Articles | Volume 19, issue 9
https://doi.org/10.5194/acp-19-5959-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-19-5959-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Timescales of secondary organic aerosols to reach equilibrium at various temperatures and relative humidities
Department of Chemistry, University of California, Irvine, California, USA
Department of Chemistry, University of California, Irvine, California, USA
Related authors
Zichen Wu, Xueshun Chen, Zifa Wang, Huansheng Chen, Zhe Wang, Qing Mu, Lin Wu, Wending Wang, Xiao Tang, Jie Li, Ying Li, Qizhong Wu, Yang Wang, Zhiyin Zou, and Zijian Jiang
Geosci. Model Dev., 17, 8885–8907, https://doi.org/10.5194/gmd-17-8885-2024, https://doi.org/10.5194/gmd-17-8885-2024, 2024
Short summary
Short summary
We developed a model to simulate polycyclic aromatic hydrocarbons (PAHs) from global to regional scales. The model can reproduce PAH distribution well. The concentration of BaP (indicator species for PAHs) could exceed the target values of 1 ng m-3 over some areas (e.g., in central Europe, India, and eastern China). The change in BaP is lower than that in PM2.5 from 2013 to 2018. China still faces significant potential health risks posed by BaP although the Action Plan has been implemented.
Zhiqiang Zhang, Ying Li, Haiyan Ran, Junling An, Yu Qu, Wei Zhou, Weiqi Xu, Weiwei Hu, Hongbin Xie, Zifa Wang, Yele Sun, and Manabu Shiraiwa
Atmos. Chem. Phys., 24, 4809–4826, https://doi.org/10.5194/acp-24-4809-2024, https://doi.org/10.5194/acp-24-4809-2024, 2024
Short summary
Short summary
Secondary organic aerosols (SOAs) can exist in liquid, semi-solid, or amorphous solid states, which are rarely accounted for in current chemical transport models. We predict the phase state of SOA particles over China and find that in northwestern China SOA particles are mostly highly viscous or glassy solid. Our results indicate that the particle phase state should be considered in SOA formation in chemical transport models for more accurate prediction of SOA mass concentrations.
Qiaorong Xie, Sihui Su, Jing Chen, Yuqing Dai, Siyao Yue, Hang Su, Haijie Tong, Wanyu Zhao, Lujie Ren, Yisheng Xu, Dong Cao, Ying Li, Yele Sun, Zifa Wang, Cong-Qiang Liu, Kimitaka Kawamura, Guibin Jiang, Yafang Cheng, and Pingqing Fu
Atmos. Chem. Phys., 21, 11453–11465, https://doi.org/10.5194/acp-21-11453-2021, https://doi.org/10.5194/acp-21-11453-2021, 2021
Short summary
Short summary
This study investigated the role of nighttime chemistry during Chinese New Year's Eve that enhances the formation of nitrooxy organosulfates in the aerosol phase. Results show that anthropogenic precursors, together with biogenic ones, considerably contribute to the formation of low-volatility nitrooxy OSs. Our study provides detailed molecular composition of firework-related aerosols, which gives new insights into the physicochemical properties and potential health effects of urban aerosols.
Tommaso Galeazzo, Richard Valorso, Ying Li, Marie Camredon, Bernard Aumont, and Manabu Shiraiwa
Atmos. Chem. Phys., 21, 10199–10213, https://doi.org/10.5194/acp-21-10199-2021, https://doi.org/10.5194/acp-21-10199-2021, 2021
Short summary
Short summary
We simulate SOA viscosity with explicit modeling of gas-phase oxidation of isoprene and α-pinene. While the viscosity dependence on relative humidity and mass loadings is captured well by simulations, the model underestimates measured viscosity, indicating missing processes. Kinetic limitations and reduction in mass accommodation may cause an increase in viscosity. The developed model is powerful for investigation of the interplay among gas reactions, chemical composition and phase state.
Weiqi Xu, Chun Chen, Yanmei Qiu, Ying Li, Zhiqiang Zhang, Eleni Karnezi, Spyros N. Pandis, Conghui Xie, Zhijie Li, Jiaxing Sun, Nan Ma, Wanyun Xu, Pingqing Fu, Zifa Wang, Jiang Zhu, Douglas R. Worsnop, Nga Lee Ng, and Yele Sun
Atmos. Chem. Phys., 21, 5463–5476, https://doi.org/10.5194/acp-21-5463-2021, https://doi.org/10.5194/acp-21-5463-2021, 2021
Short summary
Short summary
Here aerosol volatility and viscosity at a rural site (Gucheng) and an urban site (Beijing) in the North China Plain (NCP) were investigated in summer and winter. Our results showed that organic aerosol (OA) in winter in the NCP is more volatile than that in summer due to enhanced primary emissions from coal combustion and biomass burning. We also found that OA existed mainly as a solid in winter in Beijing but as semisolids in Beijing in summer and Gucheng in winter.
Sabin Kasparoglu, Ying Li, Manabu Shiraiwa, and Markus D. Petters
Atmos. Chem. Phys., 21, 1127–1141, https://doi.org/10.5194/acp-21-1127-2021, https://doi.org/10.5194/acp-21-1127-2021, 2021
Short summary
Short summary
Viscosity is important because it determines the lifetime, impact, and fate of particulate matter. We collected new data to rigorously test a framework that is used to constrain the phase state in global simulations. We find that the framework is accurate as long as appropriate compound specific inputs are available.
Ying Li, Douglas A. Day, Harald Stark, Jose L. Jimenez, and Manabu Shiraiwa
Atmos. Chem. Phys., 20, 8103–8122, https://doi.org/10.5194/acp-20-8103-2020, https://doi.org/10.5194/acp-20-8103-2020, 2020
Short summary
Short summary
Viscosity is an important property of organic aerosols, but viscosity measurements of ambient organic aerosols are scarce. We developed a method to predict glass transition temperatures using volatility and the atomic oxygen-to-carbon ratio. The method was applied to field observations of volatility distributions to predict viscosity of ambient organic aerosols, yielding consistent results with ambient particle phase-state measurements and global simulations.
Mijung Song, Adrian M. Maclean, Yuanzhou Huang, Natalie R. Smith, Sandra L. Blair, Julia Laskin, Alexander Laskin, Wing-Sy Wong DeRieux, Ying Li, Manabu Shiraiwa, Sergey A. Nizkorodov, and Allan K. Bertram
Atmos. Chem. Phys., 19, 12515–12529, https://doi.org/10.5194/acp-19-12515-2019, https://doi.org/10.5194/acp-19-12515-2019, 2019
Weiqi Xu, Conghui Xie, Eleni Karnezi, Qi Zhang, Junfeng Wang, Spyros N. Pandis, Xinlei Ge, Jingwei Zhang, Junling An, Qingqing Wang, Jian Zhao, Wei Du, Yanmei Qiu, Wei Zhou, Yao He, Ying Li, Jie Li, Pingqing Fu, Zifa Wang, Douglas R. Worsnop, and Yele Sun
Atmos. Chem. Phys., 19, 10205–10216, https://doi.org/10.5194/acp-19-10205-2019, https://doi.org/10.5194/acp-19-10205-2019, 2019
Short summary
Short summary
We present the first aerosol volatility measurements in Beijing in summer using a thermodenuder coupled with aerosol mass spectrometers. Our results showed that organic aerosol (OA) comprised mainly semi-volatile organic compounds in summer, and the freshly oxidized secondary OA was the most volatile component. We also found quite different volatility distributions in black-carbon-containing primary and secondary OA, ambient OA, ambient secondary OA and the WRF-Chem model.
Erin Evoy, Adrian M. Maclean, Grazia Rovelli, Ying Li, Alexandra P. Tsimpidi, Vlassis A. Karydis, Saeid Kamal, Jos Lelieveld, Manabu Shiraiwa, Jonathan P. Reid, and Allan K. Bertram
Atmos. Chem. Phys., 19, 10073–10085, https://doi.org/10.5194/acp-19-10073-2019, https://doi.org/10.5194/acp-19-10073-2019, 2019
Short summary
Short summary
We measured the diffusion rates of organic molecules in a number of proxies for secondary organic aerosol (SOA) and compared measured diffusion with predictions from two relations: the Stokes–Einstein relation and a fractional Stokes–Einstein relation. The fractional relation does a better job of predicting diffusion rates in this case. Output from an atmospheric model shows that mixing times predicted using the two relations differ by up to 1 order of magnitude at an altitude of ~ 3 km.
Wing-Sy Wong DeRieux, Ying Li, Peng Lin, Julia Laskin, Alexander Laskin, Allan K. Bertram, Sergey A. Nizkorodov, and Manabu Shiraiwa
Atmos. Chem. Phys., 18, 6331–6351, https://doi.org/10.5194/acp-18-6331-2018, https://doi.org/10.5194/acp-18-6331-2018, 2018
Short summary
Short summary
The phase transition of organic particles between glassy and semi-solid states occurs at the glass transition temperature. We developed a method to predict glass transition temperatures and the viscosity of secondary organic aerosols using molecular composition, with consistent results with viscosity measurements. The viscosity of biomass burning particles was also estimated using the chemical composition measured by high-resolution mass spectrometry with two different ionization techniques.
Ying Li, Ulrich Pöschl, and Manabu Shiraiwa
Atmos. Chem. Phys., 16, 3327–3344, https://doi.org/10.5194/acp-16-3327-2016, https://doi.org/10.5194/acp-16-3327-2016, 2016
Y. Tang, J. An, F. Wang, Y. Li, Y. Qu, Y. Chen, and J. Lin
Atmos. Chem. Phys., 15, 9381–9398, https://doi.org/10.5194/acp-15-9381-2015, https://doi.org/10.5194/acp-15-9381-2015, 2015
Short summary
Short summary
High daytime HONO mixing ratios in experiments suggest that an unknown daytime HONO source (P unknown) could exist. P unknown≈19.60×NO2×J(NO2) was obtained using observed data from 13 field experiments across the globe, then coupled into the WRF-Chem model. Simulations indicated that elevated P unknown was found in the coastal regions of China; the additional HONO sources, especially the P unknown produced significant increases of radicals in the major cities, and accelerated the radical cycles.
Zichen Wu, Xueshun Chen, Zifa Wang, Huansheng Chen, Zhe Wang, Qing Mu, Lin Wu, Wending Wang, Xiao Tang, Jie Li, Ying Li, Qizhong Wu, Yang Wang, Zhiyin Zou, and Zijian Jiang
Geosci. Model Dev., 17, 8885–8907, https://doi.org/10.5194/gmd-17-8885-2024, https://doi.org/10.5194/gmd-17-8885-2024, 2024
Short summary
Short summary
We developed a model to simulate polycyclic aromatic hydrocarbons (PAHs) from global to regional scales. The model can reproduce PAH distribution well. The concentration of BaP (indicator species for PAHs) could exceed the target values of 1 ng m-3 over some areas (e.g., in central Europe, India, and eastern China). The change in BaP is lower than that in PM2.5 from 2013 to 2018. China still faces significant potential health risks posed by BaP although the Action Plan has been implemented.
Michael Oluwatoyin Sunday, Laura Marie Dahler Heinlein, Junwei He, Allison Moon, Sukriti Kapur, Ting Fang, Kasey C. Edwards, Fangzhou Guo, Jack Dibb, James H. Flynn III, Becky Alexander, Manabu Shiraiwa, and Cort Anastasio
EGUsphere, https://doi.org/10.5194/egusphere-2024-3272, https://doi.org/10.5194/egusphere-2024-3272, 2024
Short summary
Short summary
Hydrogen peroxide (HOOH) is an important oxidant that forms atmospheric sulfate. We demonstrate that illumination of brown carbon can rapidly form HOOH within particles, even under the low sunlight conditions of Fairbanks, Alaska during winter. This in-particle formation of HOOH is fast enough that it forms sulfate at significant rates. In contrast, the formation of HOOH in the gas phase during the campaign is expected to be negligible because of high NOx levels.
Tommaso Galeazzo, Bernard Aumont, Marie Camredon, Richard Valorso, Yong B. Lim, Paul J. Ziemann, and Manabu Shiraiwa
Atmos. Chem. Phys., 24, 5549–5565, https://doi.org/10.5194/acp-24-5549-2024, https://doi.org/10.5194/acp-24-5549-2024, 2024
Short summary
Short summary
Secondary organic aerosol (SOA) derived from n-alkanes is a major component of anthropogenic particulate matter. We provide an analysis of n-alkane SOA by chemistry modeling, machine learning, and laboratory experiments, showing that n-alkane SOA adopts low-viscous semi-solid or liquid states. Our results indicate few kinetic limitations of mass accommodation in SOA formation, supporting the application of equilibrium partitioning for simulating n-alkane SOA in large-scale atmospheric models.
Zhiqiang Zhang, Ying Li, Haiyan Ran, Junling An, Yu Qu, Wei Zhou, Weiqi Xu, Weiwei Hu, Hongbin Xie, Zifa Wang, Yele Sun, and Manabu Shiraiwa
Atmos. Chem. Phys., 24, 4809–4826, https://doi.org/10.5194/acp-24-4809-2024, https://doi.org/10.5194/acp-24-4809-2024, 2024
Short summary
Short summary
Secondary organic aerosols (SOAs) can exist in liquid, semi-solid, or amorphous solid states, which are rarely accounted for in current chemical transport models. We predict the phase state of SOA particles over China and find that in northwestern China SOA particles are mostly highly viscous or glassy solid. Our results indicate that the particle phase state should be considered in SOA formation in chemical transport models for more accurate prediction of SOA mass concentrations.
