Research article
07 May 2019
Research article | 07 May 2019
Timescales of secondary organic aerosols to reach equilibrium at various temperatures and relative humidities
Ying Li and Manabu Shiraiwa
Related authors
Organic aerosol volatility and viscosity in North China Plain: Contrast between summer and winter
Weiqi Xu, Chun Chen, Yanmei Qiu, Ying Li, Zhiqiang Zhang, Eleni Karnezi, Spyros N. Pandis, Conghui Xie, Zhijie Li, Jiaxing Sun, Nan Ma, Wanyun Xu, Pingqing Fu, Zifa Wang, Jiang Zhu, Douglas R. Worsnop, Nga Lee Ng, and Yele Sun
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1105,https://doi.org/10.5194/acp-2020-1105, 2020
Preprint under review for ACP
Short summary
Liquid–liquid phase separation and viscosity within secondary organic aerosol generated from diesel fuel vapors
Mijung Song, Adrian M. Maclean, Yuanzhou Huang, Natalie R. Smith, Sandra L. Blair, Julia Laskin, Alexander Laskin, Wing-Sy Wong DeRieux, Ying Li, Manabu Shiraiwa, Sergey A. Nizkorodov, and Allan K. Bertram
Atmos. Chem. Phys., 19, 12515–12529, https://doi.org/10.5194/acp-19-12515-2019,https://doi.org/10.5194/acp-19-12515-2019, 2019
Predictions of diffusion rates of large organic molecules in secondary organic aerosols using the Stokes–Einstein and fractional Stokes–Einstein relations
Erin Evoy, Adrian M. Maclean, Grazia Rovelli, Ying Li, Alexandra P. Tsimpidi, Vlassis A. Karydis, Saeid Kamal, Jos Lelieveld, Manabu Shiraiwa, Jonathan P. Reid, and Allan K. Bertram
Atmos. Chem. Phys., 19, 10073–10085, https://doi.org/10.5194/acp-19-10073-2019,https://doi.org/10.5194/acp-19-10073-2019, 2019
Short summary
Predicting the glass transition temperature and viscosity of secondary organic material using molecular composition
Wing-Sy Wong DeRieux, Ying Li, Peng Lin, Julia Laskin, Alexander Laskin, Allan K. Bertram, Sergey A. Nizkorodov, and Manabu Shiraiwa
Atmos. Chem. Phys., 18, 6331–6351, https://doi.org/10.5194/acp-18-6331-2018,https://doi.org/10.5194/acp-18-6331-2018, 2018
Short summary
Organic aerosol volatility and viscosity in North China Plain: Contrast between summer and winter
Weiqi Xu, Chun Chen, Yanmei Qiu, Ying Li, Zhiqiang Zhang, Eleni Karnezi, Spyros N. Pandis, Conghui Xie, Zhijie Li, Jiaxing Sun, Nan Ma, Wanyun Xu, Pingqing Fu, Zifa Wang, Jiang Zhu, Douglas R. Worsnop, Nga Lee Ng, and Yele Sun
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1105,https://doi.org/10.5194/acp-2020-1105, 2020
Preprint under review for ACP
Short summary
Reactive species formed upon interaction of water with fine particulate matter from remote forest and polluted urban air
Haijie Tong, Fobang Liu, Alexander Filippi, Jake Wilson, Andrea M. Arangio, Yun Zhang, Siyao Yue, Steven Lelieveld, Fangxia Shen, Helmi-Marja K. Keskinen, Jing Li, Haoxuan Chen, Ting Zhang, Thorsten Hoffmann, Pingqing Fu, William H. Brune, Tuukka Petäjä, Markku Kulmala, Maosheng Yao, Thomas Berkemeier, Manabu Shiraiwa, and Ulrich Pöschl
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-973,https://doi.org/10.5194/acp-2020-973, 2020
Preprint under review for ACP
Short summary
Liquid–liquid phase separation and viscosity within secondary organic aerosol generated from diesel fuel vapors
Mijung Song, Adrian M. Maclean, Yuanzhou Huang, Natalie R. Smith, Sandra L. Blair, Julia Laskin, Alexander Laskin, Wing-Sy Wong DeRieux, Ying Li, Manabu Shiraiwa, Sergey A. Nizkorodov, and Allan K. Bertram
Atmos. Chem. Phys., 19, 12515–12529, https://doi.org/10.5194/acp-19-12515-2019,https://doi.org/10.5194/acp-19-12515-2019, 2019
Predictions of diffusion rates of large organic molecules in secondary organic aerosols using the Stokes–Einstein and fractional Stokes–Einstein relations
Erin Evoy, Adrian M. Maclean, Grazia Rovelli, Ying Li, Alexandra P. Tsimpidi, Vlassis A. Karydis, Saeid Kamal, Jos Lelieveld, Manabu Shiraiwa, Jonathan P. Reid, and Allan K. Bertram
Atmos. Chem. Phys., 19, 10073–10085, https://doi.org/10.5194/acp-19-10073-2019,https://doi.org/10.5194/acp-19-10073-2019, 2019
Short summary
Optimization of process models for determining volatility distribution and viscosity of organic aerosols from isothermal particle evaporation data
Olli-Pekka Tikkanen, Väinö Hämäläinen, Grazia Rovelli, Antti Lipponen, Manabu Shiraiwa, Jonathan P. Reid, Kari E. J. Lehtinen, and Taina Yli-Juuti
Atmos. Chem. Phys., 19, 9333–9350, https://doi.org/10.5194/acp-19-9333-2019,https://doi.org/10.5194/acp-19-9333-2019, 2019
Short summary
Predicting the glass transition temperature and viscosity of secondary organic material using molecular composition
Wing-Sy Wong DeRieux, Ying Li, Peng Lin, Julia Laskin, Alexander Laskin, Allan K. Bertram, Sergey A. Nizkorodov, and Manabu Shiraiwa
Atmos. Chem. Phys., 18, 6331–6351, https://doi.org/10.5194/acp-18-6331-2018,https://doi.org/10.5194/acp-18-6331-2018, 2018
Short summary
Effect of relative humidity on the composition of secondary organic aerosol from the oxidation of toluene
Mallory L. Hinks, Julia Montoya-Aguilera, Lucas Ellison, Peng Lin, Alexander Laskin, Julia Laskin, Manabu Shiraiwa, Donald Dabdub, and Sergey A. Nizkorodov
Atmos. Chem. Phys., 18, 1643–1652, https://doi.org/10.5194/acp-18-1643-2018,https://doi.org/10.5194/acp-18-1643-2018, 2018
Short summary
Compositional evolution of particle-phase reaction products and water in the heterogeneous OH oxidation of model aqueous organic aerosols
Man Mei Chim, Chiu Tung Cheng, James F. Davies, Thomas Berkemeier, Manabu Shiraiwa, Andreas Zuend, and Man Nin Chan
Atmos. Chem. Phys., 17, 14415–14431, https://doi.org/10.5194/acp-17-14415-2017,https://doi.org/10.5194/acp-17-14415-2017, 2017
Short summary
Regional modelling of polycyclic aromatic hydrocarbons: WRF-Chem-PAH model development and East Asia case studies
Qing Mu, Gerhard Lammel, Christian N. Gencarelli, Ian M. Hedgecock, Ying Chen, Petra Přibylová, Monique Teich, Yuxuan Zhang, Guangjie Zheng, Dominik van Pinxteren, Qiang Zhang, Hartmut Herrmann, Manabu Shiraiwa, Peter Spichtinger, Hang Su, Ulrich Pöschl, and Yafang Cheng
