Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
ACP | Articles | Volume 19, issue 8
Atmos. Chem. Phys., 19, 5495–5509, 2019
https://doi.org/10.5194/acp-19-5495-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Chem. Phys., 19, 5495–5509, 2019
https://doi.org/10.5194/acp-19-5495-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 26 Apr 2019

Research article | 26 Apr 2019

Dependence between the photochemical age of light aromatic hydrocarbons and the carbon isotope ratios of atmospheric nitrophenols

Marina Saccon et al.

Related authors

Stable carbon isotope ratios of ambient aromatic volatile organic compounds
Anna Kornilova, Lin Huang, Marina Saccon, and Jochen Rudolph
Atmos. Chem. Phys., 16, 11755–11772, https://doi.org/10.5194/acp-16-11755-2016,https://doi.org/10.5194/acp-16-11755-2016, 2016
Short summary
Stable carbon isotope ratios of ambient secondary organic aerosols in Toronto
M. Saccon, A. Kornilova, L. Huang, S. Moukhtar, and J. Rudolph
Atmos. Chem. Phys., 15, 10825–10838, https://doi.org/10.5194/acp-15-10825-2015,https://doi.org/10.5194/acp-15-10825-2015, 2015
A method for stable carbon isotope ratio and concentration measurements of ambient aromatic hydrocarbons
A. Kornilova, S. Moukhtar, M. Saccon, L. Huang, W. Zhang, and J. Rudolph
Atmos. Meas. Tech., 8, 2301–2313, https://doi.org/10.5194/amt-8-2301-2015,https://doi.org/10.5194/amt-8-2301-2015, 2015
Short summary

Related subject area

Subject: Isotopes | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Quantifying the nitrogen isotope effects during photochemical equilibrium between NO and NO2: implications for δ15N in tropospheric reactive nitrogen
Jianghanyang Li, Xuan Zhang, John Orlando, Geoffrey Tyndall, and Greg Michalski
Atmos. Chem. Phys., 20, 9805–9819, https://doi.org/10.5194/acp-20-9805-2020,https://doi.org/10.5194/acp-20-9805-2020, 2020
Short summary
Temporal variation in 129I and 127I in aerosols from Xi'an, China: influence of East Asian monsoon and heavy haze events
Luyuan Zhang, Xiaolin Hou, Sheng Xu, Tian Feng, Peng Cheng, Yunchong Fu, and Ning Chen
Atmos. Chem. Phys., 20, 2623–2635, https://doi.org/10.5194/acp-20-2623-2020,https://doi.org/10.5194/acp-20-2623-2020, 2020
Short summary
High time-resolved measurement of stable carbon isotope composition in water-soluble organic aerosols: method optimization and a case study during winter haze in eastern China
Wenqi Zhang, Yan-Lin Zhang, Fang Cao, Yankun Xiang, Yuanyuan Zhang, Mengying Bao, Xiaoyan Liu, and Yu-Chi Lin
Atmos. Chem. Phys., 19, 11071–11087, https://doi.org/10.5194/acp-19-11071-2019,https://doi.org/10.5194/acp-19-11071-2019, 2019
Short summary
Evidence for a major missing source in the global chloromethane budget from stable carbon isotopes
Enno Bahlmann, Frank Keppler, Julian Wittmer, Markus Greule, Heinz Friedrich Schöler, Richard Seifert, and Cornelius Zetzsch
Atmos. Chem. Phys., 19, 1703–1719, https://doi.org/10.5194/acp-19-1703-2019,https://doi.org/10.5194/acp-19-1703-2019, 2019
Short summary
Atmospheric Δ17O(NO3) reveals nocturnal chemistry dominates nitrate production in Beijing haze
Pengzhen He, Zhouqing Xie, Xiyuan Chi, Xiawei Yu, Shidong Fan, Hui Kang, Cheng Liu, and Haicong Zhan
Atmos. Chem. Phys., 18, 14465–14476, https://doi.org/10.5194/acp-18-14465-2018,https://doi.org/10.5194/acp-18-14465-2018, 2018
Short summary

Cited articles

Anderson, R. S., Iannone, R., Thompson, A. E., Rudolph, J., and Huang, L.: Carbon kinetic isotope effects in the gas-phase reactions of aromatic hydrocarbons with the OH radical at 296±4 K, Geophys. Res. Lett., 31, L15108, https://doi.org/10.1029/2004GL020089, 2004. 
Atkinson, R.: Atmospheric chemistry of VOCs and NOx, Atmos. Environ., 34, 2063–2101, 2000. 
Atkinson, R. and Aschmann, S. M.: Rate constants for the gas-phase reactions of the OH radical with the cresols and dimethylphenols at 296±2 K, Int. J. Chem. Kinet., 22, 59–67, 1990. 
Atkinson, R., Carter, W. P. L., Darnall, K. R., Winer, A. M., and Pitts Jr., J. N.: A smog chamber and modeling study of the gas phase NOx-air photooxidation of toluene and the cresols, Int. J. Chem. Kinet., 12, 779–836, 1980. 
Atkinson, R., Aschmann, S. M., and Arey, J.: Reactions of OH and NO3 radicals with phenol, cresols, and 2-nitrophenol at 296±2 K, Environ. Sci. Technol., 26, 1397–1403, 1992. 
Publications Copernicus
Download
Short summary
As compound are emitted into the atmosphere, they can undergo chemical reactions to produce secondary products. This paper investigates the relations of compounds' unique chemical characteristics to the processes that formed them from emissions in the atmosphere. A model is applied to help with this investigation. The complexity of the atmosphere, including mixing of air masses and variability in precursor reactivity, is taken into consideration, and results are presented.
As compound are emitted into the atmosphere, they can undergo chemical reactions to produce...
Citation
Altmetrics
Final-revised paper
Preprint