Daniel A. Knopf, Markus Ammann, Thomas Berkemeier, Ulrich Pöschl, and Manabu Shiraiwa
Atmos. Chem. Phys., 24, 3445–3528, https://doi.org/10.5194/acp-24-3445-2024, https://doi.org/10.5194/acp-24-3445-2024, 2024
Short summary
Short summary
The initial step of interfacial and multiphase chemical processes involves adsorption and desorption of gas species. This study demonstrates the role of desorption energy governing the residence time of the gas species at the environmental interface. A parameterization is formulated that enables the prediction of desorption energy based on the molecular weight, polarizability, and oxygen-to-carbon ratio of the desorbing chemical species. Its application to gas–particle interactions is discussed.
Meredith Schervish and Manabu Shiraiwa
Atmos. Chem. Phys., 23, 221–233, https://doi.org/10.5194/acp-23-221-2023, https://doi.org/10.5194/acp-23-221-2023, 2023
Short summary
Short summary
Secondary organic aerosols (SOAs) can exhibit complex non-ideal behavior and adopt an amorphous semisolid state. We simulate condensation of semi-volatile compounds into a phase-separated particle to investigate the effect of non-ideality and particle phase state on the equilibration timescale of SOA partitioning. Our results provide useful insights into the interpretation of experimental observations and the description and treatment of SOA in aerosol models.
Qiaorong Xie, Sihui Su, Jing Chen, Yuqing Dai, Siyao Yue, Hang Su, Haijie Tong, Wanyu Zhao, Lujie Ren, Yisheng Xu, Dong Cao, Ying Li, Yele Sun, Zifa Wang, Cong-Qiang Liu, Kimitaka Kawamura, Guibin Jiang, Yafang Cheng, and Pingqing Fu
Atmos. Chem. Phys., 21, 11453–11465, https://doi.org/10.5194/acp-21-11453-2021, https://doi.org/10.5194/acp-21-11453-2021, 2021
Short summary
Short summary
This study investigated the role of nighttime chemistry during Chinese New Year's Eve that enhances the formation of nitrooxy organosulfates in the aerosol phase. Results show that anthropogenic precursors, together with biogenic ones, considerably contribute to the formation of low-volatility nitrooxy OSs. Our study provides detailed molecular composition of firework-related aerosols, which gives new insights into the physicochemical properties and potential health effects of urban aerosols.
Haijie Tong, Fobang Liu, Alexander Filippi, Jake Wilson, Andrea M. Arangio, Yun Zhang, Siyao Yue, Steven Lelieveld, Fangxia Shen, Helmi-Marja K. Keskinen, Jing Li, Haoxuan Chen, Ting Zhang, Thorsten Hoffmann, Pingqing Fu, William H. Brune, Tuukka Petäjä, Markku Kulmala, Maosheng Yao, Thomas Berkemeier, Manabu Shiraiwa, and Ulrich Pöschl
Atmos. Chem. Phys., 21, 10439–10455, https://doi.org/10.5194/acp-21-10439-2021, https://doi.org/10.5194/acp-21-10439-2021, 2021
Short summary
Short summary
We measured radical yields of aqueous PM2.5 extracts and found lower yields at higher concentrations of PM2.5. Abundances of water-soluble transition metals and aromatics in PM2.5 were positively correlated with the relative fraction of •OH but negatively correlated with the relative fraction of C-centered radicals among detected radicals. Composition-dependent reactive species yields may explain differences in the reactivity and health effects of PM2.5 in clean versus polluted air.
Tommaso Galeazzo, Richard Valorso, Ying Li, Marie Camredon, Bernard Aumont, and Manabu Shiraiwa
Atmos. Chem. Phys., 21, 10199–10213, https://doi.org/10.5194/acp-21-10199-2021, https://doi.org/10.5194/acp-21-10199-2021, 2021
Short summary
Short summary
We simulate SOA viscosity with explicit modeling of gas-phase oxidation of isoprene and α-pinene. While the viscosity dependence on relative humidity and mass loadings is captured well by simulations, the model underestimates measured viscosity, indicating missing processes. Kinetic limitations and reduction in mass accommodation may cause an increase in viscosity. The developed model is powerful for investigation of the interplay among gas reactions, chemical composition and phase state.
Jake Wilson, Ulrich Pöschl, Manabu Shiraiwa, and Thomas Berkemeier
Atmos. Chem. Phys., 21, 6175–6198, https://doi.org/10.5194/acp-21-6175-2021, https://doi.org/10.5194/acp-21-6175-2021, 2021
Short summary
Short summary
This work explores the gas–particle partitioning of PAHs on soot with a kinetic model. We show that the equilibration timescale depends on PAH molecular structure, temperature, and particle number concentration. We explore scenarios in which the particulate fraction is perturbed from equilibrium by chemical loss and discuss implications for chemical transport models that assume instantaneous equilibration at each model time step.
Weiqi Xu, Chun Chen, Yanmei Qiu, Ying Li, Zhiqiang Zhang, Eleni Karnezi, Spyros N. Pandis, Conghui Xie, Zhijie Li, Jiaxing Sun, Nan Ma, Wanyun Xu, Pingqing Fu, Zifa Wang, Jiang Zhu, Douglas R. Worsnop, Nga Lee Ng, and Yele Sun
Atmos. Chem. Phys., 21, 5463–5476, https://doi.org/10.5194/acp-21-5463-2021, https://doi.org/10.5194/acp-21-5463-2021, 2021
Short summary
Short summary
Here aerosol volatility and viscosity at a rural site (Gucheng) and an urban site (Beijing) in the North China Plain (NCP) were investigated in summer and winter. Our results showed that organic aerosol (OA) in winter in the NCP is more volatile than that in summer due to enhanced primary emissions from coal combustion and biomass burning. We also found that OA existed mainly as a solid in winter in Beijing but as semisolids in Beijing in summer and Gucheng in winter.
Manabu Shiraiwa and Ulrich Pöschl
Atmos. Chem. Phys., 21, 1565–1580, https://doi.org/10.5194/acp-21-1565-2021, https://doi.org/10.5194/acp-21-1565-2021, 2021
Short summary
Short summary
Mass accommodation is a crucial process in secondary organic aerosol partitioning that depends on volatility, diffusivity, reactivity, and particle penetration depth of the chemical species involved. For efficient kinetic modeling, we introduce an effective mass accommodation coefficient that accounts for the above influencing factors, can be applied in the common Fuchs–Sutugin approximation, and helps to resolve inconsistencies and shortcomings of earlier experimental and model investigations.
Sabin Kasparoglu, Ying Li, Manabu Shiraiwa, and Markus D. Petters
Atmos. Chem. Phys., 21, 1127–1141, https://doi.org/10.5194/acp-21-1127-2021, https://doi.org/10.5194/acp-21-1127-2021, 2021
Short summary
Short summary
Viscosity is important because it determines the lifetime, impact, and fate of particulate matter. We collected new data to rigorously test a framework that is used to constrain the phase state in global simulations. We find that the framework is accurate as long as appropriate compound specific inputs are available.
Ying Li, Douglas A. Day, Harald Stark, Jose L. Jimenez, and Manabu Shiraiwa
Atmos. Chem. Phys., 20, 8103–8122, https://doi.org/10.5194/acp-20-8103-2020, https://doi.org/10.5194/acp-20-8103-2020, 2020
Short summary
Short summary
Viscosity is an important property of organic aerosols, but viscosity measurements of ambient organic aerosols are scarce. We developed a method to predict glass transition temperatures using volatility and the atomic oxygen-to-carbon ratio. The method was applied to field observations of volatility distributions to predict viscosity of ambient organic aerosols, yielding consistent results with ambient particle phase-state measurements and global simulations.
Mijung Song, Adrian M. Maclean, Yuanzhou Huang, Natalie R. Smith, Sandra L. Blair, Julia Laskin, Alexander Laskin, Wing-Sy Wong DeRieux, Ying Li, Manabu Shiraiwa, Sergey A. Nizkorodov, and Allan K. Bertram
Atmos. Chem. Phys., 19, 12515–12529, https://doi.org/10.5194/acp-19-12515-2019, https://doi.org/10.5194/acp-19-12515-2019, 2019
Weiqi Xu, Conghui Xie, Eleni Karnezi, Qi Zhang, Junfeng Wang, Spyros N. Pandis, Xinlei Ge, Jingwei Zhang, Junling An, Qingqing Wang, Jian Zhao, Wei Du, Yanmei Qiu, Wei Zhou, Yao He, Ying Li, Jie Li, Pingqing Fu, Zifa Wang, Douglas R. Worsnop, and Yele Sun
Atmos. Chem. Phys., 19, 10205–10216, https://doi.org/10.5194/acp-19-10205-2019, https://doi.org/10.5194/acp-19-10205-2019, 2019
Short summary
Short summary
We present the first aerosol volatility measurements in Beijing in summer using a thermodenuder coupled with aerosol mass spectrometers. Our results showed that organic aerosol (OA) comprised mainly semi-volatile organic compounds in summer, and the freshly oxidized secondary OA was the most volatile component. We also found quite different volatility distributions in black-carbon-containing primary and secondary OA, ambient OA, ambient secondary OA and the WRF-Chem model.
Erin Evoy, Adrian M. Maclean, Grazia Rovelli, Ying Li, Alexandra P. Tsimpidi, Vlassis A. Karydis, Saeid Kamal, Jos Lelieveld, Manabu Shiraiwa, Jonathan P. Reid, and Allan K. Bertram
Atmos. Chem. Phys., 19, 10073–10085, https://doi.org/10.5194/acp-19-10073-2019, https://doi.org/10.5194/acp-19-10073-2019, 2019
Short summary
Short summary
We measured the diffusion rates of organic molecules in a number of proxies for secondary organic aerosol (SOA) and compared measured diffusion with predictions from two relations: the Stokes–Einstein relation and a fractional Stokes–Einstein relation. The fractional relation does a better job of predicting diffusion rates in this case. Output from an atmospheric model shows that mixing times predicted using the two relations differ by up to 1 order of magnitude at an altitude of ~ 3 km.
Olli-Pekka Tikkanen, Väinö Hämäläinen, Grazia Rovelli, Antti Lipponen, Manabu Shiraiwa, Jonathan P. Reid, Kari E. J. Lehtinen, and Taina Yli-Juuti
Atmos. Chem. Phys., 19, 9333–9350, https://doi.org/10.5194/acp-19-9333-2019, https://doi.org/10.5194/acp-19-9333-2019, 2019
Short summary
Short summary
We assessed how well the organic aerosol particle composition and viscosity can be captured by optimizing process models to match particle evaporation data. We performed the analysis for both artificial and real evaporation data and tested two optimization algorithms. Our findings show that the optimization method yields a good estimate for the studied properties. The timescale of the evaporation data and particle size was found to be important in identifying the volatility of organic compounds.
Wing-Sy Wong DeRieux, Ying Li, Peng Lin, Julia Laskin, Alexander Laskin, Allan K. Bertram, Sergey A. Nizkorodov, and Manabu Shiraiwa
Atmos. Chem. Phys., 18, 6331–6351, https://doi.org/10.5194/acp-18-6331-2018, https://doi.org/10.5194/acp-18-6331-2018, 2018
Short summary
Short summary
The phase transition of organic particles between glassy and semi-solid states occurs at the glass transition temperature. We developed a method to predict glass transition temperatures and the viscosity of secondary organic aerosols using molecular composition, with consistent results with viscosity measurements. The viscosity of biomass burning particles was also estimated using the chemical composition measured by high-resolution mass spectrometry with two different ionization techniques.
Mallory L. Hinks, Julia Montoya-Aguilera, Lucas Ellison, Peng Lin, Alexander Laskin, Julia Laskin, Manabu Shiraiwa, Donald Dabdub, and Sergey A. Nizkorodov
Atmos. Chem. Phys., 18, 1643–1652, https://doi.org/10.5194/acp-18-1643-2018, https://doi.org/10.5194/acp-18-1643-2018, 2018
Short summary
Short summary
We have observed a strong effect of relative humidity on the composition of particulate matter produced from the oxidation of toluene in clean air. At higher relative humidity, there was a significant reduction in the fraction of high-molecular-weight compounds present in the particles. The amount of particulate matter also decreased at higher relative humidity. The main implication of this study is that water vapor participates in the photooxidation of toluene in a complicated way.
Man Mei Chim, Chiu Tung Cheng, James F. Davies, Thomas Berkemeier, Manabu Shiraiwa, Andreas Zuend, and Man Nin Chan
Atmos. Chem. Phys., 17, 14415–14431, https://doi.org/10.5194/acp-17-14415-2017, https://doi.org/10.5194/acp-17-14415-2017, 2017
Short summary
Short summary
In this work, we report that methyl-substituted succinic acid present at or near the surface of aqueous organic droplets can be efficiently oxidized by gas-phase OH radicals. The alkoxy radical chemistry appears to be an important reaction pathway. In addition, our model simulations reveal the relative importance of functionalization and fragmentation processes, alongside volatilization, in the evolution of the particle-phase reaction, which is largely dependent on the extent of oxidation.
Qing Mu, Gerhard Lammel, Christian N. Gencarelli, Ian M. Hedgecock, Ying Chen, Petra Přibylová, Monique Teich, Yuxuan Zhang, Guangjie Zheng, Dominik van Pinxteren, Qiang Zhang, Hartmut Herrmann, Manabu Shiraiwa, Peter Spichtinger, Hang Su, Ulrich Pöschl, and Yafang Cheng
Atmos. Chem. Phys., 17, 12253–12267, https://doi.org/10.5194/acp-17-12253-2017, https://doi.org/10.5194/acp-17-12253-2017, 2017
Short summary
Short summary
Polycyclic aromatic hydrocarbons (PAHs) are hazardous pollutants with the largest emissions in East Asia. The regional WRF-Chem-PAH model has been developed to reflect the state-of-the-art understanding of current PAHs studies with several new or updated features. It is able to reasonably well simulate the concentration levels and particulate mass fractions of PAHs near the sources and at a remote outflow region of East Asia, in high spatial and temporal resolutions.
