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Table S1. Temperature-dependent kinetic parameters used in the simulations.   
 

Parameter 
(Unit)  

Description  Equation a 

ω (cm s-1) mean thermal velocity  ω (T) = (8RT/(πM))1/2 
Dg (cm2 s-1) gas-phase diffusion coefficient  Dg (T, P) = (T/Tstandard)1.75 (Pstandard/P) Dg 

(Tstandard, Pstandard) b       
Db (cm2 s-1) bulk diffusion coefficient Db (T, RH) = kT/(6πaη(T, RH)) 
ka (cm s-1) first-order adsorption rate 

coefficient 
ka (T) = αsω (T)/4  

kd (s-1) first-order desorption rate 
coefficient 𝑘!(𝑇) = 𝐴𝑒!

!!"#
(!")   

kss,s (cm s-1) first-order rate coefficient for 
quasi-static-to-sorption layer 
transport 

kss,s(𝑇,𝑅𝐻) = 2Db (T, RH) /(𝛿ss + 𝛿Z) 

ks,ss (s-1) first-order rate coefficient for 
sorption-to-quasi-static surface 
transport  

ks,ss 𝑇,𝑅𝐻 =
kss,s(T, RH)kd(𝑇)[Z]ss,eq/(ka(T)[Z]g,eq) 

kb1,ss (cm s-1) rate coefficient of bulk layer 1-to- 
quasi-static surface transport 

kb1,ss(𝑇,𝑅𝐻) = 2Db (T, RH) /(𝛿ss + 𝛿(1)) 

kss,b1 (cm s-1) rate coefficient of surface-to-bulk 
layer 1 transport 

kss,b1(𝑇,𝑅𝐻) = kb1,ss(𝑇,𝑅𝐻) 

kb,b (cm s-1) rate coefficient of transport 
between bulk layers 

kb,b(𝑇,𝑅𝐻) = 2Db (T, RH) /(𝛿(𝑘) + 𝛿(𝑘
+ 1)) 

τd (s) desorption lifetime τd = kd
-1 

a Description and the values of the symbols shown in the equations are summarized in Table S2.  
b Dg (Tstandard, Pstandard) is calculated by the EPA on-line tools: 
(https://www3.epa.gov/ceampubl/learn2model/part-two/onsite/estdiffusion-ext.html). 
 
 
 
 
 
 
 
 
 
 
  



Table S2. Description and the values of the symbols in the equations of Table S1.  
 

Variable (Unit)  Description  Value 
R (J K-1 mol-1) gas constant  8.314 
T (K) temperature  varied from 220 to 310  
RH (%) relative humidity varied from 0 to 100 
M (g mol-1) molar mass of compound Z 200       
T0 (K) room temperature 298 
ρ (g cm-3) density of organic particles 1.4 
P (Pa) atmospheric pressure P=Pstandard × (T/Tstandard)g/LR 
g (m s-2) gravitational acceleration 9.8 
R (m2 s-2 K-1) gas constant of air 287 
L (K m-1) lapse rate 0.0065 
Tstandard (K) sea level standard temperature in the International 

Standard Atmosphere 
288.15 

Pstandard (Pa) sea level standard atmospheric pressure in the 
International Standard Atmosphere 

101325 

K (J K−1) Boltzmann constant 1.38 × 10−23 
a (cm) effective molecular radius 10−8 
δZ (cm) effective molecular diameter   2 × 10−8 
αs,0 surface accommodation coefficient on free-substrate 1 
A (s-1) pre-exponential factor 1012 
Edes (kJ mol-1) desorption energy  40  
[Z]g,eq (cm-3) equilibrium (saturation) number concentrations of Z 

in the gas phase  
variable 

[Z]ss,eq (cm-2)  equilibrium (saturation) number concentrations of Z 
in the quasi-static surface layer 

variable 

δss (cm) thickness of the quasi-static surface layer variable 
δ(k) (cm) thickness of the bulk layer k variable 

 
 

 

 

 

 



 

Figure S1. Temperature-dependent kinetic processes simulated in the KM-GAP model. 

Parameters in blue are treated as a function of temperature (Table S1). [Z] are concentrations of 

species Z in the gas (g) and near-surface gas phases (gs), at the sorption layer (s) and in the 

surface (ss) and in the bulk (b) layers. J are the transport fluxes between each layer, including the 

gas-phase diffusion flux (Jdiff), the adsorption (Jads) and desorption (Jdes) fluxes, surface−bulk 

exchange fluxes (Js,ss, Jss,s, Jss,b1, Jb1,ss), and bulk diffusion fluxes (Jb,b). 