Atmos. Chem. Phys., 17, 12253–12267, https://doi.org/10.5194/acp-17-12253-2017,https://doi.org/10.5194/acp-17-12253-2017, 2017
Short summary
Technical note: Monte Carlo genetic algorithm (MCGA) for model analysis of multiphase chemical kinetics to determine transport and reaction rate coefficients using multiple experimental data sets
Thomas Berkemeier, Markus Ammann, Ulrich K. Krieger, Thomas Peter, Peter Spichtinger, Ulrich Pöschl, Manabu Shiraiwa, and Andrew J. Huisman
Atmos. Chem. Phys., 17, 8021–8029, https://doi.org/10.5194/acp-17-8021-2017,https://doi.org/10.5194/acp-17-8021-2017, 2017
Short summary
The effect of viscosity and diffusion on the HO2 uptake by sucrose and secondary organic aerosol particles
Pascale S. J. Lakey, Thomas Berkemeier, Manuel Krapf, Josef Dommen, Sarah S. Steimer, Lisa K. Whalley, Trevor Ingham, Maria T. Baeza-Romero, Ulrich Pöschl, Manabu Shiraiwa, Markus Ammann, and Dwayne E. Heard
Atmos. Chem. Phys., 16, 13035–13047, https://doi.org/10.5194/acp-16-13035-2016,https://doi.org/10.5194/acp-16-13035-2016, 2016
Short summary
Discontinuities in hygroscopic growth below and above water saturation for laboratory surrogates of oligomers in organic atmospheric aerosols
Natasha Hodas, Andreas Zuend, Katherine Schilling, Thomas Berkemeier, Manabu Shiraiwa, Richard C. Flagan, and John H. Seinfeld
Atmos. Chem. Phys., 16, 12767–12792, https://doi.org/10.5194/acp-16-12767-2016,https://doi.org/10.5194/acp-16-12767-2016, 2016
Short summary
Hydroxyl radicals from secondary organic aerosol decomposition in water
Haijie Tong, Andrea M. Arangio, Pascale S. J. Lakey, Thomas Berkemeier, Fobang Liu, Christopher J. Kampf, William H. Brune, Ulrich Pöschl, and Manabu Shiraiwa
Atmos. Chem. Phys., 16, 1761–1771, https://doi.org/10.5194/acp-16-1761-2016,https://doi.org/10.5194/acp-16-1761-2016, 2016
Short summary
Chemical composition, microstructure, and hygroscopic properties of aerosol particles at the Zotino Tall Tower Observatory (ZOTTO), Siberia, during a summer campaign
E. F. Mikhailov, G. N. Mironov, C. Pöhlker, X. Chi, M. L. Krüger, M. Shiraiwa, J.-D. Förster, U. Pöschl, S. S. Vlasenko, T. I. Ryshkevich, M. Weigand, A. L. D. Kilcoyne, and M. O. Andreae
Atmos. Chem. Phys., 15, 8847–8869, https://doi.org/10.5194/acp-15-8847-2015,https://doi.org/10.5194/acp-15-8847-2015, 2015
Short summary
Compilation and evaluation of gas phase diffusion coefficients of reactive trace gases in the atmosphere: Volume 2. Diffusivities of organic compounds, pressure-normalised mean free paths, and average Knudsen numbers for gas uptake calculations
M. J. Tang, M. Shiraiwa, U. Pöschl, R. A. Cox, and M. Kalberer
Atmos. Chem. Phys., 15, 5585–5598, https://doi.org/10.5194/acp-15-5585-2015,https://doi.org/10.5194/acp-15-5585-2015, 2015
Secondary organic aerosol yields of 12-carbon alkanes
C. L. Loza, J. S. Craven, L. D. Yee, M. M. Coggon, R. H. Schwantes, M. Shiraiwa, X. Zhang, K. A. Schilling, N. L. Ng, M. R. Canagaratna, P. J. Ziemann, R. C. Flagan, and J. H. Seinfeld
Atmos. Chem. Phys., 14, 1423–1439, https://doi.org/10.5194/acp-14-1423-2014,https://doi.org/10.5194/acp-14-1423-2014, 2014
Related subject area
Revisiting the relationship between Atlantic dust and tropical cyclone activity using aerosol optical depth reanalyses: 2003–2018
Peng Xian, Philip J. Klotzbach, Jason P. Dunion, Matthew A. Janiga, Jeffrey S. Reid, Peter R. Colarco, and Zak Kipling
Atmos. Chem. Phys., 20, 15357–15378, https://doi.org/10.5194/acp-20-15357-2020,https://doi.org/10.5194/acp-20-15357-2020, 2020
Short summary
Source backtracking for dust storm emission inversion using an adjoint method: case study of Northeast China
Jianbing Jin, Arjo Segers, Hong Liao, Arnold Heemink, Richard Kranenburg, and Hai Xiang Lin
Atmos. Chem. Phys., 20, 15207–15225, https://doi.org/10.5194/acp-20-15207-2020,https://doi.org/10.5194/acp-20-15207-2020, 2020
Short summary
Study on the impact of three Asian industrial regions on PM2.5 in Taiwan and the process analysis during transport
Ming-Tung Chuang, Maggie Chel Gee Ooi, Neng-Huei Lin, Joshua S. Fu, Chung-Te Lee, Sheng-Hsiang Wang, Ming-Cheng Yen, Steven Soon-Kai Kong, and Wei-Syun Huang
Atmos. Chem. Phys., 20, 14947–14967, https://doi.org/10.5194/acp-20-14947-2020,https://doi.org/10.5194/acp-20-14947-2020, 2020
Short summary
Particle aging and aerosol–radiation interaction affect volcanic plume dispersion: evidence from the Raikoke 2019 eruption
Lukas O. Muser, Gholam Ali Hoshyaripour, Julia Bruckert, Ákos Horváth, Elizaveta Malinina, Sandra Wallis, Fred J. Prata, Alexei Rozanov, Christian von Savigny, Heike Vogel, and Bernhard Vogel
Atmos. Chem. Phys., 20, 15015–15036, https://doi.org/10.5194/acp-20-15015-2020,https://doi.org/10.5194/acp-20-15015-2020, 2020
Short summary
Uncertainty in aerosol radiative forcing impacts the simulated global monsoon in the 20th century
Jonathan K. P. Shonk, Andrew G. Turner, Amulya Chevuturi, Laura J. Wilcox, Andrea J. Dittus, and Ed Hawkins
Atmos. Chem. Phys., 20, 14903–14915, https://doi.org/10.5194/acp-20-14903-2020,https://doi.org/10.5194/acp-20-14903-2020, 2020
Short summary
Air quality impact of the Northern California Camp Fire of November 2018
Brigitte Rooney, Yuan Wang, Jonathan H. Jiang, Bin Zhao, Zhao-Cheng Zeng, and John H. Seinfeld
Atmos. Chem. Phys., 20, 14597–14616, https://doi.org/10.5194/acp-20-14597-2020,https://doi.org/10.5194/acp-20-14597-2020, 2020
Short summary
The determination of highly time-resolved and source-separated black carbon emission rates using radon as a tracer of atmospheric dynamics
Asta Gregorič, Luka Drinovec, Irena Ježek, Janja Vaupotič, Matevž Lenarčič, Domen Grauf, Longlong Wang, Maruška Mole, Samo Stanič, and Griša Močnik
Atmos. Chem. Phys., 20, 14139–14162, https://doi.org/10.5194/acp-20-14139-2020,https://doi.org/10.5194/acp-20-14139-2020, 2020
Short summary
Understanding processes that control dust spatial distributions with global climate models and satellite observations