Thomas Berkemeier, Markus Ammann, Ulrich K. Krieger, Thomas Peter, Peter Spichtinger, Ulrich Pöschl, Manabu Shiraiwa, and Andrew J. Huisman
Atmos. Chem. Phys., 17, 8021–8029, https://doi.org/10.5194/acp-17-8021-2017, https://doi.org/10.5194/acp-17-8021-2017, 2017
Short summary
Short summary
Kinetic process models are efficient tools used to unravel the mechanisms governing chemical and physical transformation in multiphase atmospheric chemistry. However, determination of kinetic parameters such as reaction rate or diffusion coefficients from multiple data sets is often difficult or ambiguous. This study presents a novel optimization algorithm and framework to determine these parameters in an automated fashion and to gain information about parameter uncertainty and uniqueness.
Andrea M. Arangio, Haijie Tong, Joanna Socorro, Ulrich Pöschl, and Manabu Shiraiwa
Atmos. Chem. Phys., 16, 13105–13119, https://doi.org/10.5194/acp-16-13105-2016, https://doi.org/10.5194/acp-16-13105-2016, 2016
Short summary
Short summary
We have quantified environmentally persistent free radicals and reactive oxygen species (ROS) in size-segregated atmospheric aerosol particles. We suggest that ROS were formed by decomposition of secondary organic aerosols interacting with transition metal ions and quinones contained in humic-like substances. The results have significant implications for aqueous-phase and cloud processing of organic aerosols as well as adverse health effects upon respiratory deposition of aerosol particles.
Pascale S. J. Lakey, Thomas Berkemeier, Manuel Krapf, Josef Dommen, Sarah S. Steimer, Lisa K. Whalley, Trevor Ingham, Maria T. Baeza-Romero, Ulrich Pöschl, Manabu Shiraiwa, Markus Ammann, and Dwayne E. Heard
Atmos. Chem. Phys., 16, 13035–13047, https://doi.org/10.5194/acp-16-13035-2016, https://doi.org/10.5194/acp-16-13035-2016, 2016
Short summary
Short summary
Chemical oxidation in the atmosphere removes pollutants and greenhouse gases but generates undesirable products such as secondary organic aerosol. Radicals are key intermediates in oxidation, but how they interact with aerosols is still not well understood. Here we use a laser to measure the loss of radicals onto oxidised aerosols generated in a smog chamber. The loss of radicals was controlled by the thickness or viscosity of the aerosols, confirmed by using sugar aerosols of known thickness.
Natasha Hodas, Andreas Zuend, Katherine Schilling, Thomas Berkemeier, Manabu Shiraiwa, Richard C. Flagan, and John H. Seinfeld
Atmos. Chem. Phys., 16, 12767–12792, https://doi.org/10.5194/acp-16-12767-2016, https://doi.org/10.5194/acp-16-12767-2016, 2016
Short summary
Short summary
Discontinuities in apparent hygroscopicity below and above water saturation have been observed for organic and mixed organic-inorganic aerosol particles in both laboratory studies and in the ambient atmosphere. This work explores the extent to which such discontinuities are influenced by organic component molecular mass and viscosity, non-ideal thermodynamic interactions between aerosol components, and the combination of these factors.
Ying Li, Ulrich Pöschl, and Manabu Shiraiwa
Atmos. Chem. Phys., 16, 3327–3344, https://doi.org/10.5194/acp-16-3327-2016, https://doi.org/10.5194/acp-16-3327-2016, 2016
Haijie Tong, Andrea M. Arangio, Pascale S. J. Lakey, Thomas Berkemeier, Fobang Liu, Christopher J. Kampf, William H. Brune, Ulrich Pöschl, and Manabu Shiraiwa
Atmos. Chem. Phys., 16, 1761–1771, https://doi.org/10.5194/acp-16-1761-2016, https://doi.org/10.5194/acp-16-1761-2016, 2016
Short summary
Short summary
We provide experimental evidence that terpene and isoprene SOA form substantial amounts of OH radicals upon interaction with liquid water and iron. Our measurements and model results imply that the chemical reactivity of SOA in the atmosphere, particularly in clouds, can be faster than previously thought. Inhalation and deposition of SOA particles in the human respiratory tract may lead to a substantial release of OH radicals in vivo, causing oxidative stress and adverse aerosol health effects.
Y. Tang, J. An, F. Wang, Y. Li, Y. Qu, Y. Chen, and J. Lin
Atmos. Chem. Phys., 15, 9381–9398, https://doi.org/10.5194/acp-15-9381-2015, https://doi.org/10.5194/acp-15-9381-2015, 2015
Short summary
Short summary
High daytime HONO mixing ratios in experiments suggest that an unknown daytime HONO source (P unknown) could exist. P unknown≈19.60×NO2×J(NO2) was obtained using observed data from 13 field experiments across the globe, then coupled into the WRF-Chem model. Simulations indicated that elevated P unknown was found in the coastal regions of China; the additional HONO sources, especially the P unknown produced significant increases of radicals in the major cities, and accelerated the radical cycles.
E. F. Mikhailov, G. N. Mironov, C. Pöhlker, X. Chi, M. L. Krüger, M. Shiraiwa, J.-D. Förster, U. Pöschl, S. S. Vlasenko, T. I. Ryshkevich, M. Weigand, A. L. D. Kilcoyne, and M. O. Andreae
Atmos. Chem. Phys., 15, 8847–8869, https://doi.org/10.5194/acp-15-8847-2015, https://doi.org/10.5194/acp-15-8847-2015, 2015
Short summary
Short summary
Our manuscript describes the hygroscopic properties of accumulation- and coarse-mode aerosol particles sampled at the ZOTTO in central Siberia (61º N, 89º E). The hygroscopic growth measurements were supplemented with chemical analyses of the samples. In addition, the microstructure and chemical composition of aerosol particles were analyzed by x-ray micro-spectroscopy (STXM-NEXAFS) and transmission electron microscopy (TEM).
M. J. Tang, M. Shiraiwa, U. Pöschl, R. A. Cox, and M. Kalberer
Atmos. Chem. Phys., 15, 5585–5598, https://doi.org/10.5194/acp-15-5585-2015, https://doi.org/10.5194/acp-15-5585-2015, 2015
T. Berkemeier, M. Shiraiwa, U. Pöschl, and T. Koop
Atmos. Chem. Phys., 14, 12513–12531, https://doi.org/10.5194/acp-14-12513-2014, https://doi.org/10.5194/acp-14-12513-2014, 2014
Short summary
Short summary
Glassy organic particles can serve as ice nuclei at low temperatures. We provide a rationale for these findings using a numerical aerosol diffusion model that describes particle phase state and its kinetics during simulated atmospheric updrafts dependent upon composition, size, updraft velocity, temperature and humidity. Our simulations suggest that aerosols from anthropogenic aromatic organics can be particularly relevant for ice cloud formation.
M. Shiraiwa, T. Berkemeier, K. A. Schilling-Fahnestock, J. H. Seinfeld, and U. Pöschl
Atmos. Chem. Phys., 14, 8323–8341, https://doi.org/10.5194/acp-14-8323-2014, https://doi.org/10.5194/acp-14-8323-2014, 2014
C. L. Loza, J. S. Craven, L. D. Yee, M. M. Coggon, R. H. Schwantes, M. Shiraiwa, X. Zhang, K. A. Schilling, N. L. Ng, M. R. Canagaratna, P. J. Ziemann, R. C. Flagan, and J. H. Seinfeld
Atmos. Chem. Phys., 14, 1423–1439, https://doi.org/10.5194/acp-14-1423-2014, https://doi.org/10.5194/acp-14-1423-2014, 2014
Related subject area
Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Warming effects of reduced sulfur emissions from shipping
The key role of atmospheric absorption in the Asian summer monsoon response to dust emissions in CMIP6 models
Multi-model effective radiative forcing of the 2020 sulfur cap for shipping
Representation of iron aerosol size distributions of anthropogenic emissions is critical in evaluating atmospheric soluble iron input to the ocean
Revealing dominant patterns of aerosol regimes in the lower troposphere and their evolution from preindustrial times to the future in global climate model simulations
Improving estimation of a record-breaking east Asian dust storm emission with lagged aerosol Ångström exponent observations
Impact of biomass burning aerosols (BBA) on the tropical African climate in an ocean–atmosphere–aerosol coupled climate model
Retrieval of refractive index and water content for the coating materials of aged black carbon aerosol based on optical properties: a theoretical analysis
Predicting hygroscopic growth of organosulfur aerosol particles using COSMOtherm
Dust aerosol from the Aralkum Desert influences the radiation budget and atmospheric dynamics of Central Asia
Global modeling of aerosol nucleation with a semi-explicit chemical mechanism for highly oxygenated organic molecules (HOMs)
Synergistic effects of the winter North Atlantic Oscillation (NAO) and El Niño–Southern Oscillation (ENSO) on dust activities in North China during the following spring
Aerosol composition, air quality, and boundary layer dynamics in the urban background of Stuttgart in winter
Measurement report: Source attribution and estimation of black carbon levels in an urban hotspot of the central Po Valley – an integrated approach combining high-resolution dispersion modelling and micro-aethalometers
Quasi-weekly oscillation of regional PM2.5 transport over China driven by the synoptic-scale disturbance of East Asian Winter Monsoon circulation
Microphysical modelling of aerosol scavenging by different types of clouds: description and validation of the approach
Insights into the sources of ultrafine particle numbers at six European urban sites obtained by investigating COVID-19 lockdowns
In-plume and out-of-plume analysis of aerosol–cloud interactions derived from the 2014–2015 Holuhraun volcanic eruption
Impacts of atmospheric circulation patterns and cloud inhibition on aerosol radiative effect and boundary layer structure during winter air pollution in Sichuan Basin, China
Steady-State Mixing State of Black Carbon Aerosols from a Particle-Resolved Model
The effectiveness of solar radiation management for marine cloud brightening geoengineering by fine sea spray in worldwide different climatic regions
Accounting for Black Carbon Aging Process in a Two-way Coupled Meteorology – Air Quality Model
Investigating the sign of stratocumulus adjustments to aerosols in the ICON global storm-resolving model
A model study investigating the sensitivity of aerosol forcing to the volatilities of semi-volatile organic compounds
Distinctive dust weather intensities in North China resulted from two types of atmospheric circulation anomalies
Decomposing the effective radiative forcing of anthropogenic aerosols based on CMIP6 Earth system models
The role of interfacial tension in the size-dependent phase separation of atmospheric aerosol particles
Modeling impacts of dust mineralogy on fast climate response
Gaps in our understanding of ice-nucleating particle sources exposed by global simulation of the UK climate model
Uncertainties in laboratory-measured shortwave refractive indices of mineral dust aerosols and derived optical properties: a theoretical assessment
Diagnosing uncertainties in global biomass burning emission inventories and their impact on modeled air pollutants
Solar radiation estimation in West Africa: impact of dust conditions during 2021 dry season
Role of atmospheric aerosols in severe winter fog over the Indo-Gangetic Plain of India: a case study
Long-term variability in black carbon emissions constrained by gap-filled absorption aerosol optical depth and associated premature mortality in China
Intercomparison of aerosol optical depths from four reanalyses and their multi-reanalysis consensus
Biomass Burning Emissions Analysis Based on MODIS AOD and AeroCom Multi-Model Simulations
Global aviation contrail climate effects from 2019 to 2021
Rapid iodine oxoacid nucleation enhanced by dimethylamine in broad marine regions
Simulations of the impact of cloud condensation nuclei and ice-nucleating particles perturbations on the microphysics and radar reflectivity factor of stratiform mixed-phase clouds
Aerosols in the central Arctic cryosphere: satellite and model integrated insights during Arctic spring and summer
Observationally constrained regional variations of shortwave absorption by iron oxides emphasize the cooling effect of dust
Droplet collection efficiencies inferred from satellite retrievals constrain effective radiative forcing of aerosol–cloud interactions
Global aerosol-type classification using a new hybrid algorithm and Aerosol Robotic Network data
Tropospheric aerosols over the western North Atlantic Ocean during the winter and summer campaigns of ACTIVATE 2020: Life cycle, transport, and distribution
Simulated phase state and viscosity of secondary organic aerosols over China
Comparing the simulated influence of biomass burning plumes on low-level clouds over the southeastern Atlantic under varying smoke conditions
A global dust emission dataset for estimating dust radiative forcings in climate models
Improved simulations of biomass burning aerosol optical properties and lifetimes in the NASA GEOS Model during the ORACLES-I campaign
Sharp increase in Saharan dust intrusions over the western Euro-Mediterranean in February–March 2020–2022 and associated atmospheric circulation
Temporal and spatial variations in dust activity in Australia based on remote sensing and reanalysis datasets
Masaru Yoshioka, Daniel P. Grosvenor, Ben B. B. Booth, Colin P. Morice, and Ken S. Carslaw
Atmos. Chem. Phys., 24, 13681–13692, https://doi.org/10.5194/acp-24-13681-2024, https://doi.org/10.5194/acp-24-13681-2024, 2024
Short summary
Short summary
A 2020 regulation has reduced sulfur emissions from shipping by about 80 %, leading to a decrease in atmospheric aerosols that have a cooling effect primarily by affecting cloud properties and amounts. Our climate model simulations predict a global temperature increase of 0.04 K over the next 3 decades as a result, which could contribute to surpassing the Paris Agreement's 1.5 °C target. Reduced aerosols may have also contributed to the recent temperature spikes.