 

 

Figure S2. Bulk diffusion coefficient (Db) in pre-existing particles as a function of temperature 

and relative humidity. The glass transition temperatures under dry conditions (Tg,org) are set to be 

(a) 240 K, (b) 270 K and (c) 300 K, respectively.   

 

 

 

 



 
Figure S3. Temporal evolution of the mass fraction of Z in the near-surface bulk (fs), and the 

average fraction of Z in the entire bulk (fb). RH = 60% and T is (a, b) 298 K and (c, d) 250 K in 

the closed system. The C0 of Z is (a, c) 10 µg m-3 and (b, d) 0.1 µg m-3. The glass transition 

temperature of pre-existing particles under dry conditions (Tg,org) is set to be 270 K, which leads 

to Db of (a, b) 10-11 cm2 s-1 and (c, d) 10-18 cm2 s-1. The initial mass concentration of pre-existing 

particles is assumed to be 20 µg m-3 with the number concentrations of 3 × 104 cm-3 and the initial 

particle diameter of 100 nm. 

 

 

 
Figure S4. Temporal evolution of mass concentrations of the condensing compound Z in the gas 

phase (Cg), just above the particle surface (Cs), and in the particle phase (Cp) in the closed system. 

The mass fraction of Z in the near-surface bulk (fs), and the average fraction of Z in the entire 

particle bulk (fb) are also shown. Db is 10-18 cm2 s-1. The C0 of Z is (a) 0.1 µg m-3 and (b) 10-9 µg 

m-3. The initial mass concentration of pre-existing particles is set to be (a) 0.7 µg m-3 and (b) 20 



µg m-3. τeq is marked with the red circle. τeq (~28 s) in (b) is consistent with the inverse of the 

condensation sink (29 s).  

 

 

 
Figure S5. Temporal evolution of mass concentrations of the condensing compound Z in the gas 

phase (Cg), just above the particle surface (Cs), and in the particle phase (Cp) in the open system. 

τeq is marked with the red circle. RH = 60% and T is (a‒b) 298 K and (c‒d) 250 K. The C0 of Z is 

(a, c) 10 µg m-3 and (b, d) 0.1 µg m-3. The glass transition temperature of pre-existing particles 

under dry conditions (Tg,org) is set to be 270 K, which leads to Db of (a‒b) 10-11 cm2 s-1 and (c‒d) 

10-18 cm2 s-1. The initial mass concentration of pre-existing particles is set to be 20 µg m-3 with the 

number concentrations of 3 × 104 cm-3 and the initial particle diameter of 100 nm. 

 

 

 

 

 

 

 

 

 

 



 

 

Figure S6. Temporal evolution of mass concentrations of the evaporation compound Z in the gas 

phase (Cg), just above particle surface (Cs), in the particle phase (Cp), the mass fraction of Z in the 

near-surface bulk (fs), and the average fraction of Z in the entire particle bulk (fb) in the closed 

system. τeq are marked with red circles. RH = 60% and T is (a‒b) 298 K and (c‒d) 250 K. The C0 

of the evaporation compound is (a, c) 10 µg m-3 and (b, d) 0.1 µg m-3. The glass transition 

temperature of pre-existing particles under dry conditions (Tg,org) is set to be 270 K, which leads 

to Db of (a, b) 10-11 cm2 s-1 and (c, d) 10-18 cm2 s-1. The initial mass concentration of pre-existing 

non-volatile particles (COA) is assumed to be 20 µg m-3 with the number concentrations of 3 × 104 

cm-3 and the initial particle diameter of 100 nm. 

 

 

 

 

 

 

 

 

 

 

 



 
Figure S7. Equilibration timescale (τeq) as a function of temperature and relative humidity in the 

open system. The glass transition temperatures of pre-existing particles at dry conditions (Tg,org) 

are (a) 240 K, (b) 270 K, and (c) 300 K, respectively. The saturation mass concentration (C0) of 

the condensing compound is 10 µg m-3 (SVOC). The mass concentration of pre-existing particles 

is set to be 20 µg m-3 with the number concentrations of 3 × 104 cm-3 and the initial particle 

diameter of 100 nm. 

 

 

 

 