Mingxuan Wu, Xiaohong Liu, Hongbin Yu, Hailong Wang, Yang Shi, Kang Yang, Anton Darmenov, Chenglai Wu, Zhien Wang, Tao Luo, Yan Feng, and Ziming Ke
Atmos. Chem. Phys., 20, 13835–13855, https://doi.org/10.5194/acp-20-13835-2020,https://doi.org/10.5194/acp-20-13835-2020, 2020
Short summary
Impacts of atmospheric transport and biomass burning on the inter-annual variation in black carbon aerosols over the Tibetan Plateau
Han Han, Yue Wu, Jane Liu, Tianliang Zhao, Bingliang Zhuang, Honglei Wang, Yichen Li, Huimin Chen, Ye Zhu, Hongnian Liu, Qin'geng Wang, Shu Li, Tijian Wang, Min Xie, and Mengmeng Li
Atmos. Chem. Phys., 20, 13591–13610, https://doi.org/10.5194/acp-20-13591-2020,https://doi.org/10.5194/acp-20-13591-2020, 2020
Short summary
A complex aerosol transport event over Europe during the 2017 Storm Ophelia in CAMS forecast systems: analysis and evaluation
Dimitris Akritidis, Eleni Katragkou, Aristeidis K. Georgoulias, Prodromos Zanis, Stergios Kartsios, Johannes Flemming, Antje Inness, John Douros, and Henk Eskes
Atmos. Chem. Phys., 20, 13557–13578, https://doi.org/10.5194/acp-20-13557-2020,https://doi.org/10.5194/acp-20-13557-2020, 2020
Short summary
Sensitivity analysis of the surface ozone and fine particulate matter to meteorological parameters in China
Zhihao Shi, Lin Huang, Jingyi Li, Qi Ying, Hongliang Zhang, and Jianlin Hu
Atmos. Chem. Phys., 20, 13455–13466, https://doi.org/10.5194/acp-20-13455-2020,https://doi.org/10.5194/acp-20-13455-2020, 2020
Short summary
How aerosols and greenhouse gases influence the diurnal temperature range
Camilla W. Stjern, Bjørn H. Samset, Olivier Boucher, Trond Iversen, Jean-François Lamarque, Gunnar Myhre, Drew Shindell, and Toshihiko Takemura
Atmos. Chem. Phys., 20, 13467–13480, https://doi.org/10.5194/acp-20-13467-2020,https://doi.org/10.5194/acp-20-13467-2020, 2020
Short summary
Evaluation of climate model aerosol trends with ground-based observations over the last 2 decades – an AeroCom and CMIP6 analysis
Augustin Mortier, Jonas Gliß, Michael Schulz, Wenche Aas, Elisabeth Andrews, Huisheng Bian, Mian Chin, Paul Ginoux, Jenny Hand, Brent Holben, Hua Zhang, Zak Kipling, Alf Kirkevåg, Paolo Laj, Thibault Lurton, Gunnar Myhre, David Neubauer, Dirk Olivié, Knut von Salzen, Ragnhild Bieltvedt Skeie, Toshihiko Takemura, and Simone Tilmes
Atmos. Chem. Phys., 20, 13355–13378, https://doi.org/10.5194/acp-20-13355-2020,https://doi.org/10.5194/acp-20-13355-2020, 2020
Short summary
Impact of biomass burning aerosols on radiation, clouds, and precipitation over the Amazon: relative importance of aerosol–cloud and aerosol–radiation interactions
Lixia Liu, Yafang Cheng, Siwen Wang, Chao Wei, Mira L. Pöhlker, Christopher Pöhlker, Paulo Artaxo, Manish Shrivastava, Meinrat O. Andreae, Ulrich Pöschl, and Hang Su
Atmos. Chem. Phys., 20, 13283–13301, https://doi.org/10.5194/acp-20-13283-2020,https://doi.org/10.5194/acp-20-13283-2020, 2020
Short summary
Direct and semi-direct radiative forcing of biomass-burning aerosols over the southeast Atlantic (SEA) and its sensitivity to absorbing properties: a regional climate modeling study
Marc Mallet, Fabien Solmon, Pierre Nabat, Nellie Elguindi, Fabien Waquet, Dominique Bouniol, Andrew Mark Sayer, Kerry Meyer, Romain Roehrig, Martine Michou, Paquita Zuidema, Cyrille Flamant, Jens Redemann, and Paola Formenti
Atmos. Chem. Phys., 20, 13191–13216, https://doi.org/10.5194/acp-20-13191-2020,https://doi.org/10.5194/acp-20-13191-2020, 2020
Short summary
Technical note: Estimating aqueous solubilities and activity coefficients of mono- and α,ω-dicarboxylic acids using COSMOtherm
Noora Hyttinen, Reyhaneh Heshmatnezhad, Jonas Elm, Theo Kurtén, and Nønne L. Prisle
Atmos. Chem. Phys., 20, 13131–13143, https://doi.org/10.5194/acp-20-13131-2020,https://doi.org/10.5194/acp-20-13131-2020, 2020
Short summary
Models transport Saharan dust too low in the atmosphere: a comparison of the MetUM and CAMS forecasts with observations
Debbie O'Sullivan, Franco Marenco, Claire L. Ryder, Yaswant Pradhan, Zak Kipling, Ben Johnson, Angela Benedetti, Melissa Brooks, Matthew McGill, John Yorks, and Patrick Selmer
Atmos. Chem. Phys., 20, 12955–12982, https://doi.org/10.5194/acp-20-12955-2020,https://doi.org/10.5194/acp-20-12955-2020, 2020
Short summary
Dependency of particle size distribution at dust emission on friction velocity and atmospheric boundary-layer stability
Yaping Shao, Jie Zhang, Masahide Ishizuka, Masao Mikami, John Leys, and Ning Huang
Atmos. Chem. Phys., 20, 12939–12953, https://doi.org/10.5194/acp-20-12939-2020,https://doi.org/10.5194/acp-20-12939-2020, 2020
Short summary
Impacts of aerosol–radiation interaction on meteorological forecasts over northern China by offline coupling of the WRF-Chem-simulated aerosol optical depth into WRF: a case study during a heavy pollution event
Yang Yang, Min Chen, Xiujuan Zhao, Dan Chen, Shuiyong Fan, Jianping Guo, and Shaukat Ali
Atmos. Chem. Phys., 20, 12527–12547, https://doi.org/10.5194/acp-20-12527-2020,https://doi.org/10.5194/acp-20-12527-2020, 2020
Short summary
Accelerated increases in global and Asian summer monsoon precipitation from future aerosol reductions
Laura J. Wilcox, Zhen Liu, Bjørn H. Samset, Ed Hawkins, Marianne T. Lund, Kalle Nordling, Sabine Undorf, Massimo Bollasina, Annica M. L. Ekman, Srinath Krishnan, Joonas Merikanto, and Andrew G. Turner
Atmos. Chem. Phys., 20, 11955–11977, https://doi.org/10.5194/acp-20-11955-2020,https://doi.org/10.5194/acp-20-11955-2020, 2020
Short summary
Distinct responses of Asian summer monsoon to black carbon aerosols and greenhouse gases
Xiaoning Xie, Gunnar Myhre, Xiaodong Liu, Xinzhou Li, Zhengguo Shi, Hongli Wang, Alf Kirkevåg, Jean-Francois Lamarque, Drew Shindell, Toshihiko Takemura, and Yangang Liu
Atmos. Chem. Phys., 20, 11823–11839, https://doi.org/10.5194/acp-20-11823-2020,https://doi.org/10.5194/acp-20-11823-2020, 2020
Short summary
Modulation of springtime surface sensible heating over the Tibetan Plateau on the interannual variability of East Asian dust cycle