Alcide Zhao, Laura J. Wilcox, and Claire L. Ryder
Atmos. Chem. Phys., 24, 13385–13402, https://doi.org/10.5194/acp-24-13385-2024, https://doi.org/10.5194/acp-24-13385-2024, 2024
Short summary
Short summary
Climate models include desert dust aerosols, which cause atmospheric heating and can change circulation patterns. We assess the effect of dust on the Indian and east Asian summer monsoons through multi-model experiments isolating the effect of dust in current climate models for the first time. Dust atmospheric heating results in a southward shift of western Pacific equatorial rainfall and an enhanced Indian summer monsoon. This shows the importance of accurate dust representation in models.
Ragnhild Bieltvedt Skeie, Rachael Byrom, Øivind Hodnebrog, Caroline Jouan, and Gunnar Myhre
Atmos. Chem. Phys., 24, 13361–13370, https://doi.org/10.5194/acp-24-13361-2024, https://doi.org/10.5194/acp-24-13361-2024, 2024
Short summary
Short summary
In 2020, new regulations by the International Maritime Organization regarding sulfur emissions came into force, reducing emissions of SO2 from the shipping sector by approximately 80 %. In this study, we use multiple models to calculate how much the Earth energy balance changed due to the emission reduction or the so-called effective radiative forcing. The calculated effective radiative forcing is weak, comparable to the effect of the increase in CO2 over the last 2 to 3 years.
Mingxu Liu, Hitoshi Matsui, Douglas S. Hamilton, Sagar D. Rathod, Kara D. Lamb, and Natalie M. Mahowald
Atmos. Chem. Phys., 24, 13115–13127, https://doi.org/10.5194/acp-24-13115-2024, https://doi.org/10.5194/acp-24-13115-2024, 2024
Short summary
Short summary
Atmospheric aerosol deposition provides bioavailable iron to promote marine primary production, yet the estimates of its fluxes remain highly uncertain. This study, by performing global aerosol simulations, demonstrates that iron-containing particle size upon emission is a critical factor in regulating soluble iron input to open oceans. Further observational constraints on this are needed to reduce modeling uncertainties.
Jingmin Li, Mattia Righi, Johannes Hendricks, Christof G. Beer, Ulrike Burkhardt, and Anja Schmidt
Atmos. Chem. Phys., 24, 12727–12747, https://doi.org/10.5194/acp-24-12727-2024, https://doi.org/10.5194/acp-24-12727-2024, 2024
Short summary
Short summary
Aiming to understand underlying patterns and trends in aerosols, we characterize the spatial patterns and long-term evolution of lower tropospheric aerosols by clustering multiple aerosol properties from preindustrial times to the year 2050 under three Shared
Socioeconomic Pathway scenarios. The results provide a clear and condensed picture of the spatial extent and distribution of aerosols for different time periods and emission scenarios.
Socioeconomic Pathway scenarios. The results provide a clear and condensed picture of the spatial extent and distribution of aerosols for different time periods and emission scenarios.
Yueming Cheng, Tie Dai, Junji Cao, Daisuke Goto, Jianbing Jin, Teruyuki Nakajima, and Guangyu Shi
Atmos. Chem. Phys., 24, 12643–12659, https://doi.org/10.5194/acp-24-12643-2024, https://doi.org/10.5194/acp-24-12643-2024, 2024
Short summary
Short summary
In March 2021, east Asia experienced an outbreak of severe dust storms after an absence of 1.5 decades. Here, we innovatively used the time-lagged ground-based aerosol size information with the fixed-lag ensemble Kalman smoother to optimize dust emission and reproduce the dust storm. This work is valuable for not only the quantification of health damage, aviation risks, and profound impacts on the Earth's system but also revealing the climatic driving force and the process of desertification.
Marc Mallet, Aurore Voldoire, Fabien Solmon, Pierre Nabat, Thomas Drugé, and Romain Roehrig
Atmos. Chem. Phys., 24, 12509–12535, https://doi.org/10.5194/acp-24-12509-2024, https://doi.org/10.5194/acp-24-12509-2024, 2024
Short summary
Short summary
This study investigates the interactions between smoke aerosols and climate in tropical Africa using a coupled ocean–atmosphere–aerosol climate model. The work shows that smoke plumes have a significant impact by increasing the low-cloud fraction, decreasing the ocean and continental surface temperature and reducing the precipitation of coastal western Africa. It also highlights the role of the ocean temperature response and its feedbacks for the September–November season.
Jia Liu, Cancan Zhu, Donghui Zhou, and Jinbao Han
Atmos. Chem. Phys., 24, 12341–12354, https://doi.org/10.5194/acp-24-12341-2024, https://doi.org/10.5194/acp-24-12341-2024, 2024
Short summary
Short summary
The hydrophilic coatings of aged black carbon (BC) particles absorb moisture during the hygroscopic growth process, but it is difficult to characterize how much water is absorbed under different relative humidities (RHs). In this study, we propose a method to obtain the water content in the coatings based on the equivalent complex refractive index retrieved from optical properties. This method is verified from a theoretical perspective, and it performs well for thickly coated BC at high RHs.
Zijun Li, Angela Buchholz, and Noora Hyttinen
Atmos. Chem. Phys., 24, 11717–11725, https://doi.org/10.5194/acp-24-11717-2024, https://doi.org/10.5194/acp-24-11717-2024, 2024
Short summary
Short summary
Evaluating organosulfur (OS) hygroscopicity is important for assessing aerosol–cloud climate interactions in the post-fossil-fuel future, when SO2 emissions decrease and OS compounds become increasingly important. Here a state-of-the-art quantum-chemistry-based method was used to predict the hygroscopic growth factors (HGFs) of a group of atmospherically relevant OS compounds and their mixtures with (NH4)2SO4. A good agreement was observed between their model-estimated and experimental HGFs.
Jamie R. Banks, Bernd Heinold, and Kerstin Schepanski
Atmos. Chem. Phys., 24, 11451–11475, https://doi.org/10.5194/acp-24-11451-2024, https://doi.org/10.5194/acp-24-11451-2024, 2024
Short summary
Short summary
The Aralkum is a new desert in Central Asia formed by the desiccation of the Aral Sea. This has created a source of atmospheric dust, with implications for the balance of solar and thermal radiation. Simulating these effects using a dust transport model, we find that Aralkum dust adds radiative cooling effects to the surface and atmosphere on average but also adds heating events. Increases in surface pressure due to Aralkum dust strengthen the Siberian High and weaken the summer Asian heat low.
Xinyue Shao, Minghuai Wang, Xinyi Dong, Yaman Liu, Wenxiang Shen, Stephen R. Arnold, Leighton A. Regayre, Meinrat O. Andreae, Mira L. Pöhlker, Duseong S. Jo, Man Yue, and Ken S. Carslaw
Atmos. Chem. Phys., 24, 11365–11389, https://doi.org/10.5194/acp-24-11365-2024, https://doi.org/10.5194/acp-24-11365-2024, 2024
Short summary
Short summary
Highly oxygenated organic molecules (HOMs) play an important role in atmospheric new particle formation (NPF). By semi-explicitly coupling the chemical mechanism of HOMs and a comprehensive nucleation scheme in a global climate model, the updated model shows better agreement with measurements of nucleation rate, growth rate, and NPF event frequency. Our results reveal that HOM-driven NPF leads to a considerable increase in particle and cloud condensation nuclei burden globally.
Falei Xu, Shuang Wang, Yan Li, and Juan Feng
Atmos. Chem. Phys., 24, 10689–10705, https://doi.org/10.5194/acp-24-10689-2024, https://doi.org/10.5194/acp-24-10689-2024, 2024
Short summary
Short summary
This study examines how the winter North Atlantic Oscillation (NAO) and El Niño–Southern Oscillation (ENSO) affect dust activities in North China during the following spring. The results show that the NAO and ENSO, particularly in their negative phases, greatly influence dust activities. When both are negative, their combined effect on dust activities is even greater. This research highlights the importance of these climate patterns in predicting spring dust activities in North China.
Hengheng Zhang, Wei Huang, Xiaoli Shen, Ramakrishna Ramisetty, Junwei Song, Olga Kiseleva, Christopher Claus Holst, Basit Khan, Thomas Leisner, and Harald Saathoff
Atmos. Chem. Phys., 24, 10617–10637, https://doi.org/10.5194/acp-24-10617-2024, https://doi.org/10.5194/acp-24-10617-2024, 2024
Short summary
Short summary
Our study unravels how stagnant winter conditions elevate aerosol levels in Stuttgart. Cloud cover at night plays a pivotal role, impacting morning air quality. Validating a key model, our findings aid accurate air quality predictions, crucial for effective pollution mitigation in urban areas.
Giorgio Veratti, Alessandro Bigi, Michele Stortini, Sergio Teggi, and Grazia Ghermandi
Atmos. Chem. Phys., 24, 10475–10512, https://doi.org/10.5194/acp-24-10475-2024, https://doi.org/10.5194/acp-24-10475-2024, 2024
Short summary
Short summary
In a study of two consecutive winter seasons, we used measurements and modelling tools to identify the levels and sources of black carbon pollution in a medium-sized urban area of the Po Valley, Italy. Our findings show that biomass burning and traffic-related emissions (especially from Euro 4 diesel cars) significantly contribute to BC concentrations. This research offers crucial insights for policymakers and urban planners aiming to improve air quality in cities.
Yongqing Bai, Tianliang Zhao, Kai Meng, Yue Zhou, Jie Xiong, Xiaoyun Sun, Lijuan Shen, Yanyu Yue, Yan Zhu, Weiyang Hu, and Jingyan Yao
EGUsphere, https://doi.org/10.5194/egusphere-2024-2493, https://doi.org/10.5194/egusphere-2024-2493, 2024
Short summary
Short summary
We proposed a composite statistical method to discern the long-term moving spatial distribution with Quasi-weekly oscillation (QWO) of regional PM2.5 transport over China. The QWO of regional PM2.5 transport is constrained by synoptic-scale disturbances of the East Asian Winter Monsoon circulation with the periodic activities of Siberian high, providing a new insight into the understanding of regional pollutant transport with meteorological drivers in atmospheric environment changes.
Pascal Lemaitre, Arnaud Quérel, Alexis Dépée, Alice Guerra Devigne, Marie Monier, Thibault Hiron, Chloé Soto Minguez, Daniel Hardy, and Andrea Flossmann
Atmos. Chem. Phys., 24, 9713–9732, https://doi.org/10.5194/acp-24-9713-2024, https://doi.org/10.5194/acp-24-9713-2024, 2024
Short summary
Short summary
A new in-cloud scavenging scheme is proposed. It is based on a microphysical model of cloud formation and may be applied to long-distance atmospheric transport models (> 100 km) and climatic models. This model is applied to the two most extreme precipitating cloud types in terms of both relative humidity and vertical extension: cumulonimbus and stratus.
Alex Rowell, James Brean, David C. S. Beddows, Tuukka Petäjä, Máté Vörösmarty, Imre Salma, Jarkko V. Niemi, Hanna E. Manninen, Dominik van Pinxteren, Thomas Tuch, Kay Weinhold, Zongbo Shi, and Roy M. Harrison
Atmos. Chem. Phys., 24, 9515–9531, https://doi.org/10.5194/acp-24-9515-2024, https://doi.org/10.5194/acp-24-9515-2024, 2024
Short summary
Short summary
Different sources of airborne particles in the atmospheres of four European cities were distinguished by recognising their particle size distributions using a statistical procedure, positive matrix factorisation. The various sources responded differently to the changes in emissions associated with COVID-19 lockdowns, and the reasons are investigated. While traffic emissions generally decreased, particles formed from reactions of atmospheric gases decreased in some cities but increased in others.
Amy H. Peace, Ying Chen, George Jordan, Daniel G. Partridge, Florent Malavelle, Eliza Duncan, and Jim M. Haywood
Atmos. Chem. Phys., 24, 9533–9553, https://doi.org/10.5194/acp-24-9533-2024, https://doi.org/10.5194/acp-24-9533-2024, 2024
Short summary
Short summary
Natural aerosols from volcanic eruptions can help us understand how anthropogenic aerosols modify climate. We use observations and model simulations of the 2014–2015 Holuhraun eruption plume to examine aerosol–cloud interactions in September 2014. We find a shift to clouds with smaller, more numerous cloud droplets in the first 2 weeks of the eruption. In the third week, the background meteorology and previous conditions experienced by air masses modulate the aerosol perturbation to clouds.
Hua Lu, Min Xie, Bingliang Zhuang, Danyang Ma, Bojun Liu, Yangzhihao Zhan, Tijian Wang, Shu Li, Mengmeng Li, and Kuanguang Zhu
Atmos. Chem. Phys., 24, 8963–8982, https://doi.org/10.5194/acp-24-8963-2024, https://doi.org/10.5194/acp-24-8963-2024, 2024
Short summary
Short summary
To identify cloud, aerosol, and planetary boundary layer (PBL) interactions from an air quality perspective, we summarized two pollution patterns characterized by denser liquid cloud and by obvious cloud radiation interaction (CRI). Numerical simulation experiments showed CRI could cause a 50 % reduction in aerosol radiation interaction (ARI) under a low-trough system. The results emphasized the nonnegligible role of CRI and its inhibition of ARI under wet and cloudy pollution synoptic patterns.
