Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
Download
Short summary
Timescales for secondary organic aerosols (SOA) to reach equilibrium were estimated under various temperatures and relative humidities. Equilibration timescales in free troposphere can be longer than hours or days, even at moderate or relatively high relative humidities. These results provide critical insights into thermodynamic or kinetic treatments of SOA partitioning for accurate predictions of gas- and particle-phase concentrations of semi-volatile compounds in chemical transport models.
Altmetrics
Final-revised paper
Preprint
ACP | Articles | Volume 19, issue 9
Atmos. Chem. Phys., 19, 5959–5971, 2019
https://doi.org/10.5194/acp-19-5959-2019
Atmos. Chem. Phys., 19, 5959–5971, 2019
https://doi.org/10.5194/acp-19-5959-2019

Research article 07 May 2019

Research article | 07 May 2019

Timescales of secondary organic aerosols to reach equilibrium at various temperatures and relative humidities

Ying Li and Manabu Shiraiwa

Viewed

Total article views: 1,646 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
1,014 611 21 1,646 130 21 32
  • HTML: 1,014
  • PDF: 611
  • XML: 21
  • Total: 1,646
  • Supplement: 130
  • BibTeX: 21
  • EndNote: 32
Views and downloads (calculated since 05 Feb 2019)
Cumulative views and downloads (calculated since 05 Feb 2019)

Viewed (geographical distribution)

Total article views: 1,283 (including HTML, PDF, and XML) Thereof 1,276 with geography defined and 7 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 27 Jan 2021
Publications Copernicus
Download
Short summary
Timescales for secondary organic aerosols (SOA) to reach equilibrium were estimated under various temperatures and relative humidities. Equilibration timescales in free troposphere can be longer than hours or days, even at moderate or relatively high relative humidities. These results provide critical insights into thermodynamic or kinetic treatments of SOA partitioning for accurate predictions of gas- and particle-phase concentrations of semi-volatile compounds in chemical transport models.
Citation
Altmetrics
Final-revised paper
Preprint