Xiaoning Xie, Anmin Duan, Zhengguo Shi, Xinzhou Li, Hui Sun, Xiaodong Liu, Xugeng Cheng, Tianliang Zhao, Huizheng Che, and Yangang Liu
Atmos. Chem. Phys., 20, 11143–11159, https://doi.org/10.5194/acp-20-11143-2020,https://doi.org/10.5194/acp-20-11143-2020, 2020
Short summary
Model Inter-Comparison Study for Asia (MICS-Asia) phase III: multimodel comparison of reactive nitrogen deposition over China
Baozhu Ge, Syuichi Itahashi, Keiichi Sato, Danhui Xu, Junhua Wang, Fan Fan, Qixin Tan, Joshua S. Fu, Xuemei Wang, Kazuyo Yamaji, Tatsuya Nagashima, Jie Li, Mizuo Kajino, Hong Liao, Meigen Zhang, Zhe Wang, Meng Li, Jung-Hun Woo, Junichi Kurokawa, Yuepeng Pan, Qizhong Wu, Xuejun Liu, and Zifa Wang
Atmos. Chem. Phys., 20, 10587–10610, https://doi.org/10.5194/acp-20-10587-2020,https://doi.org/10.5194/acp-20-10587-2020, 2020
Short summary
A global model–measurement evaluation of particle light scattering coefficients at elevated relative humidity
María A. Burgos, Elisabeth Andrews, Gloria Titos, Angela Benedetti, Huisheng Bian, Virginie Buchard, Gabriele Curci, Zak Kipling, Alf Kirkevåg, Harri Kokkola, Anton Laakso, Julie Letertre-Danczak, Marianne T. Lund, Hitoshi Matsui, Gunnar Myhre, Cynthia Randles, Michael Schulz, Twan van Noije, Kai Zhang, Lucas Alados-Arboledas, Urs Baltensperger, Anne Jefferson, James Sherman, Junying Sun, Ernest Weingartner, and Paul Zieger
Atmos. Chem. Phys., 20, 10231–10258, https://doi.org/10.5194/acp-20-10231-2020,https://doi.org/10.5194/acp-20-10231-2020, 2020
Short summary
The value of remote marine aerosol measurements for constraining radiative forcing uncertainty
Leighton A. Regayre, Julia Schmale, Jill S. Johnson, Christian Tatzelt, Andrea Baccarini, Silvia Henning, Masaru Yoshioka, Frank Stratmann, Martin Gysel-Beer, Daniel P. Grosvenor, and Ken S. Carslaw
Atmos. Chem. Phys., 20, 10063–10072, https://doi.org/10.5194/acp-20-10063-2020,https://doi.org/10.5194/acp-20-10063-2020, 2020
Short summary
The interaction between urbanization and aerosols during a typical winter haze event in Beijing
Miao Yu, Guiqian Tang, Yang Yang, Qingchun Li, Yonghong Wang, Shiguang Miao, Yizhou Zhang, and Yuesi Wang
Atmos. Chem. Phys., 20, 9855–9870, https://doi.org/10.5194/acp-20-9855-2020,https://doi.org/10.5194/acp-20-9855-2020, 2020
Robust observational constraint of uncertain aerosol processes and emissions in a climate model and the effect on aerosol radiative forcing
Jill S. Johnson, Leighton A. Regayre, Masaru Yoshioka, Kirsty J. Pringle, Steven T. Turnock, Jo Browse, David M. H. Sexton, John W. Rostron, Nick A. J. Schutgens, Daniel G. Partridge, Dantong Liu, James D. Allan, Hugh Coe, Aijun Ding, David D. Cohen, Armand Atanacio, Ville Vakkari, Eija Asmi, and Ken S. Carslaw
Atmos. Chem. Phys., 20, 9491–9524, https://doi.org/10.5194/acp-20-9491-2020,https://doi.org/10.5194/acp-20-9491-2020, 2020
Short summary
Factors controlling marine aerosol size distributions and their climate effects over the Northwest Atlantic Ocean region
Betty Croft, Randall V. Martin, Richard H. Moore, Luke D. Ziemba, Ewan C. Crosbie, Hongyu Liu, Lynn M. Russell, Georges Saliba, Armin Wisthaler, Markus Müller, Arne Schiller, Martí Galí, Rachel Y.-W. Chang, Erin E. McDuffie, Kelsey R. Bilsback, and Jeffrey R. Pierce
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-811,https://doi.org/10.5194/acp-2020-811, 2020
Revised manuscript accepted for ACP
Short summary
Source attribution of Arctic black carbon and sulfate aerosols and associated Arctic surface warming during 1980–2018
Lili Ren, Yang Yang, Hailong Wang, Rudong Zhang, Pinya Wang, and Hong Liao
Atmos. Chem. Phys., 20, 9067–9085, https://doi.org/10.5194/acp-20-9067-2020,https://doi.org/10.5194/acp-20-9067-2020, 2020
Short summary
Large difference in aerosol radiative effects from BVOC-SOA treatment in three Earth system models
Moa K. Sporre, Sara M. Blichner, Roland Schrödner, Inger H. H. Karset, Terje K. Berntsen, Twan van Noije, Tommi Bergman, Declan O'Donnell, and Risto Makkonen
Atmos. Chem. Phys., 20, 8953–8973, https://doi.org/10.5194/acp-20-8953-2020,https://doi.org/10.5194/acp-20-8953-2020, 2020
Short summary
Cloudy-sky contributions to the direct aerosol effect
Gunnar Myhre, Bjørn H. Samset, Christian W. Mohr, Kari Alterskjær, Yves Balkanski, Nicolas Bellouin, Mian Chin, James Haywood, Øivind Hodnebrog, Stefan Kinne, Guangxing Lin, Marianne T. Lund, Joyce E. Penner, Michael Schulz, Nick Schutgens, Ragnhild B. Skeie, Philip Stier, Toshihiko Takemura, and Kai Zhang
Atmos. Chem. Phys., 20, 8855–8865, https://doi.org/10.5194/acp-20-8855-2020,https://doi.org/10.5194/acp-20-8855-2020, 2020
Short summary
Estimation of cloud condensation nuclei number concentrations and comparison to in situ and lidar observations during the HOPE experiments
Christa Genz, Roland Schrödner, Bernd Heinold, Silvia Henning, Holger Baars, Gerald Spindler, and Ina Tegen
Atmos. Chem. Phys., 20, 8787–8806, https://doi.org/10.5194/acp-20-8787-2020,https://doi.org/10.5194/acp-20-8787-2020, 2020
Short summary
Aerosol radiative effects and feedbacks on boundary layer meteorology and PM2.5 chemical components during winter haze events over the Beijing-Tianjin-Hebei region
Jiawei Li, Zhiwei Han, Yunfei Wu, Zhe Xiong, Xiangao Xia, Jie Li, Lin Liang, and Renjian Zhang
Atmos. Chem. Phys., 20, 8659–8690, https://doi.org/10.5194/acp-20-8659-2020,https://doi.org/10.5194/acp-20-8659-2020, 2020
Short summary
Modulation of radiative aerosols effects by atmospheric circulation over the Euro-Mediterranean region
Pierre Nabat, Samuel Somot, Christophe Cassou, Marc Mallet, Martine Michou, Dominique Bouniol, Bertrand Decharme, Thomas Drugé, Romain Roehrig, and David Saint-Martin
Atmos. Chem. Phys., 20, 8315–8349, https://doi.org/10.5194/acp-20-8315-2020,https://doi.org/10.5194/acp-20-8315-2020, 2020
Short summary
Cited articles
Angell, C.: Relaxation in liquids, polymers and plastic crystals – strong/fragile
patterns and problems, J. Non-Cryst. Solids, 131-133, 13–31, https://doi.org/10.1016/0022-3093(91)90266-9, 1991.