Zhouyang Zhang, Jiandong Wang, Jiaping Wang, Nicole Riemer, Chao Liu, Yuzhi Jin, Zeyuan Tian, Jing Cai, Yueyue Cheng, Ganzhen Chen, Bin Wang, Shuxiao Wang, and Aijun Ding
EGUsphere, https://doi.org/10.5194/egusphere-2024-1924, https://doi.org/10.5194/egusphere-2024-1924, 2024
Short summary
Short summary
Black carbon (BC) exerts notable warming effects. We use a particle-resolved model to investigate the long-term behavior of BC mixing state, revealing its compositions, coating thickness distribution, and optical properties all stabilize with characteristic time of less than one day. This study can effectively simplify the description of the BC mixing state, which facilitates the precise assessment of the optical properties of BC aerosols in global and chemical transport models.
Zhe Song, Ningning Yao, Lang Chen, Yuhai Sun, Boqiong Jiang, Pengfei Li, Daniel Rosenfeld, and Shaocai Yu
EGUsphere, https://doi.org/10.5194/egusphere-2024-2263, https://doi.org/10.5194/egusphere-2024-2263, 2024
Short summary
Short summary
Our results with injected sea-salt aerosols for five open oceans show that the sea-salt aerosols with low injection amounts dominated the shortwave radiation mainly through the indirect effects. As indirect aerosol effects saturated with increasing injection rates, direct effects exceeded indirect effects. This implies that marine cloud brightening was best implemented in areas with extensive cloud cover, while the aerosol direct scattering effects remained dominant when clouds were scarce.
Yuzhi Jin, Jiandong Wang, David C. Wong, Chao Liu, Golam Sarwar, Kathleen M. Fahey, Shang Wu, Jiaping Wang, Jing Cai, Zeyuan Tian, Zhouyang Zhang, Jia Xing, Aijun Ding, and Shuxiao Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2372, https://doi.org/10.5194/egusphere-2024-2372, 2024
Short summary
Short summary
Black carbon (BC) affects climate and the environment, and its aging process alters its properties. Current models, like WRF-CMAQ, lack full account. We developed the WRF-CMAQ-BCG model to better represent BC aging by introducing Bare/Coated BC species and their conversion. Our findings show that BC mixing states have distinct spatiotemporal distribution characteristics, and BC wet deposition is dominated by Coated BC. Accounting for BC aging process improves aerosol optics simulation accuracy.
Emilie Fons, Ann Kristin Naumann, David Neubauer, Theresa Lang, and Ulrike Lohmann
Atmos. Chem. Phys., 24, 8653–8675, https://doi.org/10.5194/acp-24-8653-2024, https://doi.org/10.5194/acp-24-8653-2024, 2024
Short summary
Short summary
Aerosols can modify the liquid water path (LWP) of stratocumulus and, thus, their radiative effect. We compare storm-resolving model and satellite data that disagree on the sign of LWP adjustments and diagnose this discrepancy with causal inference. We find that strong precipitation, the absence of wet scavenging, and cloud deepening under a weak inversion contribute to positive LWP adjustments to aerosols in the model, despite weak negative effects from cloud-top entrainment enhancement.
Muhammed Irfan, Thomas Kühn, Taina Yli-Juuti, Anton Laakso, Eemeli Holopainen, Douglas R. Worsnop, Annele Virtanen, and Harri Kokkola
Atmos. Chem. Phys., 24, 8489–8506, https://doi.org/10.5194/acp-24-8489-2024, https://doi.org/10.5194/acp-24-8489-2024, 2024
Short summary
Short summary
The study examines how the volatility of semi-volatile organic compounds affects secondary organic aerosol (SOA) formation and climate. Our simulations show that uncertainties in these volatilities influence aerosol mass and climate impacts. Accurate representation of these compounds in climate models is crucial for predicting global climate patterns.
Qianyi Huo, Zhicong Yin, Xiaoqing Ma, and Huijun Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1923, https://doi.org/10.5194/egusphere-2024-1923, 2024
Short summary
Short summary
The Mongolian cyclone, compared to the cold high-pressure system, caused more frequent and severe dust weather in North China during the spring seasons of 2015–2023. Different intensities of 500 hPa cyclonic and anticyclonic anomalies, control near-surface meteorological conditions, leading to two dust weather types in North China. The common predictor for the two types of dust weather successfully captured 76.1 % of dust days and provided a dust signal two days in advance.
Alkiviadis Kalisoras, Aristeidis K. Georgoulias, Dimitris Akritidis, Robert J. Allen, Vaishali Naik, Chaincy Kuo, Sophie Szopa, Pierre Nabat, Dirk Olivié, Twan van Noije, Philippe Le Sager, David Neubauer, Naga Oshima, Jane Mulcahy, Larry W. Horowitz, and Prodromos Zanis
Atmos. Chem. Phys., 24, 7837–7872, https://doi.org/10.5194/acp-24-7837-2024, https://doi.org/10.5194/acp-24-7837-2024, 2024
Short summary
Short summary
Effective radiative forcing (ERF) is a metric for estimating how human activities and natural agents change the energy flow into and out of the Earth’s climate system. We investigate the anthropogenic aerosol ERF, and we estimate the contribution of individual processes to the total ERF using simulations from Earth system models within the Coupled Model Intercomparison Project Phase 6 (CMIP6). Our findings highlight that aerosol–cloud interactions drive ERF variability during the last 150 years.
Ryan Schmedding and Andreas Zuend
EGUsphere, https://doi.org/10.5194/egusphere-2024-1690, https://doi.org/10.5194/egusphere-2024-1690, 2024
Short summary
Short summary
Four different approaches for computing the interfacial tension between liquid phases in aerosol particles were tested for particles with diameters from 10 nm to more than 5 μm. Antonov's rule led to the strongest reductions in the onset relative humidity of liquid–liquid phase separation and reproduced measured interfacial tensions for highly immiscible systems. A modified form of the Butler equation was able to best reproduce measured interfacial tensions in more miscible systems.
Qianqian Song, Paul Ginoux, María Gonçalves Ageitos, Ron L. Miller, Vincenzo Obiso, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 24, 7421–7446, https://doi.org/10.5194/acp-24-7421-2024, https://doi.org/10.5194/acp-24-7421-2024, 2024
Short summary
Short summary
We implement and simulate the distribution of eight dust minerals in the GFDL AM4.0 model. We found that resolving the eight minerals reduces dust absorption compared to the homogeneous dust used in the standard GFDL AM4.0 model that assumes a globally uniform hematite content of 2.7 % by volume. Resolving dust mineralogy results in significant impacts on radiation, land surface temperature, surface winds, and precipitation over North Africa in summer.
Ross J. Herbert, Alberto Sanchez-Marroquin, Daniel P. Grosvenor, Kirsty J. Pringle, Stephen R. Arnold, Benjamin J. Murray, and Kenneth S. Carslaw
EGUsphere, https://doi.org/10.5194/egusphere-2024-1538, https://doi.org/10.5194/egusphere-2024-1538, 2024
Short summary
Short summary
Aerosol particles that help form ice in clouds vary in number and type around the world and with time. However, in many weather and climate models cloud ice is not linked to aerosol that are known to nucleate ice. Here we report the first steps towards representing ice-nucleating particles within the UK's Earth System Model. We conclude that in addition to ice nucleation by sea spray and mineral components of soil dust we also need to represent ice nucleation by the organic components of soils.
Senyi Kong, Zheng Wang, and Lei Bi
Atmos. Chem. Phys., 24, 6911–6935, https://doi.org/10.5194/acp-24-6911-2024, https://doi.org/10.5194/acp-24-6911-2024, 2024
Short summary
Short summary
The retrieval of refractive indices of dust aerosols from laboratory optical measurements is commonly done assuming spherical particles. This paper aims to investigate the uncertainties in the shortwave refractive indices and corresponding optical properties by considering non-spherical and inhomogeneous models for dust samples. The study emphasizes the significance of using non-spherical models for simulating dust aerosols.
Wenxuan Hua, Sijia Lou, Xin Huang, Lian Xue, Ke Ding, Zilin Wang, and Aijun Ding
Atmos. Chem. Phys., 24, 6787–6807, https://doi.org/10.5194/acp-24-6787-2024, https://doi.org/10.5194/acp-24-6787-2024, 2024
Short summary
Short summary
In this study, we diagnose uncertainties in carbon monoxide and organic carbon emissions from four inventories for seven major wildfire-prone regions. Uncertainties in vegetation classification methods, fire detection products, and cloud obscuration effects lead to bias in these biomass burning (BB) emission inventories. By comparing simulations with measurements, we provide certain inventory recommendations. Our study has implications for reducing uncertainties in emissions in further studies.
Léo Clauzel, Sandrine Anquetin, Christophe Lavaysse, Gilles Bergametti, Christel Bouet, Guillaume Siour, Rémy Lapere, Béatrice Marticorena, and Jennie Thomas
EGUsphere, https://doi.org/10.5194/egusphere-2024-1604, https://doi.org/10.5194/egusphere-2024-1604, 2024
Short summary
Short summary
Solar energy production in West Africa is set to rise, needing accurate solar radiation estimates, which is affected by desert dust. This work analyses a March 2021 dust event using a modelling strategy incorporating desert dust. Results show that considering desert dust cut errors in solar radiation estimates by 75 % and reduces surface solar radiation by 18 %. This highlights the importance of incorporating dust aerosols into solar forecasting for better accuracy.
Chandrakala Bharali, Mary Barth, Rajesh Kumar, Sachin D. Ghude, Vinayak Sinha, and Baerbel Sinha
Atmos. Chem. Phys., 24, 6635–6662, https://doi.org/10.5194/acp-24-6635-2024, https://doi.org/10.5194/acp-24-6635-2024, 2024
Short summary
Short summary
This study examines the role of atmospheric aerosols in winter fog over the Indo-Gangetic Plains of India using WRF-Chem. The increase in RH with aerosol–radiation feedback (ARF) is found to be important for fog formation as it promotes the growth of aerosols in the polluted environment. Aqueous-phase chemistry in the fog increases PM2.5 concentration, further affecting ARF. ARF and aqueous-phase chemistry affect the fog intensity and the timing of fog formation by ~1–2 h.
Wenxin Zhao, Yu Zhao, Yu Zheng, Dong Chen, Jinyuan Xin, Kaitao Li, Huizheng Che, Zhengqiang Li, Mingrui Ma, and Yun Hang
Atmos. Chem. Phys., 24, 6593–6612, https://doi.org/10.5194/acp-24-6593-2024, https://doi.org/10.5194/acp-24-6593-2024, 2024
Short summary
Short summary
We evaluate the long-term (2000–2020) variabilities of aerosol absorption optical depth, black carbon emissions, and associated health risks in China with an integrated framework that combines multiple observations and modeling techniques. We demonstrate the remarkable emission abatement resulting from the implementation of national pollution controls and show how human activities affected the emissions with a spatiotemporal heterogeneity, thus supporting differentiated policy-making by region.
Peng Xian, Jeffrey S. Reid, Melanie Ades, Angela Benedetti, Peter R. Colarco, Arlindo da Silva, Tom F. Eck, Johannes Flemming, Edward J. Hyer, Zak Kipling, Samuel Rémy, Tsuyoshi Thomas Sekiyama, Taichu Tanaka, Keiya Yumimoto, and Jianglong Zhang
Atmos. Chem. Phys., 24, 6385–6411, https://doi.org/10.5194/acp-24-6385-2024, https://doi.org/10.5194/acp-24-6385-2024, 2024
Short summary
Short summary
The study compares and evaluates monthly AOD of four reanalyses (RA) and their consensus (i.e., ensemble mean). The basic verification characteristics of these RA versus both AERONET and MODIS retrievals are presented. The study discusses the strength of each RA and identifies regions where divergence and challenges are prominent. The RA consensus usually performs very well on a global scale in terms of how well it matches the observational data, making it a good choice for various applications.
Mariya Petrenko, Ralph Kahn, Mian Chin, Susanne E. Bauer, Tommi Bergman, Huisheng Bian, Gabriele Curci, Ben Johnson, Johannes Kaiser, Zak Kipling, Harri Kokkola, Xiaohong Liu, Keren Mezuman, Tero Mielonen, Gunnar Myhre, Xiaohua Pan, Anna Protonotariou, Samuel Remy, Ragnhild Bieltvedt Skeie, Philip Stier, Toshihiko Takemura, Kostas Tsigaridis, Hailong Wang, Duncan Watson-Parris, and Kai Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1487, https://doi.org/10.5194/egusphere-2024-1487, 2024
Short summary
Short summary
We compared smoke plume simulations from 11 global models to each other and to satellite smoke-amount observations, aimed at constraining smoke source strength. In regions where plumes are thick and background aerosol is low, models and satellites compare well. However, the input emission inventory tends to underestimate in many places, and particle property and loss-rate assumptions vary enormously among models, causing uncertainties that require systematic in-situ measurements to resolve.
Roger Teoh, Zebediah Engberg, Ulrich Schumann, Christiane Voigt, Marc Shapiro, Susanne Rohs, and Marc E. J. Stettler
Atmos. Chem. Phys., 24, 6071–6093, https://doi.org/10.5194/acp-24-6071-2024, https://doi.org/10.5194/acp-24-6071-2024, 2024
Short summary
Short summary
The radiative forcing (RF) due to aviation contrails is comparable to that caused by CO2. We estimate that global contrail net RF in 2019 was 62.1 mW m−2. This is ~1/2 the previous best estimate for 2018. Contrail RF varies regionally due to differences in conditions required for persistent contrails. COVID-19 reduced contrail RF by 54% in 2020 relative to 2019. Globally, 2 % of all flights account for 80 % of the annual contrail energy forcing, suggesting a opportunity to mitigate contrail RF.
