, R. G.: Isoprene production by
Prochlorococcus, a marine cyanobacterium, and other phytoplankton, Mar.
Chem., 80, 227–245, https://doi.org/10.1016/S0304-4203(02)00101-9, 2003.
Simo, R.: Production of atmospheric sulfur by oceanic plankton:
Biogeochemical, ecological and evolutionary links, Trends Ecol. Evol.,
16, 287–294, https://doi.org/10.1016/S0169-5347(01)02152-8, 2001.
Singh, H. B.: Analysis of the atmospheric distribution, sources, and sinks
of oxygenated volatile organic chemicals based on measurements over the
Pacific during TRACE-P, J. Geophys. Res., 109, D15S07,
https://doi.org/10.1029/2003JD003883, 2004.
Singh, H. B., Kanakidou, M., Crutzen, P. J., and Jacob, D. J.: High
concentrations and photochemical fate of oxygenated hydrocarbons in the
global troposphere, Nature, 378, 50–54, https://doi.org/10.1038/378050a0, 1995.
Sisma-Ventura, G., Bialik, O. M., Yam, R., Herut, B., and Silverman, J.: pCO2
variability in the surface waters of the ultra-oligotrophic Levantine Sea:
Exploring the air–sea CO2 fluxes in a fast warming region, Mar. Chem.,
196, 13–23, https://doi.org/10.1016/j.marchem.2017.06.006, 2017.
Stefels, J., Steinke, M., Turner, S., Malin, G., and Belviso, S.:
Environmental constraints on the production and removal of the climatically
active gas dimethylsulphide (DMS) and implications for ecosystem modelling,
in Phaeocystis, major link in the biogeochemical cycling of climate-relevant
elements, 245–275, Springer Netherlands, Dordrecht, 2007.
Stevens, P., L'Esperance, D., Chuong, B., and Martin, G.: Measurements of the
kinetics of the OH-initiated oxidation of isoprene: Radical propagation in
the OH + isoprene + O2 + NO reaction system, Int. J. Chem. Kinet.,
31, 637–643, https://doi.org/10.1002/(SICI)1097-4601(1999)31:9<637::AID-KIN5>3.0.CO;2-O, 1999.
Tang, X., Misztal, P. K., Nazaroff, W. W., and Goldstein, A. H.: Volatile
organic compound emissions from humans indoors, Environ. Sci. Technol.,
50, 12686–12694, https://doi.org/10.1021/acs.est.6b04415, 2016.
Tanimoto, H., Kameyama, S., Iwata, T., Inomata, S., and Omori, Y.:
Measurement of air-sea exchange of dimethyl sulfide and acetone by PTR-MS
coupled with gradient flux technique, Environ. Sci. Technol., 48,
526–533, https://doi.org/10.1021/es4032562, 2014.
Tingey, D. T., Turner, D. P., and Weber, J. A.: Factors Controlling the
Emissions of Monoterpenes and Other Volatile Organic Compounds, in Trace Gas
Emissions by Plants, U.S. Environmental Protection Agency,
Washington, D.C., 93–119, 1990.
Tyrrell, T.: Redfield Ratio, Encycl. Ocean Sci., 4, 677–686,
https://doi.org/10.1016/B978-012374473-9.00271-X, 2001.
Vogt, M. and Liss, P. S.: Dimethylsulfide and climate, Geophys. Monogr.
Ser., 187, 197–232, https://doi.org/10.1029/2008GM000790, 2009.
Vrekoussis, M., Kanakidou, M., Mihalopoulos, N., Crutzen, P. J., Lelieveld, J., Perner, D., Berresheim, H., and Baboukas, E.: Role of the NO3 radicals in oxidation processes in the eastern Mediterranean troposphere during the MINOS campaign, Atmos. Chem. Phys., 4, 169–182, https://doi.org/10.5194/acp-4-169-2004, 2004.
Wennberg, P. O., Hanisco, T. F., Jaeglé, L., Jacob, D. J., Hintsa, E. J., Lanzendorf, E. J., Anderson, J. G., Gao, R. S., Keim, E. R., Donnelly, S. G., Del Negro, L. A., Fahey, D. W., McKeen, S. A., Salawitch, R. J., Webster, C. R., May, R. D., Herman, R. L., Proffitt, M. H., Margitan, J. J., Atlas, E. L., Schauffler, S. M., Flocke, F., McElroy, C. T., and Bui, T. P.: Hydrogen
Radicals, Nitrogen Radicals, and the Production of O3 in the Upper
Troposphere, Science, 80, 49–53, https://doi.org/10.1126/science.279.5347.49, 1998.
Winer, A. M., Atkinson, R., and Pitts, J. N.: Gaseous nitrate radical:
Possible nighttime atmospheric sink for biogenic organic compounds, Science, 80, 156–159, https://doi.org/10.1126/science.224.4645.156, 1984.
Wuebbles, D. J., Grant, K. E., Connell, P. S., and Penner, J. E.: The role of
atmospheric chemistry in climate change, J. Air Waste Manag. Assoc., 39,
22–28, https://doi.org/10.1080/08940630.1989.10466502, 1989.
Yacobi, Y. Z., Zohary, T., Kress, N., Hecht, A., Robarts, R. D., Waiser, M.,
Wood, A. M., and Li, W. K. W.: Chlorophyll distribution throughout the
southeastern Mediterranean in relation to the physical structure of the
water mass, J. Mar. Syst., 6, 179–190, https://doi.org/10.1016/0924-7963(94)00028-A,
1995.
Yokouchi, Y., Li, H. and Machida, T.: Isoprene in the marine boundary layer (Southeast Asian Sea, eastern Indian Ocean, and Southern Ocean): Comparison with dimethyl sulfide and bromoform, J. Geophys. Res.,
104, 8067–8076, 1999.
Yonemura, S. Sandoval-Soto, L. Kesselmeier, J. Kuhn, U., von Hobe, M., Yakir,
D., and Kawashima, S.: Uptake of Carbonyl Sulfide (COS) and Emission of Dimethyl
Sulfide (DMS) by Plants, APGC, 45, 17–24, available at: https://www.biologiezentrum.at (last access: 5 December 2018), 2005.
Yuan, B., Koss, A. R., Warneke, C., Coggon, M., Sekimoto, K., and De Gouw, J.
A.: Proton-Transfer-Reaction Mass Spectrometry: Applications in Atmospheric
Sciences, Chem. Rev., 117, 13187–13229,
https://doi.org/10.1021/acs.chemrev.7b00325, 2017.
Short summary
We studied the emission of biogenic volatile organic compounds from both marine and terrestrial ecosystems in the Eastern Mediterranean Basin, a global warming hot spot. We focused on isoprene and dimethyl sulfide (DMS), which are well recognized for their effect on climate and strong impact on photochemical pollution by the former. We found high emissions of isoprene and a strong decadal decrease in the emission of DMS which can both be attributed to the strong increase in seawater temperature.
We studied the emission of biogenic volatile organic compounds from both marine and terrestrial...
Altmetrics
Final-revised paper
Preprint