Barsanti, K. C., Kroll, J. H., and Thornton, J. A.: Formation of low-volatility
organic compounds in the atmosphere: recent advancements and insights, J. Phys.
Chem. Lett., 8, 1503–1511, https://doi.org/10.1021/acs.jpclett.6b02969, 2017.
Bastelberger, S., Krieger, U. K., Luo, B., and Peter, T.: Diffusivity
measurements of volatile organics in levitated viscous aerosol particles, Atmos.
Chem. Phys., 17, 8453–8471, https://doi.org/10.5194/acp-17-8453-2017, 2017.
Bateman, A. P., Gong, Z., Harder, T. H., de Sá, S. S., Wang, B., Castillo,
P., China, S., Liu, Y., O'Brien, R. E., Palm, B. B., Shiu, H. W., Cirino, G. G.,
Thalman, R., Adachi, K., Alexander, M. L., Artaxo, P., Bertram, A. K., Buseck,
P. R., Gilles, M. K., Jimenez, J. L., Laskin, A., Manzi, A. O., Sedlacek, A.,
Souza, R. A. F., Wang, J., Zaveri, R., and Martin, S. T.: Anthropogenic
influences on the physical state of submicron particulate matter over a
tropical forest, Atmos. Chem. Phys., 17, 1759–1773, https://doi.org/10.5194/acp-17-1759-2017, 2017.
Bianchi, F., Tröstl, J., Junninen, H., Frege, C., Henne, S., Hoyle, C. R.,
Molteni, U., Herrmann, E., Adamov, A., Bukowiecki, N., Chen, X., Duplissy, J.,
Gysel, M., Hutterli, M., Kangasluoma, J., Kontkanen, J., Kürten, A.,
Manninen, H. E., Münch, S., Peräkylä, O., Petäjä, T., Rondo,
L., Williamson, C., Weingartner, E., Curtius, J., Worsnop, D. R., Kulmala, M.,
Dommen, J., and Baltensperger, U.: New particle formation in the free troposphere:
A question of chemistry and timing, Science, 352, 1109–1112, https://doi.org/10.1126/science.aad5456, 2016.
Booth, A. M., Murphy, B., Riipinen, I., Percival, C. J., and Topping, D. O.:
Connecting bulk viscosity measurements to kinetic limitations on attaining
equilibrium for a model aerosol composition, Environ. Sci. Technol., 48,
9298–9305, https://doi.org/10.1021/es501705c, 2014.
Boyd, C. M., Nah, T., Xu, L., Berkemeier, T., and Ng, N. L.: Secondary organic
aerosol (SOA) from nitrate radical oxidation of monoterpenes: effects of
temperature, dilution, and humidity on aerosol formation, mixing, and evaporation,
Environ. Sci. Technol., 51, 7831–7841, https://doi.org/10.1021/acs.est.7b01460, 2017.
Cheng, Y., Su, H., Koop, T., Mikhailov, E., and Pöschl, U.: Size dependence
of phase transitions in aerosol nanoparticles, Nat. Commun., 6, 5923,
https://doi.org/10.1038/ncomms6923, 2015.
Chenyakin, Y., Ullmann, D. A., Evoy, E., Renbaum-Wolff, L., Kamal, S., and
Bertram, A. K.: Diffusion coefficients of organic molecules in sucrose–water
solutions and comparison with Stokes–Einstein predictions, Atmos. Chem. Phys.,
17, 2423–2435, https://doi.org/10.5194/acp-17-2423-2017, 2017.
DeRieux, W. S. W., Li, Y., Lin, P., Laskin, J., Laskin, A., Bertram, A. K.,
Nizkorodov, S. A., and Shiraiwa, M.: Predicting the glass transition temperature
and viscosity of secondary organic material using molecular composition, Atmos.
Chem. Phys., 18, 6331–6351, https://doi.org/10.5194/acp-18-6331-2018, 2018.
Fowler, K., Connolly, P. J., Topping, D. O., and O'Meara, S.: Maxwell–Stefan
diffusion: a framework for predicting condensed phase diffusion and phase
separation in atmospheric aerosol, Atmos. Chem. Phys., 18, 1629–1642,
https://doi.org/10.5194/acp-18-1629-2018, 2018.
Gong, Z., Han, Y., Liu, P., Ye, J., Keutsch, F. N., McKinney, K. A., and Martin,
S. T.: Influence of particle physical state on the uptake of medium-sized
organic molecules, Environ. Sci. Technol., 52, 8381–8389, https://doi.org/10.1021/acs.est.8b02119, 2018.
Gorkowski, K., Donahue, N. M., and Sullivan, R. C.: Emulsified and liquid–liquid
phase-separated states of
α-pinene secondary organic aerosol determined
using aerosol optical tweezers, Environ. Sci. Technol., 51, 12154–12163,
https://doi.org/10.1021/acs.est.7b03250, 2017.
Gunthe, S. S., King, S. M., Rose, D., Chen, Q., Roldin, P., Farmer, D. K.,
Jimenez, J. L., Artaxo, P., Andreae, M. O., Martin, S. T., and Pöschl, U.:
Cloud condensation nuclei in pristine tropical rainforest air of Amazonia:
size-resolved measurements and modeling of atmospheric aerosol composition and
CCN activity, Atmos. Chem. Phys., 9, 7551–7575, https://doi.org/10.5194/acp-9-7551-2009, 2009.
Hosny, N., Fitzgerald, C., Vyšniauskas, A., Athanasiadis, A., Berkemeier,
T., Uygur, N., Pöschl, U., Shiraiwa, M., Kalberer, M., Pope, F., and Kuimova,
M. K.: Direct imaging of changes in aerosol particle viscosity upon hydration
and chemical aging, Chem. Sci., 7, 1357–1367, https://doi.org/10.1039/C5SC02959G, 2016.
Julin, J., Winkler, P. M., Donahue, N. M., Wagner, P. E., and Riipinen, I.:
Near-unity mass accommodation coefficient of organic molecules of varying
structure, Environ. Sci. Technol., 48, 12083–12089, https://doi.org/10.1021/es501816h, 2014.
Kanakidou, M., Seinfeld, J. H., Pandis, S. N., Barnes, I., Dentener, F. J.,
Facchini, M. C., Van Dingenen, R., Ervens, B., Nenes, A., Nielsen, C. J.,
Swietlicki, E., Putaud, J. P., Balkanski, Y., Fuzzi, S., Horth, J., Moortgat,
G. K., Winterhalter, R., Myhre, C. E. L., Tsigaridis, K., Vignati, E., Stephanou,
E. G., and Wilson, J.: Organic aerosol and global climate modelling: a review,
Atmos. Chem. Phys., 5, 1053–1123, https://doi.org/10.5194/acp-5-1053-2005, 2005.
Knopf, D. A., Alpert, P. A., and Wang, B.: The role of organic aerosol in
atmospheric ice nucleation: a review, ACS Earth Space Chem., 2, 168–202,
https://doi.org/10.1021/acsearthspacechem.7b00120, 2018.
Koop, T., Bookhold, J., Shiraiwa, M., and Poschl, U.: Glass transition and
phase state of organic compounds: dependency on molecular properties and
implications for secondary organic aerosols in the atmosphere, Phys. Chem. Chem.