Haotian Zu, Biwu Chu, Yiqun Lu, Ling Liu, and Xiuhui Zhang
Atmos. Chem. Phys., 24, 5823–5835, https://doi.org/10.5194/acp-24-5823-2024, https://doi.org/10.5194/acp-24-5823-2024, 2024
Short summary
Short summary
The nucleation of iodic acid (HIO3) and iodous acid (HIO2) was proven to be critical in marine areas. However, HIO3–HIO2 nucleation cannot effectively derive the rapid nucleation in some polluted coasts. We find a significant enhancement of dimethylamine (DMA) on the HIO3–HIO2 nucleation in marine and polar regions with abundant DMA sources, which may establish reasonable connections between the HIO3–HIO2 nucleation and the rapid formation of new particles in polluted marine and polar regions.
Junghwa Lee, Patric Seifert, Tempei Hashino, Maximilian Maahn, Fabian Senf, and Oswald Knoth
Atmos. Chem. Phys., 24, 5737–5756, https://doi.org/10.5194/acp-24-5737-2024, https://doi.org/10.5194/acp-24-5737-2024, 2024
Short summary
Short summary
Spectral bin model simulations of an idealized supercooled stratiform cloud were performed with the AMPS model for variable CCN and INP concentrations. We performed radar forward simulations with PAMTRA to transfer the simulations into radar observational space. The derived radar reflectivity factors were compared to observational studies of stratiform mixed-phase clouds. These studies report a similar response of the radar reflectivity factor to aerosol perturbations as we found in our study.
Basudev Swain, Marco Vountas, Aishwarya Singh, Nidhi L. Anchan, Adrien Deroubaix, Luca Lelli, Yanick Ziegler, Sachin S. Gunthe, Hartmut Bösch, and John P. Burrows
Atmos. Chem. Phys., 24, 5671–5693, https://doi.org/10.5194/acp-24-5671-2024, https://doi.org/10.5194/acp-24-5671-2024, 2024
Short summary
Short summary
Arctic amplification (AA) accelerates the warming of the central Arctic cryosphere and affects aerosol dynamics. Limited observations hinder a comprehensive analysis. This study uses AEROSNOW aerosol optical density (AOD) data and GEOS-Chem simulations to assess AOD variability. Discrepancies highlight the need for improved observational integration into models to refine our understanding of aerosol effects on cloud microphysics, ice nucleation, and radiative forcing under evolving AA.
Vincenzo Obiso, María Gonçalves Ageitos, Carlos Pérez García-Pando, Jan P. Perlwitz, Gregory L. Schuster, Susanne E. Bauer, Claudia Di Biagio, Paola Formenti, Kostas Tsigaridis, and Ron L. Miller
Atmos. Chem. Phys., 24, 5337–5367, https://doi.org/10.5194/acp-24-5337-2024, https://doi.org/10.5194/acp-24-5337-2024, 2024
Short summary
Short summary
We calculate the dust direct radiative effect (DRE) in an Earth system model accounting for regionally varying soil mineralogy through a new observationally constrained method. Linking dust absorption at solar wavelengths to the varying amount of specific minerals (i.e., iron oxides) improves the modeled range of dust single scattering albedo compared to observations and increases the global cooling by dust. Our results may contribute to improved estimates of the dust DRE and its climate impact.
Charlotte M. Beall, Po-Lun Ma, Matthew W. Christensen, Johannes Mülmenstädt, Adam Varble, Kentaroh Suzuki, and Takuro Michibata
Atmos. Chem. Phys., 24, 5287–5302, https://doi.org/10.5194/acp-24-5287-2024, https://doi.org/10.5194/acp-24-5287-2024, 2024
Short summary
Short summary
Single-layer warm liquid clouds cover nearly one-third of the Earth's surface, and uncertainties regarding the impact of aerosols on their radiative properties pose a significant challenge to climate prediction. Here, we demonstrate how satellite observations can be used to constrain Earth system model estimates of the radiative forcing from the interactions of aerosols with clouds due to warm rain processes.
Xiaoli Wei, Qian Cui, Leiming Ma, Feng Zhang, Wenwen Li, and Peng Liu
Atmos. Chem. Phys., 24, 5025–5045, https://doi.org/10.5194/acp-24-5025-2024, https://doi.org/10.5194/acp-24-5025-2024, 2024
Short summary
Short summary
A new aerosol-type classification algorithm has been proposed. It includes an optical database built by Mie scattering and a complex refractive index working as a baseline to identify different aerosol types. The new algorithm shows high accuracy and efficiency. Hence, a global map of aerosol types was generated to characterize aerosol types across the five continents. It will help improve the accuracy of aerosol inversion and determine the sources of aerosol pollution.
Hongyu Liu, Bo Zhang, Richard H. Moore, Luke D. Ziemba, Richard A. Ferrare, Hyundeok Choi, Armin Sorooshian, David Painemal, Hailong Wang, Michael A. Shook, Amy Jo Scarino, Johnathan W. Hair, Ewan C. Crosbie, Marta A. Fenn, Taylor J. Shingler, Chris A. Hostetler, Gao Chen, Mary M. Kleb, Gan Luo, Fangqun Yu, Jason L. Tackett, Mark A. Vaughan, Yongxiang Hu, Glenn S. Diskin, John B. Nowak, Joshua P. DiGangi, Yonghoon Choi, Christoph A. Keller, and Matthew S. Johnson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1127, https://doi.org/10.5194/egusphere-2024-1127, 2024
Short summary
Short summary
We use the GEOS-Chem model to simulate aerosols over the western North Atlantic Ocean (WNAO) during the winter and summer campaigns of ACTIVATE 2020. Model results are evaluated against in situ and remote sensing measurements from two aircraft as well as ground-based and satellite observations. The improved understanding of the aerosol life cycle, composition, transport pathways, and distribution has important implications for characterizing aerosol-cloud-meteorology interactions over the WNAO.
Zhiqiang Zhang, Ying Li, Haiyan Ran, Junling An, Yu Qu, Wei Zhou, Weiqi Xu, Weiwei Hu, Hongbin Xie, Zifa Wang, Yele Sun, and Manabu Shiraiwa
Atmos. Chem. Phys., 24, 4809–4826, https://doi.org/10.5194/acp-24-4809-2024, https://doi.org/10.5194/acp-24-4809-2024, 2024
Short summary
Short summary
Secondary organic aerosols (SOAs) can exist in liquid, semi-solid, or amorphous solid states, which are rarely accounted for in current chemical transport models. We predict the phase state of SOA particles over China and find that in northwestern China SOA particles are mostly highly viscous or glassy solid. Our results indicate that the particle phase state should be considered in SOA formation in chemical transport models for more accurate prediction of SOA mass concentrations.
Alejandro Baró Pérez, Michael S. Diamond, Frida A.-M. Bender, Abhay Devasthale, Matthias Schwarz, Julien Savre, Juha Tonttila, Harri Kokkola, Hyunho Lee, David Painemal, and Annica M. L. Ekman
Atmos. Chem. Phys., 24, 4591–4610, https://doi.org/10.5194/acp-24-4591-2024, https://doi.org/10.5194/acp-24-4591-2024, 2024
Short summary
Short summary
We use a numerical model to study interactions between humid light-absorbing aerosol plumes, clouds, and radiation over the southeast Atlantic. We find that the warming produced by the aerosols reduces cloud cover, especially in highly polluted situations. Aerosol impacts on drizzle play a minor role. However, aerosol effects on cloud reflectivity and moisture-induced changes in cloud cover dominate the climatic response and lead to an overall cooling by the biomass burning plumes.
Danny M. Leung, Jasper F. Kok, Longlei Li, David M. Lawrence, Natalie M. Mahowald, Simone Tilmes, and Erik Kluzek
EGUsphere, https://doi.org/10.5194/egusphere-2024-1124, https://doi.org/10.5194/egusphere-2024-1124, 2024
Short summary
Short summary
This study derives a desert dust emission dataset for 1841–2000, by employing a combination of observed dust records from sedimentary cores as well as reanalyzed global dust cycle constraints. We evaluate the ability of global models to replicate the observed historical dust variability by using the emission dataset to force a historical simulation in an Earth system model. We show that prescribing our emissions forces the model to match better against observations than other mechanistic models.
Sampa Das, Peter R. Colarco, Huisheng Bian, and Santiago Gassó
Atmos. Chem. Phys., 24, 4421–4449, https://doi.org/10.5194/acp-24-4421-2024, https://doi.org/10.5194/acp-24-4421-2024, 2024
Short summary
Short summary
The smoke aerosols emitted from vegetation burning can alter the regional energy budget via multiple pathways. We utilized detailed observations from the NASA ORACLES airborne campaign based in Namibia during September 2016 to improve the representation of smoke aerosol properties and lifetimes in our GEOS Earth system model. The improved model simulations are for the first time able to capture the observed changes in the smoke absorption during long-range plume transport.
Emilio Cuevas-Agulló, David Barriopedro, Rosa Delia García, Silvia Alonso-Pérez, Juan Jesús González-Alemán, Ernest Werner, David Suárez, Juan José Bustos, Gerardo García-Castrillo, Omaira García, África Barreto, and Sara Basart
Atmos. Chem. Phys., 24, 4083–4104, https://doi.org/10.5194/acp-24-4083-2024, https://doi.org/10.5194/acp-24-4083-2024, 2024
Short summary
Short summary
During February–March (FM) 2020–2022, unusually intense dust storms from northern Africa hit the western Euro-Mediterranean (WEM). Using dust products from satellites and atmospheric reanalysis for 2003–2022, results show that cut-off lows and European blocking are key drivers of FM dust intrusions over the WEM. A higher frequency of cut-off lows associated with subtropical ridges is observed in the late 2020–2022 period.
Yahui Che, Bofu Yu, and Katherine Bracco
Atmos. Chem. Phys., 24, 4105–4128, https://doi.org/10.5194/acp-24-4105-2024, https://doi.org/10.5194/acp-24-4105-2024, 2024
Short summary
Short summary
Dust events occur more frequently during the Austral spring and summer in dust regions, including central Australia, the southwest of Western Australia, and the northern and southern regions of eastern Australia using remote sensing and reanalysis datasets. High-concentration dust is distributed around central Australia and in the downwind northern and southern Australia. Typically, around 50 % of the dust lifted settles on Australian land, with the remaining half being deposited in the ocean.
Cited articles
Angell, C.: Relaxation in liquids, polymers and plastic crystals – strong/fragile
patterns and problems, J. Non-Cryst. Solids, 131-133, 13–31, https://doi.org/10.1016/0022-3093(91)90266-9, 1991.
Barsanti, K. C., Kroll, J. H., and Thornton, J. A.: Formation of low-volatility
organic compounds in the atmosphere: recent advancements and insights, J. Phys.
Chem. Lett., 8, 1503–1511, https://doi.org/10.1021/acs.jpclett.6b02969, 2017.
Bastelberger, S., Krieger, U. K., Luo, B., and Peter, T.: Diffusivity
measurements of volatile organics in levitated viscous aerosol particles, Atmos.
Chem. Phys., 17, 8453–8471, https://doi.org/10.5194/acp-17-8453-2017, 2017.
Bateman, A. P., Gong, Z., Harder, T. H., de Sá, S. S., Wang, B., Castillo,
P., China, S., Liu, Y., O'Brien, R. E., Palm, B. B., Shiu, H. W., Cirino, G. G.,
Thalman, R., Adachi, K., Alexander, M. L., Artaxo, P., Bertram, A. K., Buseck,
P. R., Gilles, M. K., Jimenez, J. L., Laskin, A., Manzi, A. O., Sedlacek, A.,
Souza, R. A. F., Wang, J., Zaveri, R., and Martin, S. T.: Anthropogenic
influences on the physical state of submicron particulate matter over a
tropical forest, Atmos. Chem. Phys., 17, 1759–1773, https://doi.org/10.5194/acp-17-1759-2017, 2017.
Bianchi, F., Tröstl, J., Junninen, H., Frege, C., Henne, S., Hoyle, C. R.,
Molteni, U., Herrmann, E., Adamov, A., Bukowiecki, N., Chen, X., Duplissy, J.,
Gysel, M., Hutterli, M., Kangasluoma, J., Kontkanen, J., Kürten, A.,
Manninen, H. E., Münch, S., Peräkylä, O., Petäjä, T., Rondo,
L., Williamson, C., Weingartner, E., Curtius, J., Worsnop, D. R., Kulmala, M.,
Dommen, J., and Baltensperger, U.: New particle formation in the free troposphere:
A question of chemistry and timing, Science, 352, 1109–1112, https://doi.org/10.1126/science.aad5456, 2016.
Booth, A. M., Murphy, B., Riipinen, I., Percival, C. J., and Topping, D. O.:
Connecting bulk viscosity measurements to kinetic limitations on attaining
equilibrium for a model aerosol composition, Environ. Sci. Technol., 48,
9298–9305, https://doi.org/10.1021/es501705c, 2014.
Boyd, C. M., Nah, T., Xu, L., Berkemeier, T., and Ng, N. L.: Secondary organic
aerosol (SOA) from nitrate radical oxidation of monoterpenes: effects of
temperature, dilution, and humidity on aerosol formation, mixing, and evaporation,
Environ. Sci. Technol., 51, 7831–7841, https://doi.org/10.1021/acs.est.7b01460, 2017.
Cheng, Y., Su, H., Koop, T., Mikhailov, E., and Pöschl, U.: Size dependence
of phase transitions in aerosol nanoparticles, Nat. Commun., 6, 5923,
https://doi.org/10.1038/ncomms6923, 2015.
Chenyakin, Y., Ullmann, D. A., Evoy, E., Renbaum-Wolff, L., Kamal, S., and
Bertram, A. K.: Diffusion coefficients of organic molecules in sucrose–water
solutions and comparison with Stokes–Einstein predictions, Atmos. Chem. Phys.,
17, 2423–2435, https://doi.org/10.5194/acp-17-2423-2017, 2017.
DeRieux, W. S. W., Li, Y., Lin, P., Laskin, J., Laskin, A., Bertram, A. K.,
Nizkorodov, S. A., and Shiraiwa, M.: Predicting the glass transition temperature
and viscosity of secondary organic material using molecular composition, Atmos.
Chem. Phys., 18, 6331–6351, https://doi.org/10.5194/acp-18-6331-2018, 2018.
Fowler, K., Connolly, P. J., Topping, D. O., and O'Meara, S.: Maxwell–Stefan
diffusion: a framework for predicting condensed phase diffusion and phase
separation in atmospheric aerosol, Atmos. Chem. Phys., 18, 1629–1642,
https://doi.org/10.5194/acp-18-1629-2018, 2018.
Gong, Z., Han, Y., Liu, P., Ye, J., Keutsch, F. N., McKinney, K. A., and Martin,
S. T.: Influence of particle physical state on the uptake of medium-sized
organic molecules, Environ. Sci. Technol., 52, 8381–8389, https://doi.org/10.1021/acs.est.8b02119, 2018.
Gorkowski, K., Donahue, N. M., and Sullivan, R. C.: Emulsified and liquid–liquid
phase-separated states of α-pinene secondary organic aerosol determined
using aerosol optical tweezers, Environ. Sci. Technol., 51, 12154–12163,
https://doi.org/10.1021/acs.est.7b03250, 2017.
Gunthe, S. S., King, S. M., Rose, D., Chen, Q., Roldin, P., Farmer, D. K.,
Jimenez, J. L., Artaxo, P., Andreae, M. O., Martin, S. T., and Pöschl, U.:
Cloud condensation nuclei in pristine tropical rainforest air of Amazonia:
size-resolved measurements and modeling of atmospheric aerosol composition and
CCN activity, Atmos. Chem. Phys., 9, 7551–7575, https://doi.org/10.5194/acp-9-7551-2009, 2009.
Hosny, N., Fitzgerald, C., Vyšniauskas, A., Athanasiadis, A., Berkemeier,
T., Uygur, N., Pöschl, U., Shiraiwa, M., Kalberer, M., Pope, F., and Kuimova,
M. K.: Direct imaging of changes in aerosol particle viscosity upon hydration
and chemical aging, Chem. Sci., 7, 1357–1367, https://doi.org/10.1039/C5SC02959G, 2016.
International Organization for Standardization: Standard Atmosphere, ISO 2533:1975,
available at: https://www.iso.org/standard/7472.html (last access:
3 May 2019), 1975.
Julin, J., Winkler, P. M., Donahue, N. M., Wagner, P. E., and Riipinen, I.:
Near-unity mass accommodation coefficient of organic molecules of varying
structure, Environ. Sci. Technol., 48, 12083–12089, https://doi.org/10.1021/es501816h, 2014.
Kanakidou, M., Seinfeld, J. H., Pandis, S. N., Barnes, I., Dentener, F. J.,
Facchini, M. C., Van Dingenen, R., Ervens, B., Nenes, A., Nielsen, C. J.,
Swietlicki, E., Putaud, J. P., Balkanski, Y., Fuzzi, S., Horth, J., Moortgat,
G. K., Winterhalter, R., Myhre, C. E. L., Tsigaridis, K., Vignati, E., Stephanou,
E. G., and Wilson, J.: Organic aerosol and global climate modelling: a review,
Atmos. Chem. Phys., 5, 1053–1123, https://doi.org/10.5194/acp-5-1053-2005, 2005.
Knopf, D. A., Alpert, P. A., and Wang, B.: The role of organic aerosol in
atmospheric ice nucleation: a review, ACS Earth Space Chem., 2, 168–202,
https://doi.org/10.1021/acsearthspacechem.7b00120, 2018.
Koop, T., Bookhold, J., Shiraiwa, M., and Poschl, U.: Glass transition and
phase state of organic compounds: dependency on molecular properties and
implications for secondary organic aerosols in the atmosphere, Phys. Chem. Chem.
Phys., 13, 19238–19255, https://doi.org/10.1039/C1CP22617G, 2011.
Li, Y. and Shiraiwa, M.: Molecular corridors, volatility and particle phase
state in secondary organic aerosols, in: Multiphase Environmental Chemistry
in the Atmosphere, edited by: Hunt S. W., Laskin A., and Nizkorodov S. A.,
ACS Symposium Ser., 1299, 209–244, https://doi.org/10.1021/bk-2018-1299.ch011, 2018.
Liu, C., Shi, S., Weschler, C., Zhao, B., and Zhang, Y.: Analysis of the dynamic
interaction between SVOCs and airborne particles, Aerosol Sci. Tech., 47,
125–136, https://doi.org/10.1080/02786826.2012.730163, 2013.
Liu, P., Li, Y. J., Wang, Y., Gilles, M. K., Zaveri, R. A., Bertram, A. K., and
Martin, S. T.: Lability of secondary organic particulate matter, P. Natl. Acad.
Sci. USA, 113, 12643–12648, https://doi.org/10.1021/acscentsci.7b00452, 2016.
Liu, P., Li, Y. J., Wang, Y., Bateman, A. P., Zhang, Y., Gong, Z., Bertram, A.
K., and Martin, S. T.: Highly viscous states affect the browning of atmospheric
organic particulate matter, ACS Cent. Sci., 4, 207–215, https://doi.org/10.1021/acscentsci.7b00452, 2018.
Liu, Y., Wu, Z., Wang, Y., Xiao, Y., Gu, F., Zheng, J., Tan, T., Shang, D., Wu,
Y., Zeng, L., Hu, M., Bateman, A. P., and Martin, S. T.: Submicrometer particles
are in the liquid state during heavy haze episodes in the urban atmosphere of
Beijing, China, Environ. Sci. Technol. Lett., 4, 427–432, https://doi.org/10.1021/acs.estlett.7b00352, 2017.
Loza, C. L., Coggon, M. M., Nguyen, T. B., Zuend, A., Flagan, R. C., and
Seinfeld, J. H.: On the mixing and evaporation of secondary organic aerosol
components, Environ. Sci. Technol., 47, 6173–6180, https://doi.org/10.1021/es400979k, 2013.
Maclean, A. M., Butenhoff, C. L., Grayson, J. W., Barsanti, K., Jimenez, J. L.,
and Bertram, A. K.: Mixing times of organic molecules within secondary organic
aerosol particles: a global planetary boundary layer perspective, Atmos. Chem.
Phys., 17, 13037–13048, https://doi.org/10.5194/acp-17-13037-2017, 2017.
Mai, H., Shiraiwa, M., Flagan, R. C., and Seinfeld, J. H.: Under what conditions
can equilibrium gas–particle partitioning be expected to hold in the atmosphere?,
Environ. Sci. Technol., 49, 11485–11491, https://doi.org/10.1021/acs.est.5b02587, 2015.
Maria, S. F., Russell, L. M., Gilles, M. K., and Myneni, S. C. B.: Organic
aerosol growth mechanisms and their climate-forcing implications, Science,
306, 1921–1924, https://doi.org/10.1126/science.1103491, 2004.
Marshall, F. H., Miles, R. E., Song, Y.-C., Ohm, P. B., Power, R. M., Reid, J.
P., and Dutcher, C. S.: Diffusion and reactivity in ultraviscous aerosol and
the correlation with particle viscosity, Chem. Sci., 7, 1298–1308, https://doi.org/10.1039/C5SC03223G, 2016.
Mu, Q., Shiraiwa, M., Octaviani, M., Ma, N., Ding, A., Su, H., Lammel, G.,
Pöschl, U., and Cheng, Y.: Temperature effect on phase state and reactivity
controls atmospheric multiphase chemistry and transport of PAHs, Sci. Adv., 4,
eaap7314, https://doi.org/10.1126/sciadv.aap7314, 2018.
O'Meara, S., Topping, D. O., and McFiggans, G.: The rate of equilibration of
viscous aerosol particles, Atmos. Chem. Phys., 16, 5299–5313, https://doi.org/10.5194/acp-16-5299-2016, 2016.
Pajunoja, A., Hu, W., Leong, Y. J., Taylor, N. F., Miettinen, P., Palm, B. B.,
Mikkonen, S., Collins, D. R., Jimenez, J. L., and Virtanen, A.: Phase state of
ambient aerosol linked with water uptake and chemical aging in the southeastern US,
Atmos. Chem. Phys., 16, 11163–11176, https://doi.org/10.5194/acp-16-11163-2016, 2016.
Pankow, J. F.: An absorption model of gas-particle partitioning of organic-compounds
in the atmosphere, Atmos. Environ., 28, 185–188, https://doi.org/10.1016/1352-2310(94)90093-0, 1994.
Perraud, V., Bruns, E. A., Ezell, M. J., Johnson, S. N., Yu, Y., Alexander, M.
L., Zelenyuk, A., Imre, D., Chang, W. L., Dabdub, D., Pankow, J. F., and
Finlayson-Pitts, B. J.: Nonequilibrium atmospheric secondary organic aerosol
formation and growth, P. Natl. Acad. Sci. USA, 109, 2836–2841, https://doi.org/10.1073/pnas.1119909109, 2012.
Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of
hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem. Phys.,
7, 1961–1971, https://doi.org/10.5194/acp-7-1961-2007, 2007.
Petters, S. S., Kreidenweis, S. M., Grieshop, A. P., Ziemann, P. J., and Petters,
M. D.: Temperature- and humidity-dependent phase states of secondary organic
aerosols, Geophys. Res. Lett., 46, 1005–1013, https://doi.org/10.1029/2018GL080563, 2019.
Pfrang, C., Shiraiwa, M., and Pöschl, U.: Chemical ageing and transformation
of diffusivity in semi-solid multi-component organic aerosol particles, Atmos.
Chem. Phys., 11, 7343–7354, https://doi.org/10.5194/acp-11-7343-2011, 2011.
Pöhlker, C., Wiedemann, K. T., Sinha, B., Shiraiwa, M., Gunthe, S. S.,
Smith, M., Su, H., Artaxo, P., Chen, Q., Cheng, Y., Elbert, W., Gilles, M. K.,
Kilcoyne, A. L. D., Moffet, R. C., Weigand, M., Martin, S. T., Pöschl, U.,
and Andreae, M. O.: Biogenic potassium salt particles as seeds for secondary
organic aerosol in the Amazon, Science, 337, 1075–1078, https://doi.org/10.1126/science.1223264, 2012.
Price, H. C., Mattsson, J., Zhang, Y., Bertram, A. K., Davies, J. F., Grayson,
J. W., Martin, S. T., O'Sullivan, D., Reid, J. P., Rickards, A. M., and Murray,
B. J.: Water diffusion in atmospherically relevant α-pinene secondary
organic material, Chem. Sci., 6, 4876–4883, https://doi.org/10.1039/c5sc00685f, 2015.
Pye, H. O. T., Murphy, B. N., Xu, L., Ng, N. L., Carlton, A. G., Guo, H., Weber,
R., Vasilakos, P., Appel, K. W., Budisulistiorini, S. H., Surratt, J. D., Nenes,
A., Hu, W., Jimenez, J. L., Isaacman-VanWertz, G., Misztal, P. K., and Goldstein,
A. H.: On the implications of aerosol liquid water and phase separation for
organic aerosol mass, Atmos. Chem. Phys., 17, 343–369, https://doi.org/10.5194/acp-17-343-2017, 2017.
Reid, J. P., Bertram, A. K., Topping, D. O., Laskin, A., Martin, S. T., Petters,
M. D., Pope, F. D., and Rovelli, G.: The viscosity of atmospherically relevant
organic particles, Nat. Commun., 9, 956, https://doi.org/10.1038/s41467-018-03027-z, 2018.
Renbaum-Wolff, L., Song, M., Marcolli, C., Zhang, Y., Liu, P. F., Grayson, J.
W., Geiger, F. M., Martin, S. T., and Bertram, A. K.: Observations and
implications of liquid–liquid phase separation at high relative humidities
in secondary organic material produced by α-pinene ozonolysis without
inorganic salts, Atmos. Chem. Phys., 16, 7969–7979, https://doi.org/10.5194/acp-16-7969-2016, 2016.
Riedel, T. P., Lin, Y. H., Zhang, Z., Chu, K., Thornton, J. A., Vizuete, W.,
Gold, A., and Surratt, J. D.: Constraining condensed-phase formation kinetics
of secondary organic aerosol components from isoprene epoxydiols, Atmos. Chem.
Phys., 16, 1245–1254, https://doi.org/10.5194/acp-16-1245-2016, 2016.
Riipinen, I., Pierce, J. R., Yli-Juuti, T., Nieminen, T., Hakkinen, S., Ehn,
M., Junninen, H., Lehtipalo, K., Petaja, T., Slowik, J., Chang, R., Shantz, N.
C., Abbatt, J., Leaitch, W. R., Kerminen, V. M., Worsnop, D. R., Pandis, S. N.,
Donahue, N. M., and Kulmala, M.: Organic condensation: a vital link connecting
aerosol formation to cloud condensation nuclei (CCN) concentrations, Atmos.
Chem. Phys., 11, 3865–3878, https://doi.org/10.5194/acp-11-3865-2011, 2011.
Riipinen, I., Yli-Juuti, T., Pierce, J. R., Petaja, T., Worsnop, D. R., Kulmala,
M., and Donahue, N. M.: The contribution of organics to atmospheric nanoparticle
growth, Nat. Geosci., 5, 453–458, https://doi.org/10.1038/ngeo1499, 2012.