Phys., 13, 19238–19255, https://doi.org/10.1039/C1CP22617G, 2011.
Li, Y. and Shiraiwa, M.: Molecular corridors, volatility and particle phase
state in secondary organic aerosols, in: Multiphase Environmental Chemistry
in the Atmosphere, edited by: Hunt S. W., Laskin A., and Nizkorodov S. A.,
ACS Symposium Ser., 1299, 209–244, https://doi.org/10.1021/bk-2018-1299.ch011, 2018.
Liu, C., Shi, S., Weschler, C., Zhao, B., and Zhang, Y.: Analysis of the dynamic
interaction between SVOCs and airborne particles, Aerosol Sci. Tech., 47,
125–136, https://doi.org/10.1080/02786826.2012.730163, 2013.
Liu, P., Li, Y. J., Wang, Y., Gilles, M. K., Zaveri, R. A., Bertram, A. K., and
Martin, S. T.: Lability of secondary organic particulate matter, P. Natl. Acad.
Sci. USA, 113, 12643–12648, https://doi.org/10.1021/acscentsci.7b00452, 2016.
Liu, P., Li, Y. J., Wang, Y., Bateman, A. P., Zhang, Y., Gong, Z., Bertram, A.
K., and Martin, S. T.: Highly viscous states affect the browning of atmospheric
organic particulate matter, ACS Cent. Sci., 4, 207–215, https://doi.org/10.1021/acscentsci.7b00452, 2018.
Liu, Y., Wu, Z., Wang, Y., Xiao, Y., Gu, F., Zheng, J., Tan, T., Shang, D., Wu,
Y., Zeng, L., Hu, M., Bateman, A. P., and Martin, S. T.: Submicrometer particles
are in the liquid state during heavy haze episodes in the urban atmosphere of
Beijing, China, Environ. Sci. Technol. Lett., 4, 427–432, https://doi.org/10.1021/acs.estlett.7b00352, 2017.
Loza, C. L., Coggon, M. M., Nguyen, T. B., Zuend, A., Flagan, R. C., and
Seinfeld, J. H.: On the mixing and evaporation of secondary organic aerosol
components, Environ. Sci. Technol., 47, 6173–6180, https://doi.org/10.1021/es400979k, 2013.
Maclean, A. M., Butenhoff, C. L., Grayson, J. W., Barsanti, K., Jimenez, J. L.,
and Bertram, A. K.: Mixing times of organic molecules within secondary organic
aerosol particles: a global planetary boundary layer perspective, Atmos. Chem.
Phys., 17, 13037–13048, https://doi.org/10.5194/acp-17-13037-2017, 2017.
Mai, H., Shiraiwa, M., Flagan, R. C., and Seinfeld, J. H.: Under what conditions
can equilibrium gas–particle partitioning be expected to hold in the atmosphere?,
Environ. Sci. Technol., 49, 11485–11491, https://doi.org/10.1021/acs.est.5b02587, 2015.
Maria, S. F., Russell, L. M., Gilles, M. K., and Myneni, S. C. B.: Organic
aerosol growth mechanisms and their climate-forcing implications, Science,
306, 1921–1924, https://doi.org/10.1126/science.1103491, 2004.
Marshall, F. H., Miles, R. E., Song, Y.-C., Ohm, P. B., Power, R. M., Reid, J.
P., and Dutcher, C. S.: Diffusion and reactivity in ultraviscous aerosol and
the correlation with particle viscosity, Chem. Sci., 7, 1298–1308, https://doi.org/10.1039/C5SC03223G, 2016.
Mu, Q., Shiraiwa, M., Octaviani, M., Ma, N., Ding, A., Su, H., Lammel, G.,
Pöschl, U., and Cheng, Y.: Temperature effect on phase state and reactivity
controls atmospheric multiphase chemistry and transport of PAHs, Sci. Adv., 4,
eaap7314, https://doi.org/10.1126/sciadv.aap7314, 2018.
O'Meara, S., Topping, D. O., and McFiggans, G.: The rate of equilibration of
viscous aerosol particles, Atmos. Chem. Phys., 16, 5299–5313, https://doi.org/10.5194/acp-16-5299-2016, 2016.
Pajunoja, A., Hu, W., Leong, Y. J., Taylor, N. F., Miettinen, P., Palm, B. B.,
Mikkonen, S., Collins, D. R., Jimenez, J. L., and Virtanen, A.: Phase state of
ambient aerosol linked with water uptake and chemical aging in the southeastern US,
Atmos. Chem. Phys., 16, 11163–11176, https://doi.org/10.5194/acp-16-11163-2016, 2016.
Pankow, J. F.: An absorption model of gas-particle partitioning of organic-compounds
in the atmosphere, Atmos. Environ., 28, 185–188, https://doi.org/10.1016/1352-2310(94)90093-0, 1994.
Perraud, V., Bruns, E. A., Ezell, M. J., Johnson, S. N., Yu, Y., Alexander, M.
L., Zelenyuk, A., Imre, D., Chang, W. L., Dabdub, D., Pankow, J. F., and
Finlayson-Pitts, B. J.: Nonequilibrium atmospheric secondary organic aerosol
formation and growth, P. Natl. Acad. Sci. USA, 109, 2836–2841, https://doi.org/10.1073/pnas.1119909109, 2012.
Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of
hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem. Phys.,
7, 1961–1971, https://doi.org/10.5194/acp-7-1961-2007, 2007.
Petters, S. S., Kreidenweis, S. M., Grieshop, A. P., Ziemann, P. J., and Petters,
M. D.: Temperature- and humidity-dependent phase states of secondary organic
aerosols, Geophys. Res. Lett., 46, 1005–1013, https://doi.org/10.1029/2018GL080563, 2019.
Pfrang, C., Shiraiwa, M., and Pöschl, U.: Chemical ageing and transformation
of diffusivity in semi-solid multi-component organic aerosol particles, Atmos.
Chem. Phys., 11, 7343–7354, https://doi.org/10.5194/acp-11-7343-2011, 2011.
Pöhlker, C., Wiedemann, K. T., Sinha, B., Shiraiwa, M., Gunthe, S. S.,
Smith, M., Su, H., Artaxo, P., Chen, Q., Cheng, Y., Elbert, W., Gilles, M. K.,
Kilcoyne, A. L. D., Moffet, R. C., Weigand, M., Martin, S. T., Pöschl, U.,
and Andreae, M. O.: Biogenic potassium salt particles as seeds for secondary
organic aerosol in the Amazon, Science, 337, 1075–1078, https://doi.org/10.1126/science.1223264, 2012.
Price, H. C., Mattsson, J., Zhang, Y., Bertram, A. K., Davies, J. F., Grayson,
J. W., Martin, S. T., O'Sullivan, D., Reid, J. P., Rickards, A. M., and Murray,
B. J.: Water diffusion in atmospherically relevant
α-pinene secondary
organic material, Chem. Sci., 6, 4876–4883, https://doi.org/10.1039/c5sc00685f, 2015.
Pye, H. O. T., Murphy, B. N., Xu, L., Ng, N. L., Carlton, A. G., Guo, H., Weber,
R., Vasilakos, P., Appel, K. W., Budisulistiorini, S. H., Surratt, J. D., Nenes,
A., Hu, W., Jimenez, J. L., Isaacman-VanWertz, G., Misztal, P. K., and Goldstein,
A. H.: On the implications of aerosol liquid water and phase separation for
organic aerosol mass, Atmos. Chem. Phys., 17, 343–369, https://doi.org/10.5194/acp-17-343-2017, 2017.
Reid, J. P., Bertram, A. K., Topping, D. O., Laskin, A., Martin, S. T., Petters,
M. D., Pope, F. D., and Rovelli, G.: The viscosity of atmospherically relevant
organic particles, Nat. Commun., 9, 956, https://doi.org/10.1038/s41467-018-03027-z, 2018.
Renbaum-Wolff, L., Song, M., Marcolli, C., Zhang, Y., Liu, P. F., Grayson, J.
W., Geiger, F. M., Martin, S. T., and Bertram, A. K.: Observations and
implications of liquid–liquid phase
separation at high relative humidities
in secondary organic material produced by
α-pinene ozonolysis without
inorganic salts, Atmos. Chem. Phys., 16, 7969–7979, https://doi.org/10.5194/acp-16-7969-2016, 2016.
Riedel, T. P., Lin, Y. H., Zhang, Z., Chu, K., Thornton, J. A., Vizuete, W.,
Gold, A., and Surratt, J. D.: Constraining condensed-phase formation kinetics
of secondary organic aerosol components from isoprene epoxydiols, Atmos. Chem.
Phys., 16, 1245–1254, https://doi.org/10.5194/acp-16-1245-2016, 2016.
Riipinen, I., Pierce, J. R., Yli-Juuti, T., Nieminen, T., Hakkinen, S., Ehn,
M., Junninen, H., Lehtipalo, K., Petaja, T., Slowik, J., Chang, R., Shantz, N.
C., Abbatt, J., Leaitch, W. R., Kerminen, V. M., Worsnop, D. R., Pandis, S. N.,
Donahue, N. M., and Kulmala, M.: Organic condensation: a vital link connecting
aerosol formation to cloud condensation nuclei (CCN) concentrations, Atmos.
Chem. Phys., 11, 3865–3878, https://doi.org/10.5194/acp-11-3865-2011, 2011.
Riipinen, I., Yli-Juuti, T., Pierce, J. R., Petaja, T., Worsnop, D. R., Kulmala,
M., and Donahue, N. M.: The contribution of organics to atmospheric nanoparticle
growth, Nat. Geosci., 5, 453–458, https://doi.org/10.1038/ngeo1499, 2012.
Roldin, P., Eriksson, A. C., Nordin, E. Z., Hermansson, E., Mogensen, D.,
Rusanen, A., Boy, M., Swietlicki, E., Svenningsson, B., Zelenyuk, A., and
Pagels, J.: Modelling non-equilibrium secondary organic aerosol formation and
evaporation with the aerosol dynamics, gas- and particle-phase chemistry
kinetic multilayer model ADCHAM, Atmos. Chem. Phys., 14, 7953–7993,
https://doi.org/10.5194/acp-14-7953-2014, 2014.
Rothfuss, N. E. and Petters, M. D.: Characterization of the temperature and
humidity-dependent phase diagram of amorphous nanoscale organic aerosols, Phys.
Chem. Chem. Phys., 19, 6532–6545, https://doi.org/10.1039/C6CP08593H, 2017.
Saha, P. K. and Grieshop, A. P.: Exploring divergent volatility properties
from yield and thermodenuder measurements of secondary organic aerosol from
α-pinene ozonolysis, Environ. Sci. Technol., 50, 5740–5749,
https://doi.org/10.1021/acs.est.6b00303, 2016.
Saleh, R., Donahue, N. M., and Robinson, A. L.: Time scales for gas-particle
partitioning equilibration of secondary organic aerosol formed from alpha-pinene
ozonolysis, Environ. Sci. Technol., 47, 5588–5594, https://doi.org/10.1021/es400078d, 2013.
Shiraiwa, M. and Seinfeld, J. H.: Equilibration timescale of atmospheric
secondary organic aerosol partitioning, Geophys. Res. Lett., 39, L24801,
https://doi.org/10.1029/2012GL054008, 2012.
Shiraiwa, M., Ammann, M., Koop, T., and Poschl, U.: Gas uptake and chemical
aging of semisolid organic aerosol particles, P. Natl. Acad. Sci. USA, 108,
11003–11008, https://doi.org/10.1073/pnas.1103045108, 2011.
Shiraiwa, M., Pfrang, C., Koop, T., and Pöschl, U.: Kinetic multi-layer
model of gas-particle interactions in aerosols and clouds (KM-GAP): linking
condensation, evaporation and chemical reactions of organics, oxidants and
water, Atmos. Chem. Phys., 12, 2777–2794, https://doi.org/10.5194/acp-12-2777-2012, 2012.
Shiraiwa, M., Yee, L. D., Schilling, K. A., Loza, C. L., Craven, J. S., Zuend,
A., Ziemann, P. J., and Seinfeld, J. H.: Size distribution dynamics reveal
particle-phase chemistry in organic aerosol formation, P. Natl. Acad. Sci. USA,
110, 11746–11750, https://doi.org/10.1073/pnas.1307501110, 2013a.
Shiraiwa, M., Zuend, A., Bertram, A. K., and Seinfeld, J. H.: Gas-particle
partitioning of atmospheric aerosols: interplay of physical state, non-ideal
mixing and morphology, Phys. Chem. Chem. Phys., 15, 11441–11453, https://doi.org/10.1039/C3CP51595H, 2013b.
Shiraiwa, M., Li, Y., Tsimpidi, A. P., Karydis, V. A., Berkemeier, T., Pandis,
S. N., Lelieveld, J., Koop, T., and Pöschl, U.: Global distribution of
particle phase state in atmospheric secondary organic aerosols, Nat. Commun.,
8, 15002, https://doi.org/10.1038/ncomms15002, 2017.
Shrivastava, M., Cappa, C. D., Fan, J., Goldstein, A. H., Guenther, A. B.,
Jimenez, J. L., Kuang, C., Laskin, A., Martin, S. T., Ng, N. L., Petaja, T.,
Pierce, J. R., Rasch, P. J., Roldin, P., Seinfeld, J. H., Shilling, J., Smith,
J. N., Thornton, J. A., Volkamer, R., Wang, J., Worsnop, D. R., Zaveri, R. A.,
Zelenyuk, A., and Zhang, Q.: Recent advances in understanding secondary organic
aerosol: Implications for global climate forcing, Rev. Geophys., 55, 509–559,
https://doi.org/10.1002/2016RG000540, 2017a.
Shrivastava, M., Lou, S., Zelenyuk, A., Easter, R. C., Corley, R. A., Thrall,
B. D., Rasch, P. J., Fast, J. D., Simonich, S. L. M., Shen, H., and Tao, S.:
Global long-range transport and lung cancer risk from polycyclic aromatic
hydrocarbons shielded by coatings of organic aerosol, P. Natl. Acad. Sci. USA,
114, 1246–1251, https://doi.org/10.1073/pnas.1618475114, 2017b.
Slade, J. H., Shiraiwa, M., Arangio, A., Su, H., Pöschl, U., Wang, J., and
Knopf, D. A.: Cloud droplet activation through oxidation of organic aerosol
influenced by temperature and particle phase state, Geophys. Res. Lett., 41,
5297–5306, https://doi.org/10.1002/2014GL060582, 2017.
Tong, H., Arangio, A. M., Lakey, P. S. J., Berkemeier, T., Liu, F., Kampf, C.
J., Brune, W. H., Pöschl, U., and Shiraiwa, M.: Hydroxyl radicals from
secondary organic aerosol decomposition in water, Atmos. Chem. Phys., 16,
1761–1771, https://doi.org/10.5194/acp-16-1761-2016, 2016.
Tröstl, J., Chuang, W. K., Gordon, H., Heinritzi, M., Yan, C., Molteni, U.,
Ahlm, L., Frege, C., Bianchi, F., Wagner, R., Simon, M., Lehtipalo, K.,
Williamson, C., Craven, J. S., Duplissy, J., Adamov, A., Almeida, J., Bernhammer,
A.-K., Breitenlechner, M., Brilke, S., Dias, A., Ehrhart, S., Flagan, R. C.,
Franchin, A., Fuchs, C., Guida, R., Gysel, M., Hansel, A., Hoyle, C. R., Jokinen,
T., Junninen, H., Kangasluoma, J., Keskinen, H., Kim, J., Krapf, M., Kürten,
A., Laaksonen, A., Lawler, M., Leiminger, M., Mathot, S., Möhler, O.,
Nieminen, T., Onnela, A., Petäjä, T., Piel, F. M., Miettinen, P.,
Rissanen, M. P., Rondo, L., Sarnela, N., Schobesberger, S., Sengupta, K.,
Sipilä, M., Smith, J. N., Steiner, G., Tomè, A., Virtanen, A., Wagner,
A. C., Weingartner, E., Wimmer, D., Winkler, P. M., Ye, P., Carslaw, K. S.,
Curtius, J., Dommen, J., Kirkby, J., Kulmala, M., Riipinen, I., Worsnop, D. R.,
Donahue, N. M., and Baltensperger, U.: The role of low-volatility organic
compounds in initial particle growth in the atmosphere, Nature, 533, 527–531,
https://doi.org/10.1038/nature18271, 2016.
Vaden, T. D., Imre, D., Beránek, J., Shrivastava, M., and Zelenyuk, A.:
Evaporation kinetics and phase of laboratory and ambient
secondary organic
aerosol, P. Natl. Acad. Sci. USA, 108, 2190–2195, https://doi.org/10.1073/pnas.1013391108, 2011.
Virtanen, A., Joutsensaari, J., Koop, T., Kannosto, J., Yli-Pirilä, P.,
Leskinen, J., Mäkelä, J. M., Holopainen, J. K., Pöschl, U., and
Kulmala, M.: An amorphous solid state of biogenic secondary organic aerosol
particles, Nature, 467, 824–827, https://doi.org/10.1038/nature09455, 2010.
Wang, J., Krejci, R., Giangrande, S., Kuang, C., Barbosa, H. M. J., Brito, J.,
Carbone, S., Chi, X., Comstock, J., Ditas, F., Lavric, J., Manninen, H. E.,
Mei, F., Moran-Zuloaga, D., Pöhlker, C., Pöhlker, M. L., Saturno, J.,
Schmid, B., Souza, R. A. F., Springston, S. R., Tomlinson, J. M., Toto, T.,
Walter, D., Wimmer, D., Smith, J. N., Kulmala, M., Machado, L. A. T., Artaxo,
P., Andreae, M. O., Petäjä, T., and Martin, S. T.: Amazon boundary layer
aerosol concentration sustained by vertical transport during rainfall, Nature,
539, 416–419, https://doi.org/10.1038/nature19819, 2016.
Ye, J., Gordon, C. A., and Chan, A. W. H.: Enhancement in secondary organic
aerosol formation in the presence of preexisting organic particle, Environ. Sci.
Technol., 50, 3572–3579, https://doi.org/10.1021/acs.est.5b05512, 2016.
Ye, Q., Robinson, E. S., Ding, X., Ye, P., Sullivan, R. C., and Donahue, N. M.:
Mixing of secondary organic aerosols versus relative humidity, P. Natl. Acad.
Sci. USA, 113, 12649–12654, https://doi.org/10.1073/pnas.1604536113, 2016.
Ye, Q., Upshur, M. A., Robinson, E. S., Geiger, F. M., Sullivan, R. C., Thomson,
R. J., and Donahue, N. M.: Following particle-particle mixing in atmospheric
secondary organic aerosols by using isotopically labeled terpenes, Chemistry,
4, 318–333, https://doi.org/10.1016/j.chempr.2017.12.008, 2018.
Yli-Juuti, T., Pajunoja, A., Tikkanen, O.-P., Buchholz, A., Faiola, C.,
Väisänen, O., Hao, L., Kari, E., Peräkylä, O., Garmash, O.,
Shiraiwa, M., Ehn, M., Lehtinen, K., and Virtanen, A.: Factors controlling the
evaporation of secondary organic aerosol from
α-pinene ozonolysis,
Geophys. Res. Lett., 44, 2562–2570, https://doi.org/10.1002/2016GL072364, 2017.
You, Y., Renbaum-Wolff, L., Carreras-Sospedra, M., Hanna, S. J., Hiranuma, N.,
Kamal, S., Smith, M. L., Zhang, X., Weber, R. J., Shilling, J. E., Dabdub, D.,
Martin, S. T., and Bertram, A. K.: Images reveal that atmospheric particles can
undergo liquid–liquid phase separations, P. Natl. Acad. Sci. USA, 109,
13188–13193, https://doi.org/10.1073/pnas.1206414109, 2012.
You, Y., Smith, M. L., Song, M., Martin, S. T., and Bertram, A. K.:
Liquid–liquid phase separation in atmospherically relevant particles consisting
of organic species and inorganic salts, Int. Rev. Phys. Chem., 33, 43–77,
https://doi.org/10.1080/0144235X.2014.890786, 2014.
Zaveri, R. A., Easter, R. C., Shilling, J. E., and Seinfeld, J. H.: Modeling
kinetic partitioning of secondary organic aerosol and size distribution dynamics:
representing effects of volatility, phase state, and particle-phase reaction,
Atmos. Chem. Phys., 14, 5153–5181, https://doi.org/10.5194/acp-14-5153-2014, 2014.
Zaveri, R. A., Shilling, J. E., Zelenyuk, A., Liu, J., Bell, D. M., D'Ambro, E.
L., Gaston, C. J., Thornton, J. A., Laskin, A., Lin, P., Wilson, J., Easter, R.
C., Wang, J., Bertram, A. K., Martin, S. T., Seinfeld, J. H., and Worsnop, D.
R.: Growth kinetics and size distribution dynamics of viscous secondary organic
aerosol, Environ. Sci. Technol., 52, 1191–1199, https://doi.org/10.1021/acs.est.7b04623, 2018.
Zhang, X., Pandis, S. N., and Seinfeld, J. H.: Diffusion-limited versus
quasi-equilibrium aerosol growth, Aerosol Sci. Tech., 46, 874–885,
https://doi.org/10.1080/02786826.2012.679344, 2012.
Zhang, Y., Sanchez, M. S., Douet, C., Wang, Y., Bateman, A. P., Gong, Z., Kuwata,
M., Renbaum-Wolff, L., Sato, B. B., Liu, P. F., Bertram, A. K., Geiger, F. M.,
and Martin, S. T.: Changing shapes and implied viscosities of suspended submicron
particles, Atmos. Chem. Phys., 15, 7819–7829, https://doi.org/10.5194/acp-15-7819-2015, 2015.
Zhang, Y., Chen, Y., Lambe, A. T., Olson, N. E., Lei, Z., Craig, R. L., Zhang,
Z., Gold, A., Onasch, T. B., Jayne, J. T., Worsnop, D. R., Gaston, C. J.,
Thornton, J. A., Vizuete, W., Ault, A. P., and Surratt, J. D.: Effect of the
Aerosol-Phase State on Secondary Organic Aerosol Formation from the Reactive
Uptake of Isoprene-Derived Epoxydiols (IEPOX), Environ. Sci. Technol. Lett.,
5, 167–174, https://doi.org/10.1021/acs.estlett.8b00044, 2018.