Roldin, P., Eriksson, A. C., Nordin, E. Z., Hermansson, E., Mogensen, D.,
Rusanen, A., Boy, M., Swietlicki, E., Svenningsson, B., Zelenyuk, A., and
Pagels, J.: Modelling non-equilibrium secondary organic aerosol formation and
evaporation with the aerosol dynamics, gas- and particle-phase chemistry
kinetic multilayer model ADCHAM, Atmos. Chem. Phys., 14, 7953–7993,
https://doi.org/10.5194/acp-14-7953-2014, 2014.
Rothfuss, N. E. and Petters, M. D.: Characterization of the temperature and
humidity-dependent phase diagram of amorphous nanoscale organic aerosols, Phys.
Chem. Chem. Phys., 19, 6532–6545, https://doi.org/10.1039/C6CP08593H, 2017.
Saha, P. K. and Grieshop, A. P.: Exploring divergent volatility properties
from yield and thermodenuder measurements of secondary organic aerosol from
α-pinene ozonolysis, Environ. Sci. Technol., 50, 5740–5749,
https://doi.org/10.1021/acs.est.6b00303, 2016.
Saleh, R., Donahue, N. M., and Robinson, A. L.: Time scales for gas-particle
partitioning equilibration of secondary organic aerosol formed from alpha-pinene
ozonolysis, Environ. Sci. Technol., 47, 5588–5594, https://doi.org/10.1021/es400078d, 2013.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric chemistry and physics – From
air pollution to climate change, John Wiley & Sons, Inc., New York, 2006.
Shiraiwa, M. and Seinfeld, J. H.: Equilibration timescale of atmospheric
secondary organic aerosol partitioning, Geophys. Res. Lett., 39, L24801,
https://doi.org/10.1029/2012GL054008, 2012.
Shiraiwa, M., Ammann, M., Koop, T., and Poschl, U.: Gas uptake and chemical
aging of semisolid organic aerosol particles, P. Natl. Acad. Sci. USA, 108,
11003–11008, https://doi.org/10.1073/pnas.1103045108, 2011.
Shiraiwa, M., Pfrang, C., Koop, T., and Pöschl, U.: Kinetic multi-layer
model of gas-particle interactions in aerosols and clouds (KM-GAP): linking
condensation, evaporation and chemical reactions of organics, oxidants and
water, Atmos. Chem. Phys., 12, 2777–2794, https://doi.org/10.5194/acp-12-2777-2012, 2012.
Shiraiwa, M., Yee, L. D., Schilling, K. A., Loza, C. L., Craven, J. S., Zuend,
A., Ziemann, P. J., and Seinfeld, J. H.: Size distribution dynamics reveal
particle-phase chemistry in organic aerosol formation, P. Natl. Acad. Sci. USA,
110, 11746–11750, https://doi.org/10.1073/pnas.1307501110, 2013a.
Shiraiwa, M., Zuend, A., Bertram, A. K., and Seinfeld, J. H.: Gas-particle
partitioning of atmospheric aerosols: interplay of physical state, non-ideal
mixing and morphology, Phys. Chem. Chem. Phys., 15, 11441–11453, https://doi.org/10.1039/C3CP51595H, 2013b.
Shiraiwa, M., Li, Y., Tsimpidi, A. P., Karydis, V. A., Berkemeier, T., Pandis,
S. N., Lelieveld, J., Koop, T., and Pöschl, U.: Global distribution of
particle phase state in atmospheric secondary organic aerosols, Nat. Commun.,
8, 15002, https://doi.org/10.1038/ncomms15002, 2017.
Shrivastava, M., Cappa, C. D., Fan, J., Goldstein, A. H., Guenther, A. B.,
Jimenez, J. L., Kuang, C., Laskin, A., Martin, S. T., Ng, N. L., Petaja, T.,
Pierce, J. R., Rasch, P. J., Roldin, P., Seinfeld, J. H., Shilling, J., Smith,
J. N., Thornton, J. A., Volkamer, R., Wang, J., Worsnop, D. R., Zaveri, R. A.,
Zelenyuk, A., and Zhang, Q.: Recent advances in understanding secondary organic
aerosol: Implications for global climate forcing, Rev. Geophys., 55, 509–559,
https://doi.org/10.1002/2016RG000540, 2017a.
Shrivastava, M., Lou, S., Zelenyuk, A., Easter, R. C., Corley, R. A., Thrall,
B. D., Rasch, P. J., Fast, J. D., Simonich, S. L. M., Shen, H., and Tao, S.:
Global long-range transport and lung cancer risk from polycyclic aromatic
hydrocarbons shielded by coatings of organic aerosol, P. Natl. Acad. Sci. USA,
114, 1246–1251, https://doi.org/10.1073/pnas.1618475114, 2017b.
Slade, J. H., Shiraiwa, M., Arangio, A., Su, H., Pöschl, U., Wang, J., and
Knopf, D. A.: Cloud droplet activation through oxidation of organic aerosol
influenced by temperature and particle phase state, Geophys. Res. Lett., 41,
5297–5306, https://doi.org/10.1002/2014GL060582, 2017.
Tong, H., Arangio, A. M., Lakey, P. S. J., Berkemeier, T., Liu, F., Kampf, C.
J., Brune, W. H., Pöschl, U., and Shiraiwa, M.: Hydroxyl radicals from
secondary organic aerosol decomposition in water, Atmos. Chem. Phys., 16,
1761–1771, https://doi.org/10.5194/acp-16-1761-2016, 2016.
Tröstl, J., Chuang, W. K., Gordon, H., Heinritzi, M., Yan, C., Molteni, U.,
Ahlm, L., Frege, C., Bianchi, F., Wagner, R., Simon, M., Lehtipalo, K.,
Williamson, C., Craven, J. S., Duplissy, J., Adamov, A., Almeida, J., Bernhammer,
A.-K., Breitenlechner, M., Brilke, S., Dias, A., Ehrhart, S., Flagan, R. C.,
Franchin, A., Fuchs, C., Guida, R., Gysel, M., Hansel, A., Hoyle, C. R., Jokinen,
T., Junninen, H., Kangasluoma, J., Keskinen, H., Kim, J., Krapf, M., Kürten,
A., Laaksonen, A., Lawler, M., Leiminger, M., Mathot, S., Möhler, O.,
Nieminen, T., Onnela, A., Petäjä, T., Piel, F. M., Miettinen, P.,
Rissanen, M. P., Rondo, L., Sarnela, N., Schobesberger, S., Sengupta, K.,
Sipilä, M., Smith, J. N., Steiner, G., Tomè, A., Virtanen, A., Wagner,
A. C., Weingartner, E., Wimmer, D., Winkler, P. M., Ye, P., Carslaw, K. S.,
Curtius, J., Dommen, J., Kirkby, J., Kulmala, M., Riipinen, I., Worsnop, D. R.,
Donahue, N. M., and Baltensperger, U.: The role of low-volatility organic
compounds in initial particle growth in the atmosphere, Nature, 533, 527–531,
https://doi.org/10.1038/nature18271, 2016.
Vaden, T. D., Imre, D., Beránek, J., Shrivastava, M., and Zelenyuk, A.:
Evaporation kinetics and phase of laboratory and ambient secondary organic
aerosol, P. Natl. Acad. Sci. USA, 108, 2190–2195, https://doi.org/10.1073/pnas.1013391108, 2011.
Virtanen, A., Joutsensaari, J., Koop, T., Kannosto, J., Yli-Pirilä, P.,
Leskinen, J., Mäkelä, J. M., Holopainen, J. K., Pöschl, U., and
Kulmala, M.: An amorphous solid state of biogenic secondary organic aerosol
particles, Nature, 467, 824–827, https://doi.org/10.1038/nature09455, 2010.
Wang, J., Krejci, R., Giangrande, S., Kuang, C., Barbosa, H. M. J., Brito, J.,
Carbone, S., Chi, X., Comstock, J., Ditas, F., Lavric, J., Manninen, H. E.,
Mei, F., Moran-Zuloaga, D., Pöhlker, C., Pöhlker, M. L., Saturno, J.,
Schmid, B., Souza, R. A. F., Springston, S. R., Tomlinson, J. M., Toto, T.,
Walter, D., Wimmer, D., Smith, J. N., Kulmala, M., Machado, L. A. T., Artaxo,
P., Andreae, M. O., Petäjä, T., and Martin, S. T.: Amazon boundary layer
aerosol concentration sustained by vertical transport during rainfall, Nature,
539, 416–419, https://doi.org/10.1038/nature19819, 2016.
Ye, J., Gordon, C. A., and Chan, A. W. H.: Enhancement in secondary organic
aerosol formation in the presence of preexisting organic particle, Environ. Sci.
Technol., 50, 3572–3579, https://doi.org/10.1021/acs.est.5b05512, 2016.
Ye, Q., Robinson, E. S., Ding, X., Ye, P., Sullivan, R. C., and Donahue, N. M.:
Mixing of secondary organic aerosols versus relative humidity, P. Natl. Acad.
Sci. USA, 113, 12649–12654, https://doi.org/10.1073/pnas.1604536113, 2016.
Ye, Q., Upshur, M. A., Robinson, E. S., Geiger, F. M., Sullivan, R. C., Thomson,
R. J., and Donahue, N. M.: Following particle-particle mixing in atmospheric
secondary organic aerosols by using isotopically labeled terpenes, Chemistry,
4, 318–333, https://doi.org/10.1016/j.chempr.2017.12.008, 2018.
Yli-Juuti, T., Pajunoja, A., Tikkanen, O.-P., Buchholz, A., Faiola, C.,
Väisänen, O., Hao, L., Kari, E., Peräkylä, O., Garmash, O.,
Shiraiwa, M., Ehn, M., Lehtinen, K., and Virtanen, A.: Factors controlling the
evaporation of secondary organic aerosol from α-pinene ozonolysis,
Geophys. Res. Lett., 44, 2562–2570, https://doi.org/10.1002/2016GL072364, 2017.
You, Y., Renbaum-Wolff, L., Carreras-Sospedra, M., Hanna, S. J., Hiranuma, N.,
Kamal, S., Smith, M. L., Zhang, X., Weber, R. J., Shilling, J. E., Dabdub, D.,
Martin, S. T., and Bertram, A. K.: Images reveal that atmospheric particles can
undergo liquid–liquid phase separations, P. Natl. Acad. Sci. USA, 109,
13188–13193, https://doi.org/10.1073/pnas.1206414109, 2012.
You, Y., Smith, M. L., Song, M., Martin, S. T., and Bertram, A. K.:
Liquid–liquid phase separation in atmospherically relevant particles consisting
of organic species and inorganic salts, Int. Rev. Phys. Chem., 33, 43–77,
https://doi.org/10.1080/0144235X.2014.890786, 2014.
Zaveri, R. A., Easter, R. C., Shilling, J. E., and Seinfeld, J. H.: Modeling
kinetic partitioning of secondary organic aerosol and size distribution dynamics:
representing effects of volatility, phase state, and particle-phase reaction,
Atmos. Chem. Phys., 14, 5153–5181, https://doi.org/10.5194/acp-14-5153-2014, 2014.
Zaveri, R. A., Shilling, J. E., Zelenyuk, A., Liu, J., Bell, D. M., D'Ambro, E.
L., Gaston, C. J., Thornton, J. A., Laskin, A., Lin, P., Wilson, J., Easter, R.
C., Wang, J., Bertram, A. K., Martin, S. T., Seinfeld, J. H., and Worsnop, D.
R.: Growth kinetics and size distribution dynamics of viscous secondary organic
aerosol, Environ. Sci. Technol., 52, 1191–1199, https://doi.org/10.1021/acs.est.7b04623, 2018.
Zhang, X., Pandis, S. N., and Seinfeld, J. H.: Diffusion-limited versus
quasi-equilibrium aerosol growth, Aerosol Sci. Tech., 46, 874–885,
https://doi.org/10.1080/02786826.2012.679344, 2012.
Zhang, Y., Sanchez, M. S., Douet, C., Wang, Y., Bateman, A. P., Gong, Z., Kuwata,
M., Renbaum-Wolff, L., Sato, B. B., Liu, P. F., Bertram, A. K., Geiger, F. M.,
and Martin, S. T.: Changing shapes and implied viscosities of suspended submicron
particles, Atmos. Chem. Phys., 15, 7819–7829, https://doi.org/10.5194/acp-15-7819-2015, 2015.
Zhang, Y., Chen, Y., Lambe, A. T., Olson, N. E., Lei, Z., Craig, R. L., Zhang,
Z., Gold, A., Onasch, T. B., Jayne, J. T., Worsnop, D. R., Gaston, C. J.,
Thornton, J. A., Vizuete, W., Ault, A. P., and Surratt, J. D.: Effect of the
Aerosol-Phase State on Secondary Organic Aerosol Formation from the Reactive
Uptake of Isoprene-Derived Epoxydiols (IEPOX), Environ. Sci. Technol. Lett.,
5, 167–174, https://doi.org/10.1021/acs.estlett.8b00044, 2018.
Short summary
Timescales for secondary organic aerosols (SOA) to reach equilibrium were estimated under various temperatures and relative humidities. Equilibration timescales in free troposphere can be longer than hours or days, even at moderate or relatively high relative humidities. These results provide critical insights into thermodynamic or kinetic treatments of SOA partitioning for accurate predictions of gas- and particle-phase concentrations of semi-volatile compounds in chemical transport models.
Timescales for secondary organic aerosols (SOA) to reach equilibrium were estimated under...
Altmetrics
Final-revised paper
